BLOGS
Ciencia para llevar Ciencia para llevar

CURIOSIDADES CIENTÍFICAS PARA COMPARTIR

Entradas etiquetadas como ‘CSIC’

¿Es posible un ‘apocalipsis zombi’? Aquí, una perspectiva científica

Por Omar Flores (CSIC)*

Uno de los recursos más habituales de la ficción posapocalíptica son los zombis. Buena parte del público se ha preguntado alguna vez cómo actuaría en tal escenario; lo que, a su vez, lleva inevitablemente a la cuestión de si es realmente posible que existan los zombis y, de ser así, cómo serían. La ciencia, como siempre, acude para resolver nuestras dudas, incluso sobre no-muertos.

En primer lugar, vamos a desmentir una de las características más imposibles: los zombis como ‘máquinas de movimiento perpetuo’, que pase lo que pase nunca se detienen; cadáveres andantes que, encuentren o no comida, siguen caminando meses, años o toda la no-vida. Esto es totalmente imposible, pues, sin importar qué haya causado la zombificación, estas criaturas deben estar sujetas a los límites de la física. Ningún organismo, vivo o no-muerto, puede mantener su actividad sin recibir un aporte de energía que la sustente. Por tanto, los zombis desaparecerían por simple inanición.

Diferentes representaciones de zombies en las películas.  / AMC, Fox Searchlight y Screengems.

La siguiente cuestión es cómo se verían afectadas las capacidades físicas de los zombis al pasar a ese estado. En la ficción encontramos tres opciones básicas: zombis con fuerza o agilidad similares a las de los vivos (28 días después), con habilidades reducidas (The Walking Dead) o zombis con habilidades potenciadas, más fuertes y letales que en vida (Resident Evil). Desde el punto de vista científico, lo más probable es que los zombis tuvieran unas habilidades inferiores a las que tenían en vida, debido al deterioro físico de su organismo. Sería posible, aunque menos probable, que mantuvieran las mismas capacidades si, en vez de morir, solo perdieran su mente consciente, caso en el que podrían conservar su fuerza o agilidad siempre que consiguieran mantenerse bien alimentados. Lo que definitivamente no parece posible es que su fuerza se incrementase. Por tanto, parece evidente que podríamos enfrentarnos a los zombis y derrotarlos.

Otra idea tradicional del género es que los zombis se alimentan de cerebros. Sin embargo, no cabe esperar que los zombis sean selectivos con la comida. De hecho, las sagas más modernas ya presentan zombis que se alimentan de cualquier cosa para subsistir.

Tampoco parece muy razonable el comportamiento gregario por el cual los zombis tenderían a reconocerse y formar grupos. Sería más probable que se atacasen entre ellos, salvo que su carne no fuera útil para los propios zombis y que conservasen la capacidad de detectarse y descartarse mutuamente; algo complicado pero que podríamos aceptar. En cualquier caso, si así fuera, como mucho se ignorarían entre ellos.

Analizadas esas características secundarias (sobre las que podéis encontrar más detalles aquí), vamos por fin con la más importante de todas: ¿podrían existir realmente los zombis? Parece imposible que después de muertos algo nos vaya a hacer salir de las tumbas. En cambio, si aceptamos como zombis a aquellos cuerpos cuyo cerebro ha sido parcialmente destruido o anulado, dejando un organismo funcional pero reducido a un ente sin consciencia que solo busca satisfacer su impulso más básico de alimentarse, entonces sí podríamos llegar a enfrentarnos a una epidemia zombi. Para ello bastaría con que apareciese algún patógeno (virus, hongo o bacteria) que pudiese infectarnos, llegar a nuestro cerebro y dañarlo de esa manera. Otra posibilidad sería que un patógeno nos infectase en otra parte del cuerpo y que su actividad produjera una sustancia que llegase a nuestro cerebro y provocase esos síntomas, como si fuese una potente droga.

Pero si todo lo anterior es pura especulación, hay algo que es muy real, y es que, de hecho, ya existen zombis entre nosotros. Aunque solo en el caso de animales infectados por patógenos que los convierten en cierta clase de zombis.

El caso más simple sería el de la rabia, causada por un virus y cuyos síntomas se asemejan mucho a los de la ficción zombi (pérdida del control, agresividad, mordeduras y contagio a través de ellas), aunque los organismos infectados no son ‘muertos vivientes’.

Para encontrar animales cuyo comportamiento se aproxima más al de ‘muertos vivientes’ podríamos considerar el de los insectos que son hospedadores de parásitos como los gusanos nematomorfos (Nematomorpha o Gordiacea). Estos gusanos en su fase adulta viven en el agua (podemos encontrarlos incluso en charcos de lluvia), donde ponen sus huevos, que son ingeridos por los insectos. Los gusanos nacen en el cuerpo de su hospedador y se alimentan de él hasta que crecen lo suficiente para poder vivir libres. Cuando llega el momento de salir, el gusano toma cierto control del cuerpo del insecto y le provoca la necesidad autodestructiva de buscar agua y lanzarse dentro (Video de arriba).

A partir de ese momento, aunque el insecto se siga moviendo, ya es prácticamente un muerto viviente, pues no es dueño de sus acciones, y literalmente se suicida para que su parásito viva y continúe el ciclo.

El caso más extremo lo encontramos sin duda en el hongo Cordyceps unilateralis, que infecta a hormigas como las de la especie Camponotus leonardi. Las esporas de este hongo que alcanzan a las hormigas crecen dentro de ellas, comiéndoselas por dentro. En poco tiempo consiguen alterar el comportamiento de la hormiga, provocando que haga cosas extrañas como separarse del resto de hormigas, morder hojas y quedarse colgando de ellas, o lanzarse desde la vegetación al suelo. En este caso sí que podemos hablar de verdaderos ‘muertos vivientes’, ya que el hongo infecta completamente su cuerpo y su mente. Incluso llega a mover la mandíbula de la hormiga después de que esta haya muerto, lo que la convierte en una auténtica hormiga zombi. Al final el hongo desarrolla una seta que sale de la cabeza de la hormiga, para dispersar sus esporas e infectar a más hormigas. Esto sucede también con otros Cordyceps que infectan a otros insectos (como se puede ver también en este vídeo).

Hongo Cordyceps unilateralis en hormiga y representación humana (The Last of US). / Penn State y  Naughty Dog.

¿Podría pasar algo como eso en seres humanos? Ese es justo el argumento del videojuego The Last of Us, en el que una mutación de Cordyceps infecta a personas. Sin embargo, esta no parece una amenaza real, pues estos hongos han coevolucionado con los insectos, y no están adaptados para infectarnos (no bastaría una simple mutación para lograr que nos controlen como a las hormigas). En todo caso, podríamos especular sobre que en algún futuro llegase a aparecer (por evolución natural o de forma intencionada por nuestra intervención) una forma de patógeno que logre provocarnos una zombificación. Así que podemos concluir que, aun siendo poco probable, científicamente cabe la posibilidad de que lleguemos a convertirnos en zombis.

 

* Omar Flores es biólogo del CSIC en el Museo Nacional de Ciencias Naturales.

El universo y lo que el ojo humano no ve… o sea, casi todo

Por Enrique Pérez Montero (CSIC)*

¿Qué hace una persona ciega estudiando el universo? Además de investigador en el Instituto de Astrofísica de Andalucía del CSIC, soy invidente. Tengo una enfermedad degenerativa de la retina llamada retinosis pigmentaria por la que he ido perdiendo visión, lo que hizo que me afiliara a la ONCE hace ya seis años. Quizá algunos piensen que esta limitación física me impide llevar a cabo mi profesión, pues podría parecer que el sentido de la vista es importante para percibir el universo, pero la realidad es que todos estamos casi igual de ciegos a lo que éste contiene. Eso es algo que hemos descubierto en el último siglo, en el que han aparecido telescopios cada vez mayores, cámaras fotográficas capaces de capturar imágenes imperceptibles a simple vista, detectores sensibles a la luz que el ojo humano no puede ver porque se encuentra en otras frecuencias distintas de la luz visible, como las ondas de radio o los rayos X. Todo ello ha hecho que hayamos descubierto cosas increíbles que hasta hace no tanto ni siquiera éramos capaces de imaginar.

Incluso el ser humano ha puesto en órbita sondas espaciales que pueden visitar otros planetas y satélites de nuestro sistema solar. También hemos lanzado al espacio observatorios que recopilan la luz que no puede atravesar la atmósfera terrestre.

Muchas de las cosas que sabemos del universo las conocemos porque hemos diseñado ojos artificiales que miran más allá de lo que nuestros ojos pueden llegar a ver. No obstante, el universo tiene muchas otras cosas que, ni siquiera con los últimos adelantos técnicos ni los más sensibles telescopios o detectores, podemos observar aún. Os voy a poner cinco ejemplos.

Asteroides. Nuestro sistema solar está plagado de innumerables cuerpos rocosos que son vestigio de la época en que una parte de la nube gaseosa que formó todo el sistema se condensó en pequeños fragmentos orbitando alrededor del Sol. Muchos de ellos se agruparon en objetos cada vez mayores que dieron lugar a los planetas y sus satélites, pero otros muchos siguen sueltos y, de vez en cuando, acaban colisionando contra los otros cuerpos mayores. Desde la Tierra los buscamos y los seguimos, pero la mayoría de los cuerpos más pequeños, de hasta 100 metros de diámetro, son aún una amenaza invisible para nosotros. El mayor riesgo lo constituyen aquellos que no reflejan la luz del sol hasta que no están muy cerca de nosotros para ser detectados, bien por su debilidad o bien por su posición. El uso de un telescopio infrarrojo situado en una órbita interior podría resolver en parte la escasez de recursos para hacer un censo más completo de estos cuerpos pero, mientras esto sucede, seguimos viajando alrededor del Sol entre un auténtico enjambre de estos bólidos.

Exoplanetas. Vivimos una etapa revolucionaria de la historia de la astronomía, ya que se ha roto una de las barreras observacionales más complicadas: la detección de planetas fuera de nuestro sistema solar. El telescopio espacial Kepler ya ha catalogado más de 2.000 y algunos de ellos tienen un tamaño similar al de nuestra Tierra, y podrían albergar vida. De todas maneras, no busquéis muchas imágenes de ellos porque nos las vais a encontrar. Los planetas extrasolares se detectan por la variación en el brillo de las estrellas o en el movimiento de éstas cuando los planetas pasan por delante de ellas. Habrá que esperar a las nuevas generaciones de telescopios gigantes que se construirán en la próxima década para poder verlos directamente.

Agujeros negros. Son uno de los misterios más grandes de la naturaleza. Según la teoría de la relatividad general de Albert Einstein, acumulan tanta masa en un volumen tan reducido que curvan el espacio y el tiempo de tal modo que ni siquiera la luz puede escapar de ellos porque el tiempo está congelado en su superficie. Se han podido detectar por la radiación que emite el gas antes de caer en ellos o por el movimiento peculiar de las estrellas que pasan cerca, pero no se sabe qué leyes físicas gobiernan lo que ocurre en su interior. Una manera prometedora de estudiarlos son las ondas gravitacionales, detectadas el año pasado en un observatorio especial llamado LIGO que mide las oscilaciones del espacio-tiempo que se propagan cuando una gran masa es acelerada. La sensibilidad de estos observatorios tiene que mejorar mucho aún, pero han abierto la puerta para poder mirar dentro de estos ‘monstruos’.

Recreación de las órbitas estelares alrededor de SgrA*, un candidato a agujero negro supermasivo en el centro de nuestra galaxia (Crédito: ESO).

Recreación de las órbitas estelares alrededor de SgrA*, un candidato a agujero negro supermasivo en el centro de nuestra galaxia./ ESO

Materia oscura. Su existencia solo es conocida porque es necesaria su presencia para explicar los movimientos de las estrellas en las galaxias y de las galaxias en los cúmulos de galaxias. También es imprescindible para entender cómo se curva la luz cuando viene propagándose desde las primeras etapas del universo y tiene que atravesar grandes distribuciones de masa. Al no interaccionar con la luz de ninguna otra manera no puede ser observada directamente, pero se calcula que es cuatro veces más abundante que todos los otros tipos de materia que conocemos y compone todo lo que podemos percibir. Todos los intentos realizados hasta ahora para descubrir de qué se trata han sido infructuosos y aún se desconoce por completo su naturaleza.

Mapa 3D de la Materia Oscura a través del análisis de datos del Hubble Space Telescope (Crédito: ESA; Richard Massey)

Mapa 3D de la materia oscura a través del análisis de datos del Hubble Space Telescope./ ESA; Richard Massey

Energía oscura. Para finalizar hablaré de la energía más misteriosa y, al mismo tiempo, la más abundante. Se estima que la energía oscura compone más del 70% del total de masa y energía del universo. Teniendo en cuenta que la mayoría del resto de masa es materia oscura, esto deja en apenas un 5% la cantidad relativa de la materia que conocemos. La energía oscura es de nuevo un requerimiento teórico para explicar por qué el universo está acelerando su movimiento de expansión después del Big Bang. Si no existiera, las galaxias irían frenando su movimiento de expansión y acabarían atrayéndose unas a otras hasta volver a unirse en una única singularidad. Sin embargo esto no ocurre así, lo que ha hecho postular a los teóricos la existencia de una fuerza repulsiva a gran distancia que haría que el universo siga expandiéndose sin fin.

La mayoría de todo lo que hay en el espacio, desde las más pequeñas escalas cerca de nuestro planeta hasta las más grandes, que dominan el movimiento de todo el espacio, está repleto de objetos desconocidos y aún por descubrir. Posiblemente acabemos conociendo lo que son con ayuda de nuestros ojos mejorados y nuestras mentes despiertas.

* Enrique Pérez Montero es investigador del CSIC en el Instituto de Astrofísica de Andalucía y fundador del proyecto Astronomía accesible.

 

11 de febrero: un día para rescatar a nuestras inventoras del olvido

Por Eulalia Pérez Sedeño (CSIC) *

El próximo domingo 11 de febrero de 2018 se celebra el Día Internacional de la Mujer y la Niña en la Ciencia con el objetivo de romper las barreras de género en el ámbito científico. Una de esas barreras es la poca visibilidad de las científicas y la existencia de estereotipos que hacen que las niñas se interesen menos que los niños por algunas disciplinas como la física y las ingenierías, y que producen sesgos involuntarios en la evaluación de los méritos de las investigadoras.

Entre las muchas mujeres invisibilizadas en la historia de la ciencia y la tecnología, también se encuentran las inventoras y, entre ellas, cómo no, las inventoras españolas.

Ángela Ruiz Robles, con su enciclpedia mecánica.

En una ocasión dijo Voltaire que había conocido muchas mujeres ‘científicas’ muy inteligentes, pero ninguna inventora. Parecía así negarles capacidad inventiva, algo que se ha perpetuado en la falsa creencia de la incapacidad de las mujeres para la ingeniería. Los hechos históricos nos demuestran lo erróneo de esa idea: Josephine Cochran (lavavajillas), Mary Anderson (limpiaparabrisas), Rachel Fuller Brown y Elizabeth Lee Hazen (el antibiótico nistatina), Gertrude Ellion (los fármacos Inmuran y Zovirax, entre otros), Hedy Lamarr (cifrado de comunicaciones y más) o Stephanie Kwolek (fibra Kevlar) son algunos ejemplos significativos.

También aquí hemos tenido y tenemos inventoras desde hace mucho tiempo. La primera mujer en registrar un invento fue Fermina Orduña, quien en 1865 patentó un carro especial para vender en la calle leche de burra, vaca o cabra. Pero quiero traer aquí el caso de dos inventos que, al igual que sus inventoras, siguieron suertes muy distintas: la fregona y el libro mecánico.

Se suele señalar a Manuel Jalón, en 1964, como el inventor español de la fregona (había habido una patente semejante en EEUU en 1901). Pero Julia Montoussé Frages (de origen francés, aunque avilesina de adopción) y su hija Julia (Julita) Rodríguez-Montussé obtuvieron, en 1953, una patente muchos años antes que el mecánico de aviones. La patente de modelo de utilidad nº 34.262 se denominaba “dispositivo acoplable a toda clase de recipientes tal como baldes, cubos, calderos y similares, para facilitar el fregado, lavado y secado de pisos, suelos, pasillos, zócalos y locales en general”. ¡Un nombre mucho más difícil de recordar que el sencillo ‘fregona’! Desde luego, si examinamos los planos que figuran en la solicitud, no cabe duda de que se trata de una auténtica fregona.

Poco se sabe de estas mujeres, más allá de su parentesco y de la fecha de sus muertes: la madre en 1971 y la hija en 2005; o que eran de familia acomodada y sin estudios superiores, lo que muestra que la creatividad, inventiva y preocupación por situaciones humanas (el hecho de que las mujeres tuvieran que fregar los suelos de rodillas, día tras día) puede ser un buen acicate para encontrar soluciones.

La otra mujer que quiero sacar a la luz es Ángela Ruiz Robles (1895-1975), una leonesa de familia acomodada, con estudios superiores de magisterio, de gran capacidad innovadora y creativa, y siempre preocupada por mejorar la educación de sus compatriotas. Autora prolífica (dieciséis libros de texto), sus inventos fueron muchos y variados, pero quizás el más interesante fuera el del libro mecánico.

Extracto de la patente presentada por Julia Montoussé Frages y Julia Rodríguez-Montoussé.

En 1949 registró la patente nº 190.968, titulada “Procedimiento mecánico, eléctrico y a presión de aire para lectura de libros”. Las lecciones de cada asignatura estaban separadas en diversas hojas. Cuando se apretaban unos pulsadores, subían mecánicamente o por aire comprimido y el o la alumna podía ver la lección. Además, se podía aumentar el tamaño e incluso iluminar.

Posteriormente, Ángela Ruiz Robles perfeccionó el libro mecánico creando la Enciclopedia Mecánica, un dispositivo para mejorar las enciclopedias que usaban los escolares. La patentó en 1962 (nº 276.346), pero aunque se construyó un prototipo en bronce, madera y zinc, nunca llegó a comercializarse. En 1970 recibió una oferta de EEUU para explotarla en ese país, pero ella quería que los beneficios fueran especialmente para los españoles. Aunque hubo alguna empresa española que se interesó por la comercialización, la cantidad de dinero que tenía que aportar la inventora lo hizo inviable. No obstante, Ángela fue muy reconocida en su época y recibió un montón de distinciones y premios en diversos certámenes de inventores y exposiciones nacionales e internacionales.

Son dos casos muy distintos los de estas mujeres. Las primeras, Julia Montoussé y Julia Rodríguez-Montussé, han quedado ocultas como muchas otras mujeres en la historia, siendo reemplazadas, como tantas veces, por un varón. La última fue reconocida en su época, pero sus logros también han quedado oscurecidos, aunque ahora se la reconoce, al menos en nuestro país, como la precursora del libro electrónico. Así, una de las salas de trabajo del Museo Nacional de Ciencia y Tecnología lleva su nombre.

 

* Eulalia Pérez Sedeño es investigadora del CSIC en el Instituto de Historia y co-autora del libro Las ‘mentiras’ científicas sobre las mujeres (Catarata).

¿Qué es el albinismo? La falta de pigmentación no es la respuesta correcta

Por Lluís Montoliu, CSIC *

Vamos caminando por la calle y nos cruzamos con una chica joven, con el pelo y la piel muy blanca y que lleva gafas oscuras. Probablemente pensaremos que se trata de una persona albina que necesita las gafas para no deslumbrarse con el sol y debe cuidar su piel con cremas protectoras. La mayoría realizaríamos inconscientemente este rápido análisis y seguiríamos caminando, sin imaginar que esa persona albina en realidad padece una discapacidad visual severa tan relevante como para ser considerada ceguera legal; es decir, la que supone una agudeza visual inferior al 10% de la visión normal.

Niña europea con albinismo oculocutáneo / Ana Yturralde

En el albinismo, la falta de pigmentación, que es lo que todos percibimos, no es lo más relevante. Lo realmente discapacitante es el déficit visual asociado a esta condición genética, que no enfermedad, aunque se investigue y se trate como una de las más de 7.000 enfermedades raras. El albinismo está presente en 1 de cada 17.000 personas, lo que quiere decir que en nuestro país hay alrededor de 3.000 personas albinas. Se trata de un desorden congénito causado por mutaciones en alguno de los 20 genes (de los más de 20.000 que tenemos en el genoma humano) que hoy en día conocemos como asociados a esta condición genética.

Los 20 tipos de albinismo tienen como rasgo común una visión muy reducida, con variaciones según el tipo de albinismo y según cada persona. Ahora bien, no todas las personas con albinismo presentan esa evidente falta o ausencia de pigmentación. Durante muchos años se creyó que la falta de melanina (el pigmento que tenemos en nuestra piel, ojos y pelo) era la causa del albinismo. Hoy sabemos que la pérdida de pigmentación es una consecuencia del albinismo que solo aparece en algunos tipos, pero no en todos.

Albinismo y discapacidades visuales

Las personas con albinismo tienen diversas alteraciones visuales que son las causantes de su visión deficitaria. En primer lugar, su retina carece de fóvea. La fóvea es una diminuta región central de la retina en la que se acumulan la gran mayoría de nuestros fotorreceptores bastones; estos nos permiten percibir con nitidez formas y colores para definir objetos y personas cuando los miramos de frente. Las personas con albinismo solamente disponen en su zona central de una visión similar a la visión periférica, la que habitualmente usamos para “mirar con el rabillo del ojo”. Esta es una visión muy pobre, con poca definición, que nos permite responder frente a objetos que se mueven (nos apartamos instintivamente si percibimos que algo va a caer sobre nosotros o a nuestro lado), pero no nos sirve para apreciar los detalles. Podríamos imaginar que la retina de una persona con albinismo es como un sensor de una cámara fotográfica que tiene muchos menos píxeles, y por ello menor sensibilidad y resolución.

Las mutaciones genéticas que causan albinismo son recesivas. Esto quiere decir que una persona para ser albina debe heredar dos copias anómalas de sus padres, una del padre y otra de la madre. Suponiendo que sus padres sean portadores, esto es, que porten una copia intacta y otra anómala del gen, en cada embarazo tendrán una probabilidad del 25% de que el hijo o hija nazca con albinismo. La excepción es el albinismo ocular, denominado OA1 por sus siglas en inglés, cuyo gen afectado está en el cromosoma sexual X. Los varones, al tener solamente un cromosoma X (los varones son XY y las mujeres son XX), manifiestan directamente el albinismo si heredan una sola copia anómala.

Mediante modelos animales de los diversos tipos de albinismo se han podido investigar muchos aspectos de esta condición genética. Los resultados obtenidos en ratones han permitido descubrir que la administración de varios fármacos podría mejorar la visión de las personas con albinismo. Los ensayos clínicos en seres humanos determinarán pronto el alcance de estas investigaciones y, en su caso, su eventual traslado a la clínica.

Niño africano con albinismo oculocutáneo /Ana Yturralde

Perseguidos por su condición genética

En África, además de todo lo anterior, las personas con albinismo desgraciadamente pueden sufrir acoso, persecuciones, secuestros, mutilaciones y asesinatos. Creencias injustificables y brujerías presuponen la buena fortuna a los poseedores de partes del cuerpo de una persona con albinismo, ya sea una mano, un brazo, un pie, una nariz o una oreja, lo cual provoca continuos ataques y un mercado negro de fragmentos humanos que es necesario denunciar y combatir hasta conseguir erradicar estas barbaridades. Para ello, la ONU instituyó el 13 de junio de cada año como el  Día Internacional de Sensibilización sobre el Albinismo.

En España desde 2006 la asociación ALBA ayuda a personas con albinismo y se encarga de aportar a las parejas con recién nacidos albinos la información básica para entender qué les sucede a sus hijos e hijas.

Lluis Montoliu (@LluisMontoliu) es investigador del Centro Nacional de Biotecnología (CNB) del CSIC.

 

 

William R. Hamilton: el niño prodigio que emuló a Arquímedes

Por Sergio Barbero (CSIC) *

No es usual que un adolescente de 17 años se sienta interpelado a ocupar un lugar destacado en la historia de la ciencia. Y menos aún que semejante sentimiento acabe convirtiéndose en realidad, haciendo veraz el viejo aforismo de que sólo quien persigue con ahínco sus sueños es capaz de alcanzarlos. Esta es la historia de William Rowan Hamilton (1805-1865).

Retrato de Hamilton. Imagen de dominio público.

Hamilton fue educado por su tío James, un erudito en lenguas clásicas graduado en el Trinity College de Dublín. No es de extrañar, pues, que la educación del joven William tuviese un especial énfasis en el aprendizaje de idiomas. A muy temprana edad quedó patente la increíble capacidad de William: a los diez años –según su padre Archibald– conocía y hablaba, en mayor o menor grado, hebreo, persa, árabe, sánscrito, caldeo, siriaco, indostano, malayo, bengalí, griego, latín y varias lenguas europeas modernas. Dado el don de su hijo, Archibald aspiraba a que en el futuro William hiciese carrera con la prestigiosa Compañía Británica de las Indias Orientales. Sin embargo, la aritmética se interpuso a los deseos del padre. William descubrió que estaba dotado no sólo para aprender lenguas sino también para los cálculos aritméticos.

Su tío empezó a preparar a William para su entrada en el Trinity College. Allí, a pesar de las reticencias de James, Hamilton comenzó a estudiar distintas ramas de las matemáticas y mostró un interés especial por la aplicación de la geometría al estudio de la propagación de la luz. Desde tiempos de Euclides se había utilizado un modelo geométrico de la luz que postulaba que ésta se propagaba como una familia de líneas rectas, denominadas rayos de luz.

Hamilton no se limitaba a estudiar lo que se conocía sobre la geometría de la luz sino que, a pesar de su juventud (17 años), aspiraba a crear algo nuevo. Era plenamente consciente de su valía intelectual y prefería las ciencias naturales a los estudios humanísticos, porque, según escribió: “¿Quién no preferiría tener más la fama de Arquímedes que la de su conquistador Marcelo, o la de cualquier erudito de los clásicos, cuya máxima ambición fuese estar familiarizados con los pensamientos de otros hombres? […] Las mentes poderosas de todos los tiempos se han unido para encumbrar el vasto y hermoso templo de la Ciencia, inscribiendo sus nombres en caracteres imperecederos; pero el edificio no está finalizado: no es aún demasiado tarde para añadir un nuevo pilar u ornamento. No he llegado apenas a los pies de este templo, pero aspiro, un día, a alcanzar su cima.” Tal postura no implicaba que Hamilton despreciase las humanidades. De hecho siempre amó la poesía, a la que veía como fruto del mismo espíritu creativo del que emana la ciencia.

Sus estudios sobre óptica fructificaron. En 1823 escribía a su primo: “En óptica he hecho un descubrimiento muy curioso”. Tan sólo un año después, Hamilton mandaba su primer artículo científico –titulado ‘Sobre las cáusticas’– a la Royal Irish Academy.  Durante los siguientes años Hamilton establecería una teoría completamente original sobre la óptica geométrica basada en un nuevo principio determinante que  descubrió y denominó “Principio de acción constante”. Se sabía que una familia de rayos de luz siempre tiene asociada una superficie ortogonal a todos ellos que se denomina frente de onda. Étienne-Louis Malus (1775-1812) demostró que una familia de rayos con un frente de onda asociado seguía manteniéndolo a pesar de que esos rayos sufriesen una reflexión en un espejo o un cambio de medio (lo que se llama refracción). Pues bien, el principio de acción constante de Hamilton establecía que esa misma familia de rayos, al propagarse por un sistema de lentes o espejos, cumple la propiedad de que todos los rayos llegan a la superficie del frente de onda al mismo tiempo. La figura 2 muestra un esquema ilustrativo de este principio. La familia de rayos asociada al frente de onda W al refractarse en la superficie R se transforma en una nueva familia de rayos con el frente de onda W’. El principio que descubrió Hamilton establece que los rayos A, B, C de W llegan a los puntos A’, B’, C’ pertenecientes a W’ invirtiendo para ello el mismo tiempo. Esto tiene unas implicaciones muy profundas y prácticas en el ámbito de la óptica geométrica y por ende en el diseño de sistemas ópticos, como cámaras, telescopios, etc.

Esquema explicativo del Principio de acción constante.

Además, Hamilton se dio cuenta de que el formalismo que había creado para la óptica geométrica era válido para reformular la mecánica newtoniana. Así lo expuso en el que se convertiría en su más importante artículo científico: ‘Sobre un método general de la dinámica’ (1834). Allí definía una función, el denominado concepto Hamiltoniano, que describía por completo la evolución de un sistema mecánico. Paradójicamente, a pesar de que Hamilton ideó su teoría matemática para describir la mecánica clásica, su formulación alcanzaría su clímax precisamente con la crisis de esta misma mecánica clásica y la aparición de la mecánica cuántica, para la cual estaba especialmente adaptada. Tal fue así que Erwin Schrödinger (1887-1961), creador de la mecánica cuántica ondulatoria, diría de él: “El Principio Hamiltoniano se ha convertido en la piedra angular de la física moderna […] Su famosa analogía entre la mecánica y la óptica prácticamente anticipó la mecánica ondulatoria, que no tuvo que añadir mucho a sus ideas sino simplemente tomarlas en serio. Por lo tanto Hamilton es uno de los más grandes hombres de ciencia que el mundo ha creado”.

Hamilton consiguió su sueño: labrar para siempre su nombre en el templo sagrado de la ciencia. El Hamiltoniano es hoy en día, como afirmó Schrödinger, uno de los conceptos cruciales de la física moderna.

 

*Sergio Barbero Briones es investigador del CSIC en el Instituto de Óptica (CSIC).

 

¿Quieres ver las mejores imágenes científicas de 2017? Estas son las seleccionadas en FOTCIENCIA 15

Por Mar Gulis (CSIC)

‘Morir para seguir viviendo’ es el título de una de las fotos seleccionadas en la 15ª edición de FOTCIENCIA. La imagen muestra una hoja de tabaco que, al recibir luz ultravioleta, nos permite ver cómo un gen provoca la senescencia de algunas de sus células. Un azul intenso refleja la degradación de la clorofila en las zonas más dañadas, y contrasta con el rojo que predomina en el resto de la hoja.

Al observar ‘Con flotador de serie’, otra de las fotografías escogidas, ¿qué atrae nuestra mirada? Vemos una copa de agua con una naranja en su interior. La imagen pretende demostrar el principio de flotabilidad: gracias a la cáscara de la naranja, cuya estructura porosa alberga burbujas de aire, la fruta no  se hunde. Pero si le retiramos la piel… La naranja se sumerge hasta el fondo del recipiente. Ambas fotografías, y otras cinco más, forman parte de la selección realizada por el jurado.

Mira el vídeo y descubrirás un ‘paisaje nano’ que se asemeja a las pirámides de Egipto, la ingeniería natural que encierran las alas de una libélula, la interacción entre dos microorganismos, los conidios que genera un hongo para resistir al ataque de bacterias, o una original representación de las neuronas realizada por estudiantes de Educación Infantil.

Estas imágenes, junto a otras que se escogerán entre las 729 presentadas, serán incluidas en el catálogo de FOTCIENCIA 15. Como en años anteriores, las fotografías formarán parte de una exposición que recorrerá diferentes museos y centros de España a lo largo de 2018. Además, dos copias de esta muestra itinerante estarán disponibles para su préstamo gratuito.

FOTCIENCIA es una iniciativa de ámbito nacional organizada por el Consejo Superior de Investigaciones Científicas (CSIC) y la Fundación Española para la Ciencia y la Tecnología (FECYT), con la colaboración de la Fundación Jesús Serra. Su objetivo es acercar la ciencia a la ciudadanía a través de fotografías que abordan cuestiones científicas desde una perspectiva artística y estética. Cada imagen va acompañada de un comentario escrito por su autor/a en el que se ofrece una explicación científica de lo que ilustra la fotografía.

Toda la información relativa a FOTCIENCIA está disponible en la web www.fotciencia.es

¿Qué tienen que ver Papá Noel, la seta matamoscas y el pis de reno?

Por José Antonio López Sáez (CSIC)*

En algunas zonas de Laponia y Siberia, los chamanes tienen por costumbre beberse la orina de los renos; no porque sean psicotrópicos, sino porque estos grandes cérvidos de la tundra y la taiga gustan de alimentarse de la seta matamoscas (Amanita muscaria), rica en alucinógenos. Esto ha llevado a algunos autores a relacionar estos hechos con toda la simbología de Santa Claus, que vive en el Polo Norte como los renos (lugar donde se sitúa el eje del mundo o axis mundi de la cosmovisión chamánica), viste de rojo y blanco (colores de la matamoscas), y es capaz de volar en su trineo tirado por renos alucinados.

Un reno olisquea el suelo en busca de comida en Inarijärvi (Finlandia). / Via Manfred Werner

El género Amanita, de los basidiomicetes, cuenta con unas 600 especies de hongos. Algunos son reputadísimos comestibles, como la amanita de los césares (Amanita caesarea). Otros son irremediablemente mortales y se cuentan entre los tóxicos más potentes, como la oronja verde (Amanita phalloides), que contiene amatoxinas y la letal amanitina. Otros pocos son alucinógenos y, aunque no son tóxicos para el hígado, su consumo puede provocar reacciones diferentes dependiendo de cada individuo y de la dosis. Algunas sobredosis de amanitas alucinógenas pueden ser mortales.

Se han identificado sustancias psicoactivas en doce especies del género Amanita. De todas ellas, sin lugar a dudas, la más famosa es la matamoscas, también conocida como falsa oronja, agárico pintado u oronja pintada (Amanita muscaria). Se trata de un hongo muy popular no sólo por su potencial enteógeno, es decir, con capacidad de provocar estados de inspiración profética o poética, sino también por haber formado parte del mundo mágico de los gnomos y otros seres encantados, así como del chamanismo siberiano antes mencionado.

Los constituyentes psicoactivos claves de estos hongos son tres alucinógenos isoxazolínicos: ácido iboténico, muscimol y muscazona. El consumo de amanitas alucinógenas produce efectos semejantes a una intoxicación etílica, aunque estos hongos son capaces también de inducir fuertes alucinaciones e ilusiones, habla incoherente arrastrando las palabras, convulsiones, náuseas y vómitos severos, sueño profundo o coma, así como un dolor de cabeza que puede persistir durante semanas. El gran problema radica en que las especies de Amanita son difíciles de diferenciar unas de otras, por lo que no son pocos los casos de intoxicación mortal.

Ejemplar de Amanita muscaria en suelo boscoso. / Via Flemming Christiansen

La dosis hace el veneno

De los alucinógenos presentes en la seta matamoscas, el muscimol, muy abundante debajo de su piel, es el compuesto realmente enteogénico. Las reacciones al muscimol comienzan a partir de los 6mg, mientras que para el ácido iboténico son necesarios al menos 30-60mg. Unos 100g de matamoscas deshidratados contienen hasta 180mg de ambos alucinógenos, de los cuales sólo 25 mg son de iboténico. Es decir, comiendo poca cantidad de este hongo se pueden conseguir efectos psicoactivos relativamente potentes. Dichos efectos comienzan treinta minutos después de la ingestión, con picos de máxima actividad a las dos o tres horas.

Al secarse, el ácido iboténico se transforma en muscimol, el cual, a pesar de su gran potencia alucinógena, no es metabolizado sino que directamente se elimina con la orina. Esto explica por qué entre los chamanes siberianos existe la costumbre de beber la orina de animales que consumieron matamoscas.

Las prácticas chamánicas en torno a este hongo se extienden por todo el Círculo Ártico e incluso entre algunas tribus nativas norteamericanas. Jugó un papel etnomicológico fundamental como droga alucinógena entre las etnias siberianas, las cuales posteriormente lo llevaron a través del Estrecho de Bering a Canadá, y desde aquí se difundió por toda América. Hoy se sabe también que Amanita muscaria fue con toda probabilidad el ingrediente principal de una bebida enteogénica utilizada en las ceremonias religiosas de los arios en la India, el Soma, hace más de tres milenios.

 

José Antonio López Sáez es investigador del Instituto de Historia del CSIC en Madrid y autor del libro Los alucinógenos, disponibles en la Editorial CSIC Los Libros de la Catarata.

 

CRISPR: cómo las bacterias nos enseñan a editar los genes

Por Lluís Montoliu (CSIC)*

Frecuentemente pensamos en las bacterias como fuente de problemas. Efectivamente, son las causantes de enfermedades infecciosas tan graves como la tuberculosis, el cólera o la peste, pero también son las que nos proporcionan yogures y otros derivados lácteos. Además, las bacterias llevan miles de millones de años sobre la Tierra, muchísimos más que nosotros. Durante todo este tiempo han desarrollado un sistema de defensa muy eficaz que les permite zafarse de la infección por virus.

El sistema inmune de las bacterias fue descubierto por Francisco Juan Martínez Mojica, microbiólogo de la Universidad de Alicante, que lleva más de 25 años investigando sobre este tema. ¿Qué hace que este mecanismo de defensa sea tan especial? Pues, entre otras cosas, que se transmite genéticamente, de unas bacterias a sus hijas o descendientes. Por ejemplo, cuando nosotros nos vacunamos contra el virus del sarampión adquirimos unas defensas que evitan que desarrollemos esta enfermedad. Ahora bien, nuestros hijos no heredan esta defensa. Si queremos que ellos estén protegidos contra el sarampión, también tenemos que vacunarlos (algo sobre lo que nadie debería albergar hoy en día ninguna duda, por cierto). Las bacterias son más inteligentes que nosotros. Una vez aprenden a defenderse de un virus son capaces de transmitir esta defensa a sus hijas, y éstas a sus nietas, etc., perpetuando esta defensa. Este descubrimiento básico de Mojica, realizado en 2003, sirvió para que otros investigadores se dieran cuenta de que el mecanismo por el cual las bacterias se defienden de los virus también puede usarse, sorprendentemente, para editar los genes con una precisión nunca antes vista.

En 2012 varios científicos, entre ellos las investigadoras Jennifer Doudna y Emmanuelle Charpentier, describieron este sistema de edición basándose en los trabajos de Mojica. El sistema está formado por una proteína, denominada Cas, que actúa como una tijera molecular capaz de cortar el ADN de forma muy precisa dirigida por una guía, una pequeña molécula de ARN que le dice a la tijera Cas dónde tiene que cortar. Este sistema se denomina CRISPR (pronúnciese “crisper”), acrónimo en inglés que describe las características de estas secuencias genéticas que dirigen el corte de la tijera molecular. Éste fue el nombre, hoy en boca de investigadores de todo el mundo, acuñado también por Mojica en 2001.

El mecanismo por el cual las bacterias se defienden de los virus también puede usarse para editar los genes. / geneticliteracyproject.org

¿Qué podemos hacer con las herramientas CRISPR? Igual que cuando nos equivocamos al escribir un texto en el ordenador y podemos volver atrás y corregir, eliminar o sustituir la palabra o letras erróneas, con las herramientas CRISPR podemos editar los genes. Podemos añadir letras si faltan, eliminar letras si sobran, sustituirlas o corregirlas por otras. En definitiva, podemos modificar los genes a voluntad. Esto ha provocado una verdadera revolución en biología, biomedicina y biotecnología.

Ahora podemos desarrollar modelos celulares y animales más adecuados para el estudio de las enfermedades. Por ejemplo, tras diagnosticar a un paciente afectado por alguna de las miles de enfermedades raras de base genética que existen, y detectar el gen y la mutación causantes de esa enfermedad, podemos replicar exactamente esa misma mutación en ratones. A estos ratones que reproducen la misma alteración genética de un paciente los llamamos ‘ratones avatar’ para ilustrar la conexión existente entre ellos. Gracias a ellos podremos validar la seguridad y eficacia de nuevos tratamientos de una forma más efectiva, ya que son portadores del mismo error genético. Si somos capaces de introducir una mutación en ratones, también deberíamos poder usar las mismas herramientas CRISPR para revertir errores genéticos que afectan a los millones de personas con alguna enfermedad rara. No estamos todavía ahí, pero sí en el buen camino.

Ratones avatar modificados genéticamente con CRISPR. / Davide Seruggia

Los resultados preliminares de tratamientos genéticos basados en CRISPR probados en animales son muy esperanzadores, pero todavía no están listos para su aplicación efectiva en pacientes. ¿Por qué no podemos usar las herramientas CRISPR en el hospital? En primer lugar, la precisión que tienen las herramientas de edición genética CRISPR no es absoluta. En determinadas ocasiones pueden cortar en secuencias genéticas muy parecidas, causando alteraciones no deseadas en genes similares que no deberíamos modificar, y cuyos cambios pueden causar problemas mayores de los que queremos solucionar. Esta es una limitación que puede reducirse al mínimo si se diseñan cada vez mejores guías y se seleccionan tijeras moleculares con mayor precisión.

Pero lo más preocupante es la segunda de las limitaciones de las herramientas CRISPR. Toda la precisión que tienen para cortar el genoma en el gen y la secuencia correctas, no la tienen los mecanismos de reparación que entran en juego inmediatamente tras el corte, restaurando la continuidad del cromosoma. Estos sistemas de reparación, que tenemos en nuestras células, progresan de forma un tanto azarosa, añadiendo y quitando letras hasta conseguir enganchar los dos fragmentos del cromosoma cortado. Si bien es cierto que podemos inducir la reparación con secuencias genéticas molde que sirvan como patrón para la reparación, también sucede que no siempre las células usarán el molde y, por ello, al reparar el corte, generarán una nueva modificación genética no deseada. Tenemos que seguir investigando estos mecanismos de reparación, para poder controlarlos y hacerlos más precisos y seguros. Solamente entonces podremos recomendar, siempre con prudencia, el uso de las herramientas CRISPR en el tratamiento de enfermedades de base genética en personas.

Tras proponerlas como sistemas de edición genética en 2012, las herramientas CRISPR fueron usadas por vez primera en 2013. Hoy, apenas cuatro años más tarde, ya estamos pensando en maneras de optimizar su uso en terapias para enfermedades, para hacerlas más seguras y efectivas. Cuando estudiaba los microorganismos que habitan las salinas de Santa Pola, Mojica no podía imaginar el camino futuro que iban a tomar sus investigaciones de biología básica. Tratando de entender como esas bacterias se defendían de los virus que las acechaban, llegó hasta un hallazgo revolucionario. Ahí está la belleza y el poder de la ciencia. Un descubrimiento microbiológico, en apariencia menor, que pasa a ser la mayor revolución tecnológica en biología. Así pues, debemos de estar agradecidos a las bacterias, por mostrarnos nuevas formas de luchar contra las enfermedades. Y a Francisco Mojica, por haber descubierto este proceso de la naturaleza y habérnoslo contado, por haber descrito el sistema CRISPR que tantas aplicaciones biomédicas está produciendo.

Vídeo en el que la proteína Cas9 corta una molécula de ADN en tiempo real por microscopía de fuerza atómica. Imágenes de la Universidad de Tokio publicadas en este artículo.

 

* Lluís Montoliu es investigador del Centro Nacional de Biotecnología (CNB) del CSIC.

 

¿Te inspiran la fotografía y la ciencia? Participa en #FOTCIENCIA

Por Mar Gulis (CSIC)

¿Te gusta la fotografía? ¿La ciencia y la tecnología disparan tu creatividad? Pues estamos esperando tus propuestas. FOTCIENCIA es una iniciativa que celebra su 15ª edición y que seleccionará las mejores imágenes de ciencia del año para conformar un catálogo y una exposición itinerante. La muestra resultante recorrerá una veintena de museos y centros culturales de España en 2018. Las fotografías pueden presentarse hasta el próximo 14 de diciembre de 2017 a las 14:00 horas.

Las imágenes deben estar relacionadas con la investigación científica o sus aplicaciones, y pueden reflejar aspectos como el objeto de estudio de la investigación, las personas que la realizan, su instrumentación e instalaciones, los resultados del avance científico, etc. Para participar es necesario presentar las fotografías en formato digital a través de un formulario disponible en la página web www.fotciencia.es, junto con un texto que permita interpretarlas. El jurado valorará tanto la imagen –su calidad técnica, originalidad y valor estético– como la claridad de la explicación aportada por el autor o autora.

En esta iniciativa puede participar cualquier persona mayor de edad que presente fotografías propias que no hayan sido seleccionadas en procesos similares. Pero también hay una modalidad, ‘La ciencia en el aula’, dirigida al alumnado de centros educativos y de formación profesional, que pueden participar a través de sus profesores y profesoras.

 

Vídeo con las imágenes seleccionadas en la pasada edición de FOTCIENCIA (2016).

 

Las propuestas se pueden presentar a una de las siguientes modalidades:

  • Micro, cuando la dimensión real del objeto fotografiado sea menor o igual a 1 milímetro o la imagen haya sido obtenida mediante un instrumento de micrografía (óptica o electrónica) o técnicas de difracción.
  • General, cuando la dimensión real del objeto fotografiado sea mayor de 1 milímetro.

Además, los autores y autoras también pueden adscribir su imagen a otras modalidades específicas, como ‘Agricultura sostenible’ ‘Alimentación y nutrición’, que cuentan con el apoyo de dos centros del CSIC: el Instituto de Agricultura Sostenible (IAS) y el Instituto de Agroquímica y Tecnología de Alimentos (IATA).

Las dos mejores imágenes de la categoría General y las dos mejores imágenes de la categoría Micro, según los criterios mencionados anteriormente, serán remuneradas con una cantidad de 1.500€ cada una. En las demás modalidades, se seleccionará una foto que recibirá 600€.

La organización hará una selección adicional de fotografías para incluirlas en el catálogo y en la exposición itinerante, que se prestará gratuitamente a las entidades que la soliciten. Todas las fotos presentadas pasarán a formar parte de la galería de imágenes de la web de FOTCIENCIA.

FOTCIENCIA es una iniciativa organizada por el Consejo Superior de Investigaciones Científicas (CSIC) y la Fundación Española para la Ciencia y la Tecnología (FECYT), con la colaboración de la Fundación Jesús Serra.

Toda la información y normas de participación están disponibles en www.fotciencia.es

 

¿Por qué se quema antes una sabana que un bosque? Cinco cuestiones sobre inflamabilidad e incendios

Por Juli G. Pausas (CSIC)*

La inflamabilidad de las especies vegetales es relevante en los incendios, aunque su papel depende de diversas condiciones. Vamos a intentar aclarar algunas cuestiones al respecto:

  • La inflamabilidad es la capacidad de prender y propagar una llama

La inflamabilidad no se debe confundir con la cantidad de biomasa, que es la carga de combustible. Es decir, una planta, una comunidad vegetal o una plantación es más inflamable que otra si, teniendo aproximadamente una misma biomasa, prende y propaga mejor el fuego.

  • Hay especies de plantas más inflamables que otras

Todas las plantas son inflamables, pero unas más que otras. Una aliaga o un brezo arde mejor que un lentisco o un alcornoque. Entre las características que incrementan la inflamabilidad nos encontramos, por ejemplo, tener hojas y ramas finas, madera ligera, retener ramas secas o tener elevado contenido en compuestos volátiles. En cambio, tener hojas gruesas y pocas ramas, gruesas y bien separadas, reduce la inflamabilidad. Árboles con abundantes ramas basales son más inflamables que árboles con las primeras ramas elevadas y con espacio entre el sotobosque y la copa.

Aliaga_incendios

La aliaga (Ulex parviflorus) es una planta muy inflamable porque casi toda la biomasa es muy fina y acumula ramas secas. / Juli G. Pausas

No obstante,  todas estas características no tienen por qué estar correlacionadas entre sí; las plantas pueden tener diferente grado de inflamabilidad según la escala en que se mire. Por ejemplo, hay algunas especies de pino que tienen una alta inflamabilidad a escala de hojas pero baja inflamabilidad en la estructura del árbol, por tener la copa elevada. Por lo tanto, en incendios poco intensos el fuego se propagará superficialmente pero no alcanzará la copa, como en el caso de incendios de sotobosque.

  • Hay comunidades vegetales más inflamables que otras

En algunas comunidades pueden dominar especies más inflamables que en otras, lo que condiciona la inflamabilidad de toda la comunidad vegetal, ya sea natural o una plantación.

Además, hay otras características que incrementan o reducen la inflamabilidad a escala de comunidad. Entre ellas podemos mencionar:

    • la continuidad y distribución de las especies muy o muy poco inflamables
    • el número de plantas muertas por sequía, por ejemplo
    • las condiciones microclimáticas que se generan dentro de la comunidad. En bosques densos dichas condiciones pueden inhibir la probabilidad de fuego
    • las condiciones topográficas. Una mayor humedad en depresiones topográficas reduce la inflamabilidad de las plantas.

Así, se quema más fácilmente un aulagar o un brezal mediterráneo que un bosque denso y sombrio; o una sabana que un bosque. Los sistemas sabana-bosque tropicales son claros ejemplos de mosaicos determinados por diferente inflamabilidad.

Pinar de pino carrasco (Pinus halepensis). No solo las hojas son bastante inflamables sino que la continuidad entre el suelo y las copas hace que todo el árbol y el pinar sea muy inflamable, y genere incendios intensos de copa. / Juli G. Pausas

  • La gestión forestal puede modificar la inflamabilidad

La gestión forestal puede modificar la estructura de los árboles, de la comunidad, y del paisaje. Reduce la cantidad de biomasa, el combustible, pero también la continuidad, y por lo tanto, la probabilidad de que se propague el fuego. Por ejemplo, tanto en bosques como en plantaciones forestales, a menudo se realizan cortas del sotobosque y de ramas inferiores de los árboles, se introduce pastoreo o se realizan quemas prescritas, todo con el objetivo de estimular el crecimiento en altura de los árboles y generar una discontinuidad vertical entre el sotobosque y la copa. De esta manera, el fuego se propaga sólo por el sotobosque, los incendios son menos intensos, y la mayoría de árboles sobrevive.

Pinar de pino_incendios

Pinar de pino laricio (Pinus nigra) con árboles que tienen baja inflamabilidad, ya que hay una discontinuidad entre el sotobosque y la copa, de manera que el fuego se propaga por la superficie y no llega a alcanzar las copas (incendios de sotobosque). / Juli G. Pausas

En matorrales, la gestión puede reducir la biomasa, pero no es fácil reducir la inflamabilidad. Las plantaciones forestales a menudo son masas densas y homogéneas de árboles, muchas veces de especies muy inflamables como eucaliptos, y por lo tanto propensas a propagar incendios. Por lo tanto, la gestión forestal es clave para reducir la cantidad de combustible y la inflamabilidad de estas plantaciones. Además, a escala de paisaje, se puede disminuir la capacidad de propagación de un incendio mediante cortafuegos y generando paisajes en mosaicos.

 

  • El tamaño de los incendios puede estar  determinado por la inflamabilidad de las especies

En general, el tamaño de un incendio está condicionado por la cantidad, continuidad, y homogeneidad de la vegetación, sea natural o plantaciones, el grado de humedad de esta, y por el viento. La inflamabilidad de las especies también es relevante en el comportamiento del fuego y el tamaño de los incendios, pero su papel relativo depende de las condiciones. En incendios poco intensos, diferencias en la inflamabilidad (ya sea por cambios en la estructura forestal debidos a la gestión, o por diferencias naturales de las especies), pueden condicionar que una zona arda o no, y por lo tanto, el tamaño del incendio. En condiciones extremas de sequía y fuertes vientos, las diferencias en inflamabilidad serán poco relevantes. Igualmente, dependiendo de las condiciones, un cortafuegos puede o no frenar un incendio.

 

Juli G. Pausas  es investigador del CSIC en el Centro de Investigaciones sobre Desertificación Incendios Forestales (CIDE), y autor del libro Incendios forestales (CSIC-La Catarata) perteneciente a la colección ¿Qué sabemos de?, disponible en la Editorial CSIC Los Libros de la Catarata.