BLOGS
Ciencia para llevar Ciencia para llevar

CURIOSIDADES CIENTÍFICAS PARA COMPARTIR

Entradas etiquetadas como ‘CSIC’

Illustraciencia VI anuncia sus premios: descubre las mejores ilustraciones científicas del año

Por Mar Gulis (CSIC)

El certamen internacional Illustraciencia, organizado por la Asociación Catalana de Comunicación Científica y el Museo Nacional de Ciencias Naturales (MNCN) del CSIC, ha dado a conocer las ilustraciones premiadas en su sexta edición. ¡No te las pierdas!

Ciervo Volante

Ciervo volante, de Rita Cortês de Matos (Portugal)
Ganadora de la categoría de ilustración científica

El ciervo volante (Lucanus cervus), el coleóptero más grande de Europa, es bien conocido por las largas mandíbulas de los machos. Las larvas se alimentan de madera podrida y tardan entre 4 y 6 años en llegar al estadio de su metamorfosis conocido como pupa. Los adultos emergen de la tierra en verano para aparearse y viven tan solo unas pocas semanas. En la península ibérica el ciervo volante se alimenta de árboles de hoja caduca como robles (Quercus) y castaños (Castanea sativa). Esta especie se encuentra protegida en Europa porque la actividad humana está provocando la desaparición de su hábitat. En particular, Lucanus cervus se ve afectado por las malas prácticas de gestión forestal, en las que se tiende a retirar la madera muerta de los bosques.

Siberian taiga

Siberian taiga, de Julia y Eugene Porotov (Rusia)
Ganadora de la categoría de ilustración naturalista

Este trabajo ilustra el entorno y las principales especies animales y vegetales que habitan en la taiga siberiana. Sus autores, que han crecido en Siberia, conocen perfectamente el ambiente y han avistado repetidas veces y dibujado directamente del natural a todos sus habitantes. Además, han tomado apuntes de su comportamiento y sus diferentes estrategias de supervivencia. En esta ilustración, han utilizado programas de dibujo digital.

Sudan

Sudán, el último rinoceronte macho blanco, de Larissa Ribeiro Lourenço Fernandes (Brasil)
Premio del público

Sudán fue el último rinoceronte macho blanco del mundo. Tras su fallecimiento, solo quedan dos miembros vivos de su especie: la hija y la nieta de Sudán. Para la autora de esta ilustración, que necesitó cuatro días para su elaboración, Sudán es “un símbolo de las especies en peligro de extinción y una señal de que si la forma en la que consumimos no cambia, tarde o temprano destruiremos el planeta y el proceso ecológico del cual dependemos los humanos”.

Hetermorphic

Heteromorphic Ammonoids of the Matanuska Formation, Turonian, Alaska, de Kate LoMedico Marriott (Estados Unidos)
Mención especial

La imagen es una reconstrucción de dos cefalópodos extintos que vivieron en el Cretácico Superior –época que se extendió desde hace 100 a 66 millones de años atrás–, y cuyas conchas son endémicas de los estratos de ese periodo hallados en algunas zonas de Alaska y Japón: Eubostrychoceras japonicum (izquierda) y Muramotoceras matsumoto.

RamphastosRamphastos, diversidad de picos del Neotrópico, de Santiago Forero Avellaneda (Colombia)
Mención especial

El género Ramphastos es uno de los cinco que componen la familia de los tucanes (Ramphastidae). Este género está compuesto por ocho especies de grandes y coloridos picos que se encuentran distribuidas a lo largo de las selvas de Centroamérica y Sudamérica.

Papagaios

Papagaios, de Wilma Ander (Brasil)
Mención especial

El papagayo del Amazonas o papagayo verdadero es un ave típica de Brasil muy apreciada como animal de compañía por su capacidad de hablar. Eso hace que muchos ejemplares sean capturados y comercializados clandestinamente. Habita en bosques, palmeras e incluso en áreas de cultivo de árboles; aunque es cada vez más común encontrarlo en áreas urbanas. En la naturaleza, evita a los depredadores quedándose inmóvil y callado.

megasoma

Megasoma elephas, de Carlos Ortega Contreras (México)
Mención especial

Megasoma elephas es un escarabajo que habita los bosques tropicales de México. Su ciclo de vida es largo: de 2 a 3 años en la etapa larval, que transcurre en árboles en descomposición y estiércol; y otros tantos en la vida adulta.

Illustraciencia, un proyecto creado por Connecta Ciència que cuenta con el apoyo de la Fundación Española para la Ciencia y la Tecnología, premia y divulga la ilustración científica y naturalista desde 2009. En la última edición se presentaron más de 500 obras.

Si te han gustado estas imágenes, en la web de Illustraciencia puedes encontrar las 40 que compondrán la exposición itinerante del certamen. La muestra se inaugurará el 4 de octubre en el MNCN y estará acompañada por actividades paralelas, como talleres infantiles y encuentros profesionales.

¿Qué nos dicen los anillos de los árboles sobre el calentamiento global?

Por Elena Granda (Universitat de Lleida) *

Una de las características más increíbles de los árboles es su longevidad; son seres vivos capaces de vivir muchísimos años. Sin ir muy lejos, en el Pirineo se pueden encontrar pinos de alta montaña que tienen más de 800 años y que, por tanto, germinaron en el siglo XIII. Incluso se han encontrado en Estados Unidos árboles con unos 5.000 años. Dado que los árboles son capaces de almacenar información (ecológica, histórica y climática) en cada año de crecimiento, encontrar un árbol viejo es como descubrir un archivo muy antiguo repleto de información. La dendroecología (rama de la biología especializada en el estudio de la ecología de los árboles a través del análisis de los anillos de crecimiento) se encarga de recopilar esa información para responder preguntas de ecología general y abordar problemas relacionados con los cambios ambientales a nivel local y global.

Para poder acceder a dicha información se obtiene un testigo de madera (o core en inglés), ”pinchando” el tronco con una barrena desde la corteza hasta el centro del árbol (médula). Así, se extrae un cilindro de madera en el que se ven todos los anillos de crecimiento. El estudio de estos cilindros ayuda a desvelar cómo ha sido el funcionamiento de distintos individuos y especies durante toda su vida.

De estos análisis se obtiene una valiosísima información que nos ayuda a comprender a qué peligros están expuestos actualmente nuestros bosques, cómo han actuado en el pasado ante factores de estrés y qué peligro corren en el futuro si no conseguimos reducir sus principales amenazas, como las emisiones de gases de efecto invernadero a la atmósfera, los incendios provocados, las especies invasoras o la desaparición de sus hábitats.

Gracias a la dendroecología podemos estudiar las causas de la mortalidad de los árboles, como el pino albar de las siguientes fotografías, a través de la comparación de árboles muertos (primera imagen) con aquellos vivos, mediante la extracción y posterior análisis de los anillos de crecimiento que se pueden observar en los testigos de madera (segunda imagen).

 

Los beneficios que aportan las plantas terrestres son incontables: dan cobijo a los animales, absorben contaminantes, favorecen las características del suelo, evitan la erosión, etc. Pero, sobre todo, son las responsables de generar gran parte del oxígeno (O2) que respiramos y de absorber de la atmósfera el dióxido de carbono (CO2), que es uno de los principales causantes del calentamiento global. Y, en el caso particular de las plantas leñosas, árboles y arbustos, su importancia radica en que son perennes; es decir, que no mueren tras la estación de crecimiento y reproducción. Esto implica que la cantidad de CO2 que pueden captar es muy grande y que este queda almacenado en los bosques, retenido en la madera, raíces, ramas y hojas durante mucho tiempo.

Durante las últimas décadas, y debido al aumento de gases de efecto invernadero en la atmósfera como el CO2 , se han producido alteraciones de la temperatura y las precipitaciones a nivel global. En países de clima mediterráneo, por ejemplo, se han registrado aumentos de temperatura en torno a 1,3 grados centígrados desde la revolución industrial, cuando se aceleró la emisión de estos gases a la atmósfera. Además han aumentado recientemente las condiciones extremas de sequía y hay mayor riesgo de incendios y lluvias torrenciales.

Cabría pensar que un aumento de CO2 atmosférico podría ser beneficioso para los árboles, ya que son organismos que se alimentan de dióxido de carbono. Sin embargo, esto normalmente no ocurre porque el aumento de CO2 está asociado a la sequía y al calentamiento global, y estos son factores que pueden producir estrés en las plantas. Dicho estrés da lugar al cierre de los estomas (poros que hay en las hojas por donde entran y salen moléculas de CO2 y agua) y, como consecuencia, no pueden aprovechar esa mayor cantidad de alimento. Si lo comparamos con los humanos, sería como si nos encontráramos ante una mesa llena de comida pero tuviéramos la boca cerrada y no pudiésemos comer nada. Dado que el cambio climático y la alteración de la atmósfera pueden perjudicar al funcionamiento de las especies leñosas, se esperan cambios en la composición de los bosques como los conocemos en la actualidad.

Por eso es importante conocer qué árboles están estresados, las causas y consecuencias, así como la forma en la que actúan ante ese estrés. Con el fin de predecir qué va a pasar en el futuro con nuestros bosques para poder minimizar las consecuencias del cambio climático, es de gran utilidad el estudio del crecimiento de los árboles a lo largo del tiempo: cuánto carbono han consumido y utilizado cada año, cómo han influido en ellos los cambios de temperaturas, las plagas, las sequías o los incendios, de manera que podamos desarrollar modelos de evolución de los futuros bosques.

Ilustración que representa las distintas fases en el estudio de los anillos de crecimiento: extracción del testigo de madera con una barrena (a); datación de los anillos para saber a qué año corresponde cada uno (b) y análisis de la información contenida en los mismos (c)

Gracias a la dendroecología podemos estudiar las causas de la mortalidad de los árboles, como el pino albar en la fotografía, a través de la comparación de árboles muertos (a) con aquellos vivos (b), mediante la extracción y posterior análisis de los anillos de crecimiento que se pueden observar en los testigos de madera.

 

Elena Granda es investigadora postdoctoral de la Universitat de Lleida y colaboradora del Instituto Pirenaico de Ecología (CSIC).

 

Organismos a la fuga: ¿escapan los seres vivos de la contaminación?

Por Ignacio Moreno-Garrido y Cristiano Venicius de Matos Araujo (CSIC)*

Pez cebra / Flickr-Photo-by-Lynn-Ketchum

Pez cebra / Flickr-Lynn Ketchum

Faraones, reyes, emperadores y nobles de tiempos pretéritos descubrieron, hace ya siglos, cómo funcionaban los ensayos de toxicidad. Ya que siempre hay gente interesada en cambiar unos gobernantes por otros, y dado que la mayor parte de los venenos preferidos por los asesinos actuaban por vía digestiva, era frecuente que los pretendientes al trono o sus aliados añadieran algunos simpáticos polvitos a las comidas de estos dirigentes con la aviesa intención de allanarles el camino a sus correspondientes sepulturas. Como el problema es que todo el mundo conoce el manual, estos gobernantes hacían probar la comida a sus sirvientes, y si estos ponían mala cara, mudaban el color epidérmico a tonos más verdosos y, acto seguido, se morían, aquellos solían pasar directamente a los postres obviando los segundos platos. Por supuesto, tales ensayos adolecían de rigor científico (aunque algunos tuvieran rigor mortis), y bastaba con procurarse un veneno de efecto retardado para solucionar el ligero inconveniente (y si no, que se lo cuenten al pobre emperador Claudio, por ejemplo).

Como quiera que sea, la base de los ensayos de toxicidad estaba servida: para conocer cómo de tóxica es una sustancia casi no nos queda otra que exponer material biológico a distintas concentraciones de tal sustancia, y observar qué pasa. Estos materiales biológicos, hoy día, pueden ser simples enzimas, cultivos celulares, tejidos, organismos, conjuntos de organismos o incluso ecosistemas, más o menos complejos. Sin embargo, los ensayos de toxicidad “clásicos” casi siempre se han centrado en la mortalidad (en el caso de organismos superiores) o en la inhibición del crecimiento (en el caso de poblaciones de microorganismos).

Pero, ¿qué pasa si los organismos, a concentraciones más bajas de las que les producen un efecto nocivo, detectan la contaminación y se fugan a sitios más limpios? Desde el punto de vista de la ecología, la fuga de los organismos de una zona equivale a su extinción, de modo que tal vez hayamos subestimado los efectos tóxicos de los contaminantes durante todos estos años.

Sistema lineal para estudiar el desplazamiento de los organismos / ICMAN-CSIC

Sistema lineal para estudiar el desplazamiento de los organismos / Cristiano Araújo

El primer paso que nos permite evaluar la capacidad de los organismos para huir de los contaminantes consiste en ponerlos en condiciones de elegir entre diferentes ambientes. En el Instituto de Ciencias Marinas de Andalucía (CSIC), miembros del grupo de investigación EEBAS (Ecotoxicología, Ecofisiología y Biodiversidad de Sistemas Acuáticos) estamos desarrollando dispositivos que simulan gradientes o manchas de contaminación en sistemas que permiten el libre desplazamiento de los organismos entre sus compartimentos, tanto en diseños lineales como en pequeños laberintos, como muestran las imágenes.

Con estos sistemas hemos realizado en el grupo de investigación diversos estudios que involucraban diferentes organismos. Ya se han llevado a cabo ensayos sobre microalgas (como la diatomea bentónica Cylindrotheca closterium), crustáceos (como el camarón Atyaephyra desmaresti o el anostráceo Artemia salina), peces (como Danio rerio –pez cebra– o Poecilia reticulata –guppy–) y renacuajos de tres especies de anfibios (Leptodactylus latrans, Lithobates catesbeianus y Pelophylax perezi). Los resultados, algunos ya publicados en revistas de ámbito internacional (Chemosphere, Environment International, Science of the Total Environment, Aquatic Toxicology o Plos One) muestran de manera inequívoca que prácticamente todos los organismos ensayados detectan la mayoría de los contaminantes y buscan las zonas menos contaminadas.

Sistema de laberinto / ICMAN-CSIC

Sistema de laberinto / Cristiano Araújo

Estos estudios de selección de hábitats también indican que, a pesar de ser la contaminación un factor capaz de expulsar organismos de una zona, la presencia de potenciales competidores en los tramos limpios o la presencia de comida en la zona contaminada pueden variar en gran medida la decisión, por parte de los organismos expuestos, de evitar o no los tramos con mayores cargas de contaminantes.

Este novedoso enfoque de estudio, que simula gradientes o manchas de contaminación, nos ha permitido incluir un nuevo concepto en los estudios medioambientales: la fragmentación química de los hábitats, basada en los efectos que un vertido contaminado puede tener impidiendo el paso de los organismos entre dos zonas limpias.

En resumen, nuestros resultados indican que los estudios sobre los efectos de los contaminantes no deberían estar exclusivamente enfocados en evaluar cómo los contaminantes dañan los organismos, ya que se ha puesto de manifiesto que el potencial “repelente” de las sustancias contaminantes, incluso a concentraciones muy por debajo de los valores letales, puede acarrear serias consecuencias para la estructura y dinámica de los ecosistemas, así como para la distribución espacial de los organismos.

* Ignacio Moreno-Garrido y Cristiano Venicius de Matos Araujo son investigadores en el Instituto de Ciencias Marinas de Andalucía (CSIC).

Cerebros de plastilina: ¿es posible conseguir una “supermemoria”?

Por Sandra Jurado Sánchez (CSIC)*

Ilustración de Silvia Jurado Sánchez

       Ilustración de Silvia Jurado Sánchez

En estas fechas de junio ya casi se pueden tocar las tan ansiadas vacaciones… Durante este mes, miles de estudiantes se han tenido que enfrentar a los exámenes de fin de curso, a la temida EBAU (antes Selectividad o PAU) o incluso a los exámenes de recuperación. En estas semanas el alumnado pone a prueba su templanza, pero sobre todo su memoria y conocimiento. Algunos demuestran una excelente capacidad de retención de manera innata (o, más probablemente, producto del trabajo continuado durante el curso), mientras que otros creen “conveniente” mejorar sus posibilidades con la ayuda de suplementos alimenticios. También hay quienes, dudando de su propia capacidad, se dedican al diseño de complejas formas de outsourcing intelectual o “chuletas” de última generación.

En estos momentos de incertidumbre, qué no daríamos por conocer los secretos de la memoria: ¿cómo aprendemos?, ¿cómo se forman nuestras memorias y recuerdos? Y sobre todo, ¿cómo podemos potenciar estas capacidades y generar una “supermemoria”? El cerebro guarda la clave de estos misterios, y la neurociencia, la ciencia encargada de estudiar el funcionamiento cerebral, trabaja sin descanso para entenderlos.

El desarrollo temprano durante la infancia es un momento crítico para el aprendizaje, pero las personas adultas seguimos aprendiendo y formando recuerdos sin que se produzcan cambios significativos en nuestro volumen cerebral. Una posible estrategia del cerebro adulto para codificar nueva información implicaría remodelar las conexiones neuronales ya existentes en función de su frecuencia de uso. Por ejemplo, consideremos el aprendizaje de un instrumento musical principalmente adquirido a través de constante repetición. Aquellos contactos neuronales o sinapsis que comienzan a emplearse con mayor frecuencia podrían verse potenciados, mientras que si abandonamos el entrenamiento, estos contactos o conexiones podrían comenzar a debilitarse, llegando incluso a desaparecer. Los puntos de contacto entre neuronas, o sinapsis, son regiones extremadamente flexibles que tienen la capacidad de responder a distintas necesidades según los estímulos que reciben, potenciándose o debilitándose en función de la frecuencia de uso durante un proceso conocido  como plasticidad sináptica.

El concepto del cerebro como una estructura plástica se introduce por primera vez en el siglo XIX por el psicólogo estadounidense William James, y posteriormente es asimilado por los padres de la neurociencia moderna, con su máximo exponente en la figura de Santiago Ramón y Cajal. Meticulosas observaciones de las redes neuronales en cerebros embrionarios convencieron a Cajal de que el tejido neuronal era lo suficientemente flexible como para permitir la formación y desaparición de conexiones dependiendo del momento del desarrollo, y que posiblemente esta flexibilidad se encontrara en la base de la formación de memorias y recuerdos en el cerebro adulto.

Dibujo de corteza cerebelosa realizado por Santiago Ramón y Cajal en 1904. / Ministerio de Ciencia, Innovación y Universidades

Dibujo de corteza cerebelosa realizado por Santiago Ramón y Cajal en 1904. / Ministerio de Ciencia, Innovación y Universidades

Aunque plausible e interesante, la plasticidad cerebral acabó siendo un concepto puramente teórico. Habría que esperar hasta principios de los años setenta para que los investigadores Timothy Bliss y Terje Lømo, de la Universidad de Oslo, detectaran por primera vez un fenómeno de plasticidad sináptica. Así, lograron demostrar que en respuesta a un aumento de la frecuencia de estimulación, la fuerza de las sinapsis en el hipocampo, una región cerebral importante para la memoria y afectada severamente en la enfermedad de Alzheimer, aumentaba muy rápidamente: ¡en cuestión de segundos podía aumentar hasta un 200%! Lo más importante era que estas conexiones permanecían potenciadas durante horas. Este aumento en la frecuencia de estimulación en el laboratorio mediante técnicas de electrofisiología in vivo pretendía mimetizar el aumento de la actividad de determinadas conexiones durante el proceso de aprendizaje. El resultado fue que estas conexiones eran capaces de adaptarse muy rápidamente y facilitarse tal y como se venía especulando desde el siglo XIX.

Este hallazgo revolucionó la neurociencia, ya que proporcionaba evidencias experimentales para el concepto de plasticidad cerebral, que hasta entonces era una mera hipótesis. En los años sucesivos, numerosos laboratorios profundizaron en el estudio de la plasticidad sináptica y, gracias al avance de las técnicas de biología molecular, electrofisiología y microscopía, se pudieron identificar diferentes moléculas claves para este fenómeno neuronal.

La identificación de estas moléculas abre la puerta al diseño de nuevas estrategias y fármacos destinados a potenciar los procesos cognitivos, principalmente en individuos afectados por patologías que afectan a la memoria, como las enfermedades neurodegenerativas. Aunque la tan ansiada “píldora de la memoria” aún está fuera de nuestro alcance, es intrigante pensar qué efectos podrían provocar estos fármacos en individuos sanos. Intuitivamente podríamos imaginar la aparición de una “supermemoria”. Sin embargo, es probable que llegar a obtenerla no sea tan sencillo. Consideremos que el efecto de estos fármacos, aún en vías de desarrollo, podría ser diferente en un cerebro sano y en un cerebro afectado por neurodegeneración, en donde el entorno neuronal se ve profundamente alterado con la aparición de agregados moleculares inexistentes en situaciones normales. En este escenario, es esperable que el uso de fármacos que modulan moléculas cuyo efecto es predominante en el cerebro enfermo no tendría por qué afectar positivamente a las capacidades de memoria de un cerebro saludable que carece de estas dianas.

Todas estas cuestiones han de ser analizadas meticulosamente, incluyendo la reflexión acerca de si es necesario desarrollar una “píldora para la memoria” en un mundo en donde gran parte de nuestros recuerdos se almacenan de manera digital. Tal vez mucha memoria no suponga ya una ventaja pues, como dijo Nietzsche, “la buena memoria es a veces un obstáculo al buen pensamiento”.

* Sandra Jurado Sánchez es investigadora en el Instituto de Neurociencias de Alicante, del CSIC y la Universidad Miguel Hernández. Más sobre su trabajo en: https://www.juradolab.com/

Insectos, algas y carne de laboratorio, ¿las proteínas del futuro?

Por Miguel Herrero (CSIC)*

En su novela Un mundo feliz, Aldous Huxley describe una sociedad futurista –e inquietante– en la que sus miembros se alimentan con pastillas que les aportan todo tipo de nutrientes. No es la primera vez que la ciencia ficción especula sobre cómo será la alimentación en un futuro más o menos lejano. Hoy, los avances que se están produciendo en las ciencias de la alimentación pueden dar pistas sobre la evolución de nuestra dieta. ¿De qué nos alimentaremos? Para responder a esta pregunta hay que considerar las necesidades nutricionales de la población global y los recursos existentes para cubrirlas.

Según la ONU, en 2050 habrá en la Tierra unos 9.000 millones de personas. A principios del siglo XX se calcula que había algo más de 1.500 millones de habitantes en el planeta. Es decir, en solo 150 años, esa cifra se habrá multiplicado por seis. Por tanto, es probable que tengamos que adoptar medidas para no llevar al límite los recursos disponibles: agua potable, aire no contaminado, energía limpia y, por supuesto, alimentos. Para aumentar la capacidad de generar alimentos, ya se ha comenzado a buscar fuentes alimenticias no explotadas suficientemente hasta el momento, y que no impliquen técnicas agrarias y ganaderas que perjudican al medioambiente.

Gusanos de seda cocinados.

Fundamentalmente se exploran nuevas fuentes de proteínas, pues estas se consideran el nutriente principal. Dado que la producción cárnica es muy ineficiente (en términos de recursos consumidos) y muy contaminante se pretende reducir la dependencia de la misma en la alimentación. ¿Cómo? Los insectos aparecen como la primera opción. La FAO ha destacado en más de una ocasión el papel que pueden jugar en la alimentación mundial futura. Aunque en Occidente no resulten demasiado apetecibles, estos animales poseen unas características nutricionales muy interesantes. Son una gran fuente de proteína, dado que este nutriente es su componente mayoritario. Pero, además, la cría de insectos puede ser utilizada también para la elaboración de piensos y alimentos para otros animales, liberando de ello cultivos que pueden ser redirigidos a la alimentación humana. Aunque en estas latitudes aún no se estilen los menús de insectos, aproximadamente un cuarto de la población mundial, mayoritariamente en Latinoamérica, ya se alimenta de ellos de forma regular.

Ensalada de algas.

Otra de esas posibles fuentes proteicas son las algas. Cualquier persona asiática aducirá que para ella las algas son un alimento del presente, no del futuro, pero en Europa su consumo aún es residual. Hay muchas algas ricas en proteínas, en particular varias especies del grupo de las microalgas. De tamaño microscópico, se pueden cultivar en plantas de producción que no tienen que estar necesariamente cerca de fuentes de agua salada, y por tanto en zonas costeras. Algunas ya se cultivan para producir alimentos para peces, por ejemplo, o para la generación de energía, pero de toda la producción tan solo una parte muy pequeña se dirige a la alimentación humana.

Las grandes algas son más frecuentemente utilizadas como alimento, aunque su consumo tampoco es equiparable al de los vegetales. En cuanto a su composición, todos los tipos de algas destacan por poseer altas cantidades de proteína y bajas proporciones de grasas que, además, suelen ser insaturadas y por tanto saludables. Sin embargo, algunas especies tienen un alto contenido en yodo, mientras que otras pueden acumular durante su crecimiento cantidades apreciables de metales pesados (como ocurre en algunos peces). Aun así, estas desventajas son claramente superables eligiendo de manera apropiada las especies a cultivar.

Finalmente, la carne obtenida a partir de cultivos de tejidos celulares y no de animales directamente es otra fuente que se está explorando. La producción de carne en laboratorio a partir de células madre que se convierten en células musculares idénticas a las que posee la carne está dando sus primeros pasos. De momento, las características de esta carne cultivada no son iguales a las de la carne a la que pretende sustituir, puesto que tan solo se compone de músculo y no contiene nada de grasa ni otros componentes que están entremezclados con la masa muscular en los animales. Esto provoca falta de jugosidad y unos sabores diferentes, menos apetecibles que los de la carne natural. Ahora bien, en los próximos años pueden producirse avances que permitan generar carne apetecible de forma económica y energéticamente más eficiente que a través de la cría de animales.

* Miguel Herrero es investigador en el Instituto de Investigación en Ciencias de la Alimentación (CIAL) del CSIC y la Universidad Autónoma de Madrid y autor del libro de divulgación Los falsos mitos de la alimentación, disponible en la Editorial del CSIC Los Libros de la Catarata.

El fondo cósmico de microondas, la fotografía más antigua del universo

Galaxia Andrómeda. / Robert Gendler.

Por Pablo Fernández de Salas (CSIC)*

Cuando miramos al cielo nocturno, la mayoría de lo que vemos es un manto negro con algunas estrellas dispersas. Por eso, siempre nos han dicho que el universo está prácticamente vacío.

Sin embargo, en el interior de una galaxia como la nuestra esto no es realmente cierto, ya que en el espacio que media entre las estrellas hay mucho polvo y nubes de gas molecular. Otra cosa distinta es lo que ocurre en el enorme espacio que por lo general separa las galaxias. Sin ir más lejos, Andrómeda, la galaxia más cercana a la Vía Láctea, se encuentra a nada menos que dos millones y medio de años luz. Si alguien nos enviara un mensaje desde allí, ¡tendríamos que esperar un mínimo de dos millones y medio de años para recibirlo! La cantidad de polvo y gas que hay en estas grandes distancias es ridículamente pequeña, y es por ello que decimos que el espacio intergaláctico se encuentra vacío. No obstante, estrictamente hablando, dicho espacio queda muy lejos de no contener nada.

Lo que llena el espacio intergaláctico está presente a lo largo y ancho de todo el universo. Se trata, principalmente, de fotones, las partículas que componen la luz. Comparten el espacio con otras partículas, como por ejemplo los neutrinos, pero los fotones son las más abundantes del universo. Concretamente, hay más de medio millón de fotones en el volumen que ocupa una botella de litro y medio en el ‘vacío’ cósmico. ¿Cómo es posible que, siendo fotones, no los veamos a simple vista?

Arno Penzias y Robert Woodrow Wilson bajo la antena que descubrió el fondo cósmico de microondas, en Holmdel, Nueva Jersey. / NASA.

La explicación la encontramos en su origen. Los fotones que pueblan el universo se conocen, en su conjunto, como el fondo cósmico de microondas, y son, además de los más abundantes del cosmos, también los más viejos. Proceden de una época en la que el universo tenía menos de medio millón de años. Trescientos ochenta mil años, siendo más precisos, frente a los casi catorce mil millones de años que tiene en la actualidad. ¡Apenas un día en la vida de un ser humano!

Estos fotones, creados cuando el universo era tan joven, sufrieron un proceso que se conoce con el nombre de desacoplamiento. Antes de que esto ocurriera, el cosmos era una especie de ‘sopa traslúcida’, conocida como plasma, en la que los fotones no duraban mucho, ya que se aniquilaban y creaban de nuevo sin descanso debido a sus frecuentes interacciones con electrones y núcleos de elementos ligeros. Sin embargo, cuando la temperatura descendió por debajo de los 3.000 grados, los electrones se hicieron suficientemente lentos como para que los núcleos los capturaran para formar átomos. Eso, a su vez, permitió que los fotones dejaran de chocar constantemente con esas partículas y pudieran emprender un viaje en solitario y en todas las direcciones hasta nuestros días.

satélite Planck

Representación artística del satélite Planck. /
ESA-AOES Medialab.

A lo largo de todos estos años que nos separan, estos fotones se han ido enfriando por culpa de la expansión del universo hasta alcanzar hoy una temperatura de 270 grados bajo cero. Paradójicamente, esto hace que calienten el universo, ya que si no estuvieran en todas partes la temperatura del cosmos se encontraría en el cero absoluto, a menos 273 grados.

Además de enfriarlos, la expansión del universo ha expandido la longitud de onda de estos fotones, por lo que ya no nos llegan en forma de luz –nuestros ojos no pueden verlos–, sino en forma de microondas –que no pueden ser ‘vistas’ pero sí detectadas–. La primera detección de este fondo cósmico de microondas fue realizada de forma más o menos fortuita por Arno Penzias y Robert Woodrow Wilson en 1964 con una descomunal antena. Ambos fueron galardonados con el Premio Nobel de Física.

Desde entonces la comunidad investigadora ha observado estos antiquísimos fotones con satélites como COBE, WMAP o Planck, y con experimentos situados en la superficie de la Tierra. Actualmente, la observación más precisa de las anisotropías del fondo cósmico se la debemos al satélite Planck, que tras cuatro años de operación nos ha permitido tomar la fotografía más antigua del universo.

Antisotropías

Anisotropías del fondo cósmico de microondas medidas por el satélite Planck. La fotografía más antigua del universo. / ESA-Planck Collaboration.

La imagen refleja las minúsculas variaciones –del orden de las cienmilésimas de grado– que existen entre estos fotones según la dirección de la que procedan. Estas pequeñas desviaciones, conocidas como anisotropías, constituyen una fuente de información maravillosa sobre nuestro universo, en especial en sus primeros años de vida. Por ejemplo, permiten estudiar las diferencias en la densidad del plasma cósmico cuando el universo tenía trescientos ochenta mil años, o características de los neutrinos y de la materia oscura ligadas con las propiedades estadísticas de dichas anisotropías, tareas que llevamos a cabo en el Instituto de Física Corpuscular (IFIC, centro mixto del CSIC y la Universidad de Valencia) con datos preliminares obtenidos por el satélite Planck.

 

* Pablo Fernández de Salas es investigador en el Instituto de Física Corpuscular (centro mixto del CSIC y la Universidad de Valencia).

Transgénicos, ondas gravitacionales y mercurio: la ciencia llega a la Feria del Libro de Madrid

Por Mar Gulis (CSIC)

Cada primavera el Parque de El Retiro de Madrid se llena de textos y de lectores con ganas de descubrir novedades editoriales. Las casetas de la Feria del Libro ofrecen múltiples formatos y temáticas y, entre ese amplio abanico de lecturas posibles, también aparece la ciencia contada de forma cercana y accesible. Si pasas por la feria la semana que viene, te invitamos a dar una vuelta por el Pabellón de actividades culturales, donde la Editorial CSIC y Los Libros de la Catarata (cuyas casetas en la feria son la 18 y la 138 respectivamente) presentarán los últimos títulos de las colecciones ¿Qué sabemos de? y Divulgación. Ambas colecciones están escritas por investigadoras e investigadores del Consejo Superior de Investigaciones Científicas (CSIC) para acercar al público general temas de actualidad científica. Los falsos mitos de la alimentación, cómo se fabrica un medicamento o dónde habitan y para qué sirven los hongos son algunos de los temas que se tratan en los últimos números.

Las presentaciones se realizarán los días 6 y 8 de junio y contaremos con la directora de Indagando TV, Graziella Almendral, y el presentador de Fallo de sistema de Radio 3 (RNE3), Santiago Bustamante, quienes se encargarán de presentar a autores, autoras y libros en estas dos mañanas de feria dedicadas a la divulgación científica.

La primera cita es el próximo miércoles 6 de junio a las 12:30 horas. Haremos un viaje por el tiempo y el espacio para conocer los hongos que habitan en lugares recónditos. La investigadora del Real Jardín Botánico Teresa Tellería presenta su libro Donde habitan los dragones: los hongos en ambientes extremos o poco explorados, de la colección Divulgación. A lo largo de sus páginas, cuidadosamente ilustradas, la autora reivindica la importancia de estos organismos eucariotas que parecen ser los más numerosos, a la vez que ostentan el récord de los menos conocidos. “Se han encargado de limpiar y reciclar los residuos que la naturaleza genera, han ejercido de parásitos y patógenos, y protagonizado alianzas fundamentales con muchos grupos de organismos; así, han contribuido a que nuestro planeta sea tal y como lo conocemos”, explica la autora.

De organismos desconocidos pasamos a otros que han sido modificados mediante ingeniería genética. Cultivos transgénicos, de la colección ¿Qué sabemos de?, explica cómo se fabrica una planta transgénica y el papel de la ingeniería genética para mejorar las cosechas y aumentar la producción de alimentos. El investigador José Pío Beltrán expone en el texto los avances que se han producido en el conocimiento científico como consecuencia de la irrupción de las técnicas de genética reversa y aborda cuestiones como el desafío de la seguridad alimentaria. Según Pío Beltrán, “el papel de las técnicas de mejora genética y los cultivos transgénicos parece indispensable para producir comida destinada tanto a seres humanos como a animales en un mundo cada vez más poblado”.

De la misma colección ¿Qué sabemos de? sale el título La gravedad, escrito por el investigador Carlos Barceló Serón. El autor aborda en el texto la teoría general de la relatividad con cuestiones como las ondas gravitacionales, los navegadores GPS o los agujeros negros. Formulada en 1915 por Albert Einstein, en los últimos cien años la relatividad general y su concepto de espaciotiempo han ocasionado una enorme revolución. Barceló propone un recorrido por un siglo lleno de descubrimientos y demostraciones trascendentes en el “territorio gravedad”.

Medicamentos, alimentación y mercurio

Diez años y mil millones de euros. Este es el tiempo y el coste medio para que un medicamento complete el proceso que va desde su descubrimiento inicial hasta estar a la venta en una farmacia. Teniendo en cuenta estos datos, no es difícil imaginar la fabricación de un fármaco como una carrera de obstáculos en la que solo unas pocas moléculas llegan a la meta. El viernes 8 de junio a las 12:30 horas, las investigadoras María del Carmen Fernández y Nuria E. Campillo narran en su libro Cómo se fabrica un medicamento. Del laboratorio a la farmacia este largo y costoso proceso. “Queríamos acercar al público un mundo en general desconocido, pero que tiene un gran impacto en su calidad de vida, ya que las enfermedades conviven con nosotros, y es importante ser conscientes del trabajo, limitaciones y retos que hay detrás de la búsqueda de nuevas sustancias para su tratamiento”, afirman las autoras.

¿La nueva moda de no comer gluten, incluso no siendo celíaco, está justificada? ¿Por qué las dietas detox no son tan milagrosas como cuentan? Y el aceite de palma, ¿qué hay de verdad en la información que nos llega? El científico Miguel Herrero se ha propuesto desmentir con conocimiento científico algunas creencias sobre los efectos de lo que comemos en el libro Los falsos mitos de la alimentación. El último título de la colección ¿Qué sabemos de? habla de las últimas modas alimenticias, de superalimentos y, sobre todo, del uso de datos y estudios científicos para avalar ciertas tendencias y productos que en ocasiones llevan a conclusiones erróneas.

Las fuentes de emisión, usos e impactos del mercurio, también conocido como “plata líquida” o “azogue”, protagonizan el libro coordinado por las investigadoras María Antonia López Antón y María Rosa Martínez Tarazona. El mercurio explica, entre otras cuestiones, el comportamiento y toxicidad de este metal presente hasta hace poco en objetos de uso cotidiano como los termómetros o la mercromina. Este título cierra las presentaciones de este día.

Las presentaciones se realizarán en el Pabellón Bankia de actividades culturales. Puedes consultar aquí la programación detallada. Además, los autores y autoras de las colecciones firmarán sus libros en las casetas de la Editorial CSIC (número 18) y de la editorial Los Libros de la Catarata (número 138).

El altramuz, de humilde aperitivo a “superalimento”

Por José Carlos Jiménez-López (CSIC)*

Altramuces en el mercado. / Tamorlan - Wikimedia Commons

Altramuces en el mercado. / Tamorlan – Wikimedia Commons

El altramuz (Lupinus albus) es una legumbre conocida popularmente por ser una planta ornamental en jardines rurales, con bellas y coloridas flores. Su semilla es denominada con varios términos como altramuces, lupín, lupinos, tremosos, así como “chochos” en determinadas localidades de la geografía española, concretamente en Andalucía. Es difícil que en algún momento, tomando una cerveza en el bar, no nos hayan puesto un cuenco de altramuces para picar.

Los altramuces se han consumido tradicionalmente en toda la región mediterránea durante miles de años. En España, las semillas del altramuz se convirtieron en un bien bastante preciado, y casi el único sustento que muchas familias tenían para “llevarse a la boca” tras la guerra civil. Hoy, 28 de mayo, se celebra el Día Nacional de la Nutrición (DNN), que este año está dedicado a promover el consumo de legumbres. Es un buen contexto para destacar los excelentes valores nutricionales de esta leguminosa que suele pasar inadvertida.

Las semillas del altramuz son consumidas típicamente como aperitivo en salmuera. Su harina se usa para la fabricación de horneados como pizza, pan, y repostería. Además de ser un buen acompañamiento en ensaladas, también es utilizado en la elaboración de humus, patés, quesos vegetales, y como integrantes principales de platos más elaborados, dignos de restaurantes renombrados con estrella Michelín. Numerosos productos basados en semillas de lupino están siendo actualmente introducidos comercialmente en tiendas de alimentación como alimentos fermentados, bebidas energéticas, snacks, leche, yogurt, productos de repostería, alimentación vegana, tofu, sustitutos de carnes, salsas, tempe, pastas y como base en dietas de adelgazamiento.

Pese a ello, el altramuz está infravalorado, siendo una legumbre que no está “de moda”, al contrario que otros alimentos como la soja, la quinoa o la chía, con un mayor auge debido a un marketing publicitario agresivo, haciéndolos llegar al consumidor de manera apetecible, para introducirlos en la dieta como productos saludables. Sin embargo, y respecto a beneficios para la salud y aporte nutricional, el altramuz no tiene nada que envidiar a estos alimentos tan publicitados, por ello se le puede adjudicar igualmente el término acuñado como “superalimento”, que puede ser sinónimo de alimento funcional, cuyo consumo proporciona beneficios para la salud más allá de los puramente nutricionales. Hay muchas razones por las cuales se puede incluir el altramuz en esa lista privilegiada, empezando porque es una fuente muy importante de proteínas, aproximadamente el 40%, lo que equivale al doble del contenido en proteínas que los garbanzos, y cuatro veces más que el trigo.

Plantas de lupino. /José Carlos Jiménez-López

Plantas de altramuz (Lupinus). /José Carlos Jiménez-López

Su contenido en fibra dietética es del 34%, que actúa como fibra soluble (como la de la avena) e insoluble (como la del salvado de trigo), incrementando la saciedad, reduciendo la ingesta calórica para un mejor control del peso corporal y ayudando además a la reducción del colesterol y la prevención de dislipemia (altos niveles de lípidos). Posee bajos niveles de grasa (menos de un 6%) y abundantes ácidos grasos insaturados, sobre todo omega-6 y omega-9. El 24% de su contenido es un tipo de hidratos de carbono que favorecen un índice glucémico más bajo que otros granos comúnmente consumidos, ayudando a equilibrar el nivel de glucosa en sangre y, de este modo, a prevenir la hiperglicemia, lo que está especialmente indicado para personas que padecen diabetes tipo 2.

El altramuz es una legumbre naturalmente libre de gluten, por lo que es un alimento apto para personas con intolerancia al mismo (celiaquía). Por otro lado, son una excelente fuente de minerales (hierro, calcio, magnesio, fósforo y zinc), vitaminas B1, B2, B3, B6, B9 (ácido fólico) y Vitamina C, además de contener todos los aminoácidos esenciales, indicado para una correcta actividad intelectual y del sistema inmune. La semilla del altramuz también tiene entre sus componentes compuestos prebióticos, que ayudan al crecimiento de microflora bacteriana beneficiosa para una correcta salud intestinal. Estas semillas son también una de las mejores fuentes naturales del aminoácido arginina, el cual mejora la funcionalidad de los vasos sanguíneos y ayuda a la disminución de la presión sanguínea. Al contrario que otras legumbres como la soja, su contenido en fitoestrógenos (componentes similares a las hormonas) es insignificante, lo que evita problemas potenciales asociados a ellos.

Son abundantes los estudios científicos realizados en los últimos cinco años que demuestran el valor de algunos componentes de estas semillas en la lucha contra enfermedades consideradas como las nuevas epidemias del siglo XXI. Algunos de estos estudios se han realizado en nuestro grupo de investigación de la Estación Experimental del Zaidín (EEZ-CSIC, Granada), donde proteínas denominadas beta-conglutinas podrían ser utilizadas para la prevención y tratamiento de la diabetes tipo 2. Se ha demostrado que estas proteínas favorecen la activación de la ruta de señalización de la insulina, con la consiguiente captación de glucosa por los tejidos (disminución de la glicemia), así como la reversión del estado de resistencia a la insulina por sus tejidos diana, todo ello favoreciendo que el organismo recupere un estado similar a una persona no diabética. Además, numerosas pruebas experimentales han indicado que estas mismas proteínas son capaces de disminuir el estado de inflamación de pacientes diabéticos. Debido a que determinadas enfermedades, cuyo progreso cursa mediante un estado inflamatorio crónico sostenido (síndrome metabólico, obesidad, diabetes, enfermedades cardiovasculares), los altramuces, y concretamente las proteínas beta-conglutinas, constituyen un componente funcional que puede jugar un papel crucial como una nueva opción terapéutica para la prevención y tratamiento de estas enfermedades que tienen una base inflamatoria.

Seguro que a partir de ahora y con todos estos argumentos, recuperaréis el buen hábito de “coger un puñado de altramuces para llevároslos a la boca”, o prepararéis sabrosos platos que sorprenderán incluso a los paladares más exigentes.

 

*José Carlos Jiménez-López es investigador en la Estación Experimental del Zaidín (CSIC) y actualmente desarrolla una línea de investigación sobre las propiedades potencialmente beneficiosas del consumo de altramuces.

‘Operación polinizador’: el imprescindible trabajo de los insectos para el futuro de la agricultura

Por Alberto Fereres (CSIC) *

Trichodes octopunctatus (Familia Cleridae) / Alberto Fereres

Trichodes octopunctatus (Familia Cleridae) / Alberto Fereres

Con la llegada de la primavera, en plena ‘operación polinización’, esta imagen se repite cada año en campos, parques y jardines. Insecto y planta cooperan para obtener un beneficio mutuo, fenómeno que en biología se llama simbiosis. Estas interacciones, de crucial importancia en los ecosistemas naturales y en los agrícolas, se iniciaron hace más de 200 millones de años, en el Jurásico.

Las primeras angiospermas, plantas con flor, dependían del viento para asegurar su reproducción, igual que las gimnospermas, pinos y especies relacionadas. El ovario producía una secreción pegajosa llamada exudado para atrapar los granos de polen que llegaban a él. Este exudado contenía proteínas y azúcares y servía de alimento a los insectos, que empezaron a transportar de manera accidental el polen de una flor a otra. Así comenzó la polinización.

Se ha estimado que este gesto, en apariencia insignificante, representa la nada desdeñable cifra del 9,5% del valor de la producción agrícola dedicada al consumo humano, lo que a nivel europeo supone un total de 5.000 millones de euros al año. Atendiendo a estos datos, no cabe duda de que el servicio ecológico que ofrecen los polinizadores posee una enorme repercusión ambiental, social y económica en nuestro planeta.

La biodiversidad de los insectos que actúan como potenciales polinizadores es muy elevada. El 20% de estos organismos, unas 200.000 especies, visitan las flores. Hay familias de insectos polinizadores importantes entre los coleópteros (escarabajos), dípteros (moscas) y lepidópteros (mariposas) entre otros órdenes, pero los polinizadores por excelencia son los himenópteros: las abejas y abejorros de la superfamilia Apoidea. Son especies en las que el polen se adhiere a sus característicos pelos corporales. Además, pueden disponer de adaptaciones para facilitar su transporte, como las corbículas o cestillos de las patas traseras. En el campo agrícola, las especies que destacan por su importancia son la abeja común Apis mellifera L., los abejorros del género Bombus sp. y otras abejas menos conocidas que son las llamadas abejas solitarias.

Apis mellifera (Familia Apidae) / Alberto Fereres

Apis mellifera (Familia Apidae) / Alberto Fereres

La abeja común produce miel, jalea real, propóleo, cera, y poliniza un amplio espectro de flora silvestre. Es vital para algunos cultivos como los frutales, ya que asegura la polinización cuando otros insectos están ausentes. Su ‘transferencia de polen’ garantiza una tasa elevada de cuajado de frutos, mayor resistencia a las heladas y mejor calidad en los mismos. Esta especie de abeja común, natural de Europa, Asia y África, incluye 26 subespecies agrupadas en cuatro linajes.

Por su parte, los Bombus o abejorros han supuesto una enorme revolución para el sector de la horticultura, especialmente bajo invernadero. A partir de 1987 se empezaron a usar en la polinización de tomate y otras hortícolas. En la actualidad se emplean en más de 40 países. Se conocen más de 240 especies de abejorros a nivel mundial, y la mitad de ellas viven en la región Paleártica (Europa y Norte de Asia). La especie que más se cría para su uso en agricultura es el Bombus terrestris L., ampliamente distribuida por casi toda la zona Paleártica. En España tenemos una especie endémica de las Islas Canarias, B. canariensis Pérez.

A pesar de su papel imprescindible, la población de polinizadores está en declive en todo el mundo. Entre los factores que han contribuido a esta situación, destacan las técnicas agrícolas de producción intensiva que han conducido a la desaparición de hábitats, lo que ha modificado notablemente la estructura del paisaje y ha llevado a la eliminación de recursos alimenticios y refugios esenciales para este importante grupo de artrópodos beneficiosos.

Para intentar compensar esta disminución, las investigaciones en este ámbito apuestan por el uso de márgenes florales, es decir, plantar setos y vegetación entre las parcelas de cultivo que permitan el incremento de los insectos polinizadores y otros artrópodos, a la vez que consiguen preservar y mejorar la biodiversidad en las zonas agrarias. Además de favorecer la polinización, los márgenes florales suavizan el rigor de los elementos climáticos protegiendo los cultivos contra las heladas y la insolación; mantienen la humedad y funcionan como cortavientos; protegen contra la erosión y también aportan valor paisajístico y cultural.

Entre otras iniciativas, desde el Instituto de Ciencias Agrarias del CSIC hemos desarrollado un protocolo para el establecimiento de márgenes y lindes de especies herbáceas con flores que atraen estos insectos beneficiosos y que están bien adaptados a los suelos y condiciones de cultivo de la zona Centro de la Península Ibérica.

 

* Alberto Fereres Castiel es investigador del Instituto de Ciencias Agrarias del CSIC. Junto a investigadores/as de la Universidad Politécnica de Madrid y la empresa Syngenta ha trabajado en el proyecto ‘Operación polinizador’.

¿Qué peligros entraña para el cuerpo humano un viaje a Marte?

Por Juan Ángel Vaquerizo (CSIC)*

Cada vez resulta más evidente que en un futuro no muy lejano el ser humano acometerá definitivamente la conquista del espacio y la exploración de otros planetas y lunas. Las agencias espaciales de todo el mundo llevan décadas desarrollando programas de exploración robótica del Sistema Solar y, desde hace ya unos años, están planificando el siguiente paso en la conquista del espacio: los viajes humanos de exploración planetaria.

De todos los posibles objetivos, el planeta Marte es el favorito. Su cercanía y la posibilidad de vida presente o pasada en el planeta rojo lo convierten en un destino irresistible para la ciencia, e incluso ya se empieza a pensar en Marte como en un segundo hogar para la raza humana, llegado el momento. 

Pero llevar seres humanos a Marte o a cualquier otro destino del Sistema Solar entraña sus riesgos, derivados de los efectos que el espacio tiene sobre el cuerpo humano. Nuestra fisiología está adaptada a las condiciones de la Tierra, de modo que cualquier cambio tiene sus consecuencias a nivel anatómico. La diferencia fundamental es la situación de microgravedad que se sufre durante los viajes espaciales.

¿Qué entendemos por microgravedad? El término es un poco extraño. ¿Nos referimos a que la gravedad es muy pequeña, de ahí lo de ‘micro’? ¿Tiene algo que ver con lo que se denomina ingravidez, que sería, literalmente, ausencia de gravedad? Pues bien, el término microgravedad se usa para describir la situación en la que están los astronautas en una nave espacial que orbita alrededor de la Tierra. No se trata de una situación de ausencia de gravedad, pues los astronautas están orbitando y, por lo tanto, siguen siendo atraídos por el planeta, así que debemos desterrar el término ingravidez. Es una situación de caída libre “controlada”: los astronautas se desplazan a gran velocidad en su órbita alrededor de la Tierra (en concreto a unos 28.000 km/h), lo que hace que caigan continuamente, sin llegar a tocar tierra. El efecto es el de una caída libre continua de la nave espacial y de todo lo que contiene en su interior, astronautas incluidos. Por este motivo todo parece flotar dentro de la nave, y por eso deben tomarse medidas para que los objetos estén “sujetos” en todo momento.

Un viaje interplanetario es muy similar en sus efectos sobre el cuerpo humano a una estancia prolongada en microgravedad en una estación espacial orbital como la ISS (Estación Espacial Internacional, de sus siglas en inglés). La experiencia obtenida desde los años 70 del siglo pasado a partir de las numerosas estancias de astronautas en las sucesivas estaciones espaciales orbitales, ha permitido estudiar que le sucede al cuerpo humano.

Así pues, si alguien está pensando en embarcarse hacia Marte ¿cuáles son los riesgos físicos a los que se expone?

NASA/NSBRI

Mareos y vómitos

El oído interno y los órganos del equilibrio funcionan como un acelerómetro que indican al cuerpo si la persona está en movimiento o en reposo, si está de pie o tumbada. Pero en el espacio, sin una fuerza que “tire hacia abajo”, ese mecanismo no funciona. Esto provoca que cuatro de cada cinco astronautas sufran mareos en las primeras 24-48 horas en microgravedad, normalmente acompañados de pérdida de apetito y vómitos.

El líquido se sube a la cabeza

A través del cuerpo se mueve una gran cantidad de fluidos. En la Tierra, esos líquidos tienden a acumularse en las piernas y los pies, pero en microgravedad los fluidos comienzan a distribuirse de manera uniforme por todo el cuerpo, desplazándose desde la parte inferior hacia la parte superior. El resultado de esta redistribución de los fluidos es que la cara tiende a hincharse y las piernas adelgazan. Pero no se trata simplemente de un cambio en el aspecto. La acumulación de fluidos en la cabeza puede ocasionar un aumento en la presión intracraneal y en la del nervio óptico, y por tanto afectar a la agudeza visual. También nos hace menos sedientos, embota el sentido del gusto y causa una sensación de “nariz tapada” similar a las que producen las alergias. Generalmente cuando los astronautas regresan a la Tierra, los fluidos se redistribuyen de nuevo y estos problemas tienden a mejorar.

Atrofia muscular y pérdida de masa ósea

En microgravedad, los huesos y los músculos ya no tienen que soportar el peso del cuerpo, por lo que se debilitan. Sin peso, el cuerpo empieza a sufrir atrofia muscular y pérdida de densidad ósea. En microgravedad, los músculos que trabajan para mantenernos erguidos pueden llegar a perder hasta un 20% de su masa, y la masa muscular total puede reducirse hasta un 5% semanal. Según los datos, un astronauta puede perder, en un mes en el espacio, la misma cantidad de masa ósea (alrededor de un 1%) que una persona que sufre osteoporosis a lo largo de un año. Esta pérdida provoca un aumento del nivel de calcio en la sangre, lo que, a su vez y junto con la propensión a la deshidratación, conduce a un mayor riesgo de desarrollar cálculos renales. Para evitar todo esto, los astronautas consumen vitamina D y realizan dos horas al día de actividad física intensa, lo que, además de contrarrestar la pérdida ósea y la atrofia muscular, les ayuda “a tener los pies en la tierra”.

El corazón se hace pequeño

Los astronautas también experimentan pérdida de volumen de sangre, debilitamiento en el sistema inmunitario y falta de condición física cardiovascular, ya que flotan sin esfuerzo alguno y el corazón bombea la sangre con mucha mayor facilidad, lo que hace que se debilite y disminuya su tamaño.

Radiación diez veces mayor

Además, no se puede olvidar el efecto de la radiación en el cuerpo humano. En la Tierra el campo magnético funciona como una protección natural contra la radiación de alta energía. La ISS cuenta con una protección artificial diseñada para proteger a los astronautas de la radiación. Aun así, los astronautas siguen estando expuestos a un nivel de radiación diez veces mayor del que estarían en tierra. Los sistemas de protección limitan los riesgos, pero un hipotético viaje a Marte expondría a los astronautas tanto a la radiación de alta energía como a los rayos cósmicos dañinos. Sin una protección adecuada, aumentaría el riesgo de cáncer, podrían sufrir enfermedades por efecto de la radiación, se alterarían las funciones cognitivas y motoras, e incluso la exposición reiterada a la radiación podría llegar a provocar cataratas y enfermedades cardíacas y circulatorias.

Hay que trabajar después de flotar

Por último, habría que tener en cuenta el hecho del aterrizaje en el suelo marciano después de experimentar microgravedad durante un largo periodo de tiempo. La tripulación de una hipotética misión a Marte tendría que ser capaz de comenzar a trabajar justo después del aterrizaje. A pesar de que Marte tiene sólo un tercio de la gravedad terrestre, los astronautas tendrían que realizar un ajuste a la nueva situación después haber estado flotando durante varios meses. Por ejemplo, en microgravedad se pierde la referencia de lo que pesan las cosas, de modo que hay que estar atento cuando uno está de nuevo en la superficie de un planeta, porque los objetos “vuelven a pesar”.

En definitiva, a pesar de que nuestros cuerpos no fueron hechos para vivir en el espacio, el conocimiento adquirido hasta el momento nos muestra que el cuerpo humano es capaz de adaptarse a situaciones diversas y adversas, lo que nos permitirá sin duda superar esta última frontera, necesaria para acometer la conquista del espacio.

El rumbo está marcado: Marte nos espera. Y lo mejor de todo es que ya hemos iniciado el camino: el primer ser humano que pisará la superficie marciana ya ha nacido y puede estar leyendo estas líneas.

 

Juan Ángel Vaquerizo es el responsable de la Unidad de Cultura Científica del Centro de Astrobiología (CSIC-INTA). Este centro colabora con la misión marciana InSight de NASA, en la que viaja a bordo el instrumento TWINS desarrollado en el CAB. El lanzamiento a Marte de la misión se realizará el próximo sábado, 5 de mayo, y se podrá seguir en directo a través de NASA TV a partir de las 13:05 horas, hora peninsular española.