Entradas etiquetadas como ‘CSIC’

Extirpar de raíz la semilla roja

Por Alfonso Villalta*

El 12 de mayo de 1939 un teniente coronel de la 84 División del ejército franquista fue trasladado a Chillón, una pequeña y tranquila localidad de Ciudad Real con 5.000 habitantes. Tras su rápida visita, el militar redactó un informe en el que reclamaba medidas inmediatas para “extirpar de una manera radical los brotes de antiguas rebeldías, llegando esta extirpación a la semilla que las germinó”.

Enseguida se desplazaron a la localidad nuevas divisiones del ejército. Pero, ¿qué motivaba esa visita, el despliegue militar que la acompañaba y la petición de unas medidas tan duras? Nada más y nada menos que un mensaje manuscrito en un pequeño trozo de papel que había aparecido clavado en un poste de la luz la madrugada del 10 de mayo de 1939. Alguien se había atrevido a desafiar al régimen con algunas palabras subversivas: “[…] menos Franco y más pan blanco y dejaros de tanta misa y pensar en producir […]”.

Pasquín encontrado en el pueblo de Chillón el 10 de mayo de 1939 / Archivo General e Histórico de Defensa (AGHD)

Este papel desató una movilización sin precedentes de las autoridades locales, la guardia civil, los fervientes seguidores de la Falange y, como vemos, también del ejército. Entre otras cosas, las investigaciones iniciadas por las autoridades civiles dieron lugar a procesos militares sumarísimos caracterizados por su vertiginosa velocidad y la ausencia total de garantías judiciales para las personas detenidas.

Las pesquisas concluyeron señalando a un joven veinteañero como el autor de las palabras escritas que habían incendiado el pueblo, cuyo padre languidecía en las cárceles franquistas. Su madre, también prisionera, tuvo que dejar al joven solo al cuidado de sus ocho hermanos. Aquella noche el joven fue a la casa de un amigo que le invitó a tomar unos chatos de vino, y el alcohol le dio la valentía para plasmar en ese papel un grito tan radical como: “Os estáis portando muy mal con esto de meter tanta gente en la cárcel”.

Soñar con pan

Este joven y su amigo fueron condenados a muchos años de prisión y trasladados a la cárcel de Valdenoceda, en Burgos. En sus memorias, uno de los supervivientes de aquel penal, su compañero y paisano Ernesto Sempere, relataba la cruda realidad que sufrieron. Al recordar la comida que recibían escribe: “Soñaba con pan. ¿Cuánta hambre puede tener una persona para que sus mejores sueños sean un simple trozo de pan?”.

Dibujo realizado desde el interior de la cárcel de Valdenoceda por el pintor José Robledano / Sociedad Benéfica de Historiadores Aficionados y Creadores

Sin embargo, para erradicar la semilla roja en la localidad no fue suficiente con la severa condena impuesta a los jóvenes. Tras la aparición del pasquín, fueron detenidos casi 50 hombres. Algunos de ellos estuvieron alrededor de un mes en una cárcel improvisada en una ermita del pueblo. En la madrugada del 3 de junio de 1939, varios de estos hombres fueron conducidos, junto a otros vecinos, a la finca conocida como El Contadero. Este paraje fue el escenario elegido para asesinar y enterrar a nueve de aquellos vecinos de Chillón.

Los procesos sumarísimos de posguerra

Esta y otras muchas trágicas historias han quedado atrapadas en los procesos sumarísimos de la posguerra española. Estos fueron el principal mecanismo utilizado por el franquismo para reprimir al enemigo vencido durante la guerra civil española y la posguerra; y, en consecuencia, se saldaron con miles de sentencias a muerte.

Muchos expedientes de estos procesos se conservan en el Archivo General e Histórico de Defensa. El análisis de esta y otras fuentes -como archivos privados, prensa de la época o testimonios de supervivientes- arroja luz sobre las acciones de quienes estaban detrás de estos procesos, y permite dar nombre y voz tanto a quienes estaban presos como a sus familiares y amigos. Pero este trabajo continúa en proceso y aún quedan muchas historias por contar.

*Alfonso Villalta es antropólogo e historiador. Es director del proyecto Mapas de Memoria (UNED) e investigador del Centro Internacional de Estudios de Memoria y Derechos Humanos de la misma universidad. Además, es autor de Tragedia en tres actos: los juicios sumarísimos del franquismo (Editorial CSIC), un trabajo en el que reconstruye un centenar de juicios sumarísimos acaecidos en las provincias de Ciudad Real, Cáceres, Badajoz, Toledo o Madrid .

Las dos caras del ozono: ¿cuándo es beneficioso y cuándo perjudicial?

Por Pedro Trechera Ruiz * y Mar Gulis (CSIC)

El ozono es un gas incoloro formado por tres átomos de oxígeno (O3). Tiene un gran poder oxidante, por lo que resulta útil para desinfectar superficies o espacios interiores. Pero, ¿qué ocurre cuando los seres humanos respiramos este oxidante? ¿Y qué les sucede a las plantas?

En la troposfera, el ozono (O3) es un gas que se forma a partir de la reacción entre otros contaminantes y la radiación solar. / Pixabay

En la troposfera, el ozono (O3) es un gas que se forma a partir de la reacción entre otros contaminantes y la radiación solar. / Pixabay

Ozono ‘bueno’ y ozono ‘malo’

En la estratosfera (la capa de la atmósfera situada entre los 10 y los 50 km de altura), el ozono es esencial, ya que absorbe la radiación ultravioleta del sol, la que comúnmente entendemos como dañina. Gracias a esta capa estratosférica de ozono, la vida, tal como la conocemos, pudo evolucionar fuera de los océanos. Sin esta capa, la superficie terrestre sería arrasada por la radiación solar. Es lo que se conoce como ‘ozono bueno’.

El ‘ozono malo’ es el que se encuentra en la troposfera, la capa que va desde la superficie hasta los 10 km de altura. En este caso, el ozono se forma a partir de otros gases contaminantes, principalmente óxidos de nitrógeno y compuestos orgánicos volátiles, que provienen en gran parte de actividades humanas como el tráfico y las emisiones industriales. La radiación ultravioleta hace que estos gases sufran reacciones con el oxígeno, que dan lugar al ozono.

Estas reacciones tienen un cierto impacto positivo, ya que eliminan estos gases contaminantes. Sin embargo, generan el ozono troposférico, que tiene un impacto negativo sobre la salud humana y de los ecosistemas.

Según la Agencia Europea de Medio Ambiente, la exposición a O3 puede causar problemas de salud, como tos, dificultad para respirar o daños pulmonares por oxidación. Además, el ozono hace que los pulmones sean más susceptibles a las infecciones respiratorias, puede agravar enfermedades pulmonares, aumentar la frecuencia de los ataques de asma y aumentar el riesgo de muerte prematura por enfermedades cardíacas o pulmonares. El último informe de Calidad del Aire en Europa 2022 de la Agencia Europea de Medio Ambiente estima que, en 2020, los niveles de contaminación por O3 causaron 29.000 muertes prematuras en la Unión Europea.

El ozono en España

La velocidad y el grado de formación de ozono se ven muy incrementados con el aumento de la radiación solar y las emisiones de sus agentes precursores. Por ello sus niveles son más elevados en el sur de Europa y en primavera y verano.

Durante los últimos años, gracias a las políticas ambientales, se ha reducido la concentración de los contaminantes atmosféricos precursores del ozono. Sin embargo, esto no se ha traducido en una reducción proporcional del ozono, debido a la complejidad de su generación (su relación con los precursores no es lineal) y el transporte atmosférico de este compuesto a través de largas distancias.

Promedio anual del máximo diario concentración de ozono en las estaciones de calidad del aire españolas entre 2017 y 2020. Adaptación de los mapas del Plan de Ozono / Bases Científicas para un Plan Nacional de Ozono, MITECO

Promedio anual del máximo diario de concentración de ozono en las estaciones de calidad del aire españolas entre 2017 y 2020. Adaptación de los mapas del Plan de Ozono / Bases Científicas para un Plan Nacional de Ozono, MITECO

En 2021, el 10% de la población europea estuvo expuesta a niveles de ozono superiores al valor objetivo de protección a la salud establecido por la legislación europea (120 µg/m3). Sin embargo, si tenemos en cuenta el valor guía recomendado por la Organización Mundial de la Salud (OMS), que es de 100 µg/m3, más restrictivo que el de la norma europea, entonces el 94% de la población europea respira niveles de ozono superiores a los considerados como seguros.

En España, el 45% de las estaciones de calidad del aire superan el nivel crítico de exposición a la población, y eso que solo el 39% de estas estaciones están situadas en zonas urbanas y suburbanas. No obstante, en 2020 y 2021 por primera vez no se superaron los valores objetivos del ozono en la costa mediterránea. Probablemente esto se debe a condiciones meteorológicas favorables y a la disminución drástica de los contaminantes precursores asociada a la pandemia, que supuso una reducción del tráfico automovilístico y aeroportuario y la ausencia de cruceros.

¿Cómo afecta el ozono a la vegetación?

Además de la salud humana, el ozono troposférico puede dañar a los cultivos, los bosques y la vegetación en general.

Este gas es absorbido por las plantas a través de los estomas, que son unos pequeños poros de las hojas donde se produce el intercambio gaseoso. La planta los abre para absorber el dióxido de carbono (CO2) que necesita para hacer la fotosíntesis, pero también absorbe otras moléculas como el ozono.

Una vez que el ozono está dentro de la planta, se producen una serie de reacciones que oxidan las propias células vegetales, lo que altera su funcionamiento. Para evitar estos efectos negativos, las plantas tienen sistemas de protección celular antioxidantes. Sin embargo, cuando los niveles de ozono superan la capacidad de protección de las células vegetales, se produce una disminución de su crecimiento y productividad, y una aceleración del envejecimiento celular.

En última instancia, esto aumenta la sensibilidad de la planta hacia otros condicionantes como las sequías, las altas temperaturas o las plagas. Incluso es posible que los daños producidos por el ozono puedan llegar a observarse visualmente como pigmentaciones características en hojas de tonos amarronados o rojizos.

Diferentes hojas afectadas por el ozono. Pigmentaciones amarronadas o rojizas en hojas de judía (a) y tomate (c) y necrosis más avanzada en hojas de sandía (b). / CIEMAT-MARM

Diferentes hojas afectadas por el ozono. Pigmentaciones amarronadas o rojizas en hojas de judía (a) y tomate (c) y necrosis más avanzada en hojas de sandía (b). / CIEMAT-MARM

Además, los cultivos pueden sufrir una reducción de la producción y/o la calidad de la cosecha, al igual que adquirir mayor sensibilidad frente al ataque de patógenos. En la Península Ibérica, las cosechas que más se ven alteradas son las que se encuentran en el área mediterránea, debido a las altas concentraciones de ozono y su alta producción agrícola.

Los elevados y prolongados niveles de ozono pueden llegar a disminuir significativamente las cosechas. Cuando sucede un aumento de 60 a 120 µg m-3 de ozono, esa disminución es de un 20-30% en guisantes, judías verdes, boniatos, naranjas, cebollas, nabos y ciruelas; de un 10-19% en lechugas, ciruelas, trigo, cebada, soja, alfalfa, sandía, tomates, oliva y maíz; y entre de un 5-9% en arroz, patatas y uvas. Se estima que las pérdidas económicas globales en 2030 provocadas por el ozono oscilarán entre 15 y 30 mil millones de euros al año.

Plantas como biosensores de la contaminación por ozono

En este contexto de contaminación, el proyecto europeo WatchPlant está desarrollando una nueva tecnología para monitorizar diversas condiciones atmosféricas, como el exceso de ozono. Se trata de un sistema bio-híbrido inteligente basado en sensores que se integrarán con las plantas para detectar las condiciones ambientales adversas a partir de la respuesta temprana de las propias plantas. Capaces de transmitir datos en directo, estos sensores permitirán la monitorización ambiental in situ, sobre todo en áreas urbanas, para establecer una relación entre la contaminación y la salud humana.

Biosensores instalados en plantas de tomate. / WatchPlant

Biosensores instalados en plantas de tomate. / WatchPlant

Resultados preliminares del proyecto muestran que sí hay una relación entre la respuesta fisiológica de plantas como el almendro, el olivo, el limonero o el naranjo y la contaminación atmosférica. Ahora el objetivo es producir un sensor bio-híbrido que mida parámetros de la savia de estas plantas que reflejen los niveles de contaminantes como el ozono (O3). Los datos recabados podrán ser utilizados como complemento a las redes de monitoreo de calidad del aire y por la propia ciudadanía.

Más información sobre WatchPlant: https://watchplantproject.eu/ Twitter: @WatchplantP

 

* Pedro Trechera Ruiz es investigador postdoctoral del Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA) del CSIC.

Descubre las 10 mejores imágenes científicas de 2023 con FOTCIENCIA20

Por Mar Gulis (CSIC)

El corte transversal de una cáscara de huevo, la eclosión de un gecko terrestre malgache fotografiada con un smartphone o un ovillo de gusanos parásitos anisakis son algunas de las imágenes más destacadas del año en la iniciativa FOTCIENCIA, que cumple con esta su 20ª edición recopilando fotografías científicas gracias a la participación ciudadana.

Esta iniciativa del Consejo Superior de Investigaciones Científicas (CSIC) y la Fundación Española para la Ciencia y la Tecnología (FECYT) ha dado a conocer las mejores fotografías del año 2023. El pelo del estambre de una flor (Erodium moschatum), la simetría del brócoli o tres muestras de epidermis de flor de caléndula captadas por estudiantes de secundaria son otros de los fenómenos retratados en las imágenes seleccionadas de entre más de 475 fotografías. Un comité multidisciplinar formado por 13 profesionales de la ciencia, la microscopía, las artes visuales o la divulgación científica, entre otras especialidades, ha sido el encargado de seleccionar estas imágenes que han sido galardonadas por su belleza, impacto y capacidad para reflejar y describir hechos científicos.

De izquierda a derecha: “Cubismo plutónico”, “Polinización y la agricultura”, “Un ovillo de gusanos parásitos Anisakis extraídos de pescado fresco”, “La sal de la muerte (celular)”, “Biomineralización”, “Un triángulo imposible”, “Biosensores”, “Eclosión en laboratorio”, “Recordando a Cajal para tratar la neurodegeneración” y “Revelación simétrica del brócoli”.

De izquierda a derecha: “Cubismo plutónico”, “Polinización y la agricultura”, “Un ovillo de gusanos parásitos Anisakis extraídos de pescado fresco”, “La sal de la muerte (celular)”, “Biomineralización”, “Un triángulo imposible”, “Biosensores”, “Eclosión en laboratorio”, “Recordando a Cajal para tratar la neurodegeneración” y “Revelación simétrica del brócoli”.

Estas 10 mejores imágenes, que puedes ver en el vídeo de más abajo, junto con una selección más amplia de fotografías, conformarán un catálogo y una exposición itinerante, disponible para su préstamo gratuito, que recorrerá museos, centros de investigación, universidades y espacios culturales de todo el país durante el próximo año.

En esta vigésima edición, a las modalidades de participación habituales –Micro, General, Alimentación y nutrición, Agricultura sostenible y La ciencia en el aula– se han sumado las modalidades especiales Año Cajal, Física de partículas y Sinergias (Arte, Ciencia, Tecnología y Sociedad, ACTS). La difícil captura nanométrica de un radical libre captado al microscopio de efecto túnel y la observación al microscopio de una roca ígnea plutónica de La Cabrera (Madrid) han sido las fotografías galardonadas por primera vez en estas dos últimas modalidades, respectivamente.

La modalidad Sinergias (Arte, Ciencia, Tecnología y Sociedad, ACTS) pretende mostrar trabajos conjuntos del ámbito científico y artístico con el objetivo de ampliar nuevos horizontes inter y transdisciplinarios entre las ciencias y las artes. Este año, una madre geóloga y su hijo estudiante de bellas artes han mostrado en una fotografía esta conexión con una imagen que resulta de un proceso de investigación donde ambos comparten microscopio en busca de colores e imágenes inspiradoras para futuros bocetos en otros soportes.

Como en la anterior edición, FOTCIENCIA contempla la modalidad especial Año Cajal para recoger imágenes que tengan que ver con las neurociencias, sumándose así a la celebración del Año Cajal, impulsado a nivel nacional. La inmunofluorescencia de una sección de cerebelo con dos células de Purkinje, que recuerda a los dibujos de Ramón y Cajal, quien ya describió su estructura, ha sido la imagen seleccionada en esta modalidad.

FOTCIENCIA es una iniciativa del CSIC y la FECYT que invita a que cualquier persona, se dedique o no a la investigación, plasme su visión de la ciencia y la tecnología a través de fotografías. Además, FOTCIENCIA20 cuenta con la colaboración de Fundación Jesús Serra, de GCO (Grupo Catalana Occidente) y, por primera vez, de Leica.

Más información, en este enlace.

Imágenes seleccionadas:

  • Modalidad General:
  1. Polinización y la agricultura / Eduardo Cires Rodríguez
  2. Eclosión en laboratorio / Fernando García Moreno
  • Modalidad Micro:
  1. Biosensores / Concepción Hernández Castillo, Lola Molina Fernández, Isabel María Sánchez Almazo
  2. Biomineralización / María Jesús Redrejo Rodríguez, Eberhardt Josué Friedrich Kernahan
  • Modalidad Año Cajal:
  1. Recordando a Cajal para tratar la neurodegeneración / Pablo González Téllez de Meneses
  • Modalidad Alimentación y nutrición:
  1. Un ovillo de gusanos parásitos Anisakis extraídos de pescado fresco / José Ramos Vivas
  • Modalidad Agricultura sostenible:
  1. Revelación simétrica del brócoli /Samuel Valdebenito Pérez, María Villarroel, Patricia Peñaloza
  • Modalidad La ciencia en el aula:
  1. La sal de la muerte (celular) / Hala Lach Hab El Keneksi, Rebeca Jiménez Uvidia, Chaimae El Idrissi Loukili
  • Modalidad Física de partículas:
  1. Un triángulo imposible / Alejandro Berdonces Layunta, Dimas García de Oteyza
  • Modalidad Sinergias (ACTS):
  1. Cubismo plutónico / Bruno Fernández Delvene, Graciela Delvene Ibarrola

Cómo la ciencia y el arte se unen en Wikipedia

Por Gustavo Ariel Schwartz (CSIC)*

¿Es posible conocer cómo áreas aparentemente tan alejadas como el arte, la literatura y la ciencia se influyen mutuamente? ¿Podemos crear un mapa de esas interacciones culturales? Para ello necesitaríamos un corpus de conocimiento en el que las ideas científicas, artísticas y literarias estuvieran conectadas unas con otras. Un corpus en el que una teoría científica esté de alguna manera relacionada con una obra de arte o en el que una novela se vincule de algún modo a un concepto artístico o científico. Afortunadamente existe un espacio con estas características, en el que personas, obras y conceptos de diversas disciplinas se relacionan entre sí. Ese sitio es Wikipedia.

Wikipedia tiene la gran virtud de que sus entradas pueden representar obras, artísticas o literarias, ideas o personas. Además del conocimiento explícito contenido en cada uno de los artículos, existe una gran cantidad de conocimiento implícito que emerge de la red subyacente de conexiones. Estas están representadas por los enlaces entre las distintas entradas. De hecho, dos artículos de Wikipedia pueden estar muy relacionados entre sí, incluso sin que ninguno de ellos enlace con el otro. Se entiende que dos entradas de Wikipedia están relacionadas estructuralmente si enlazan a elementos comunes o si existen elementos comunes que se relacionen con ambas. Además, esta relación se puede cuantificar utilizando la distancia normalizada de Google.

De izquierda a derecha: Representación esquemática de la red de relaciones entre las distintas entradas de Wikipedia. / Dos elementos de una red compleja están relacionados estructuralmente si enlazan con elementos comunes o si son enlazados, simultáneamente, por un dado conjunto de elementos.

De esta manera, es posible utilizar esta herramienta y los enlaces entre sus artículos para construir una red compleja donde la relación entre los elementos va a estar determinada por la distancia normalizada de Google. Así se genera un mapa del conocimiento que revela las interacciones entre diversas disciplinas a partir de la red de conexiones extraída de Wikipedia. Por ejemplo, el mapa cultural que se obtiene a partir de las figuras de Einstein, Picasso y Joyce refleja las influencias recíprocas entre el desarrollo del cubismo y la teoría especial de la relatividad. En la imagen, cada punto representa una entrada de Wikipedia (hay unos 850) y cada línea muestra la relación entre esos elementos.

Mapa de las interacciones culturales entre Picasso, Einstein y Joyce. A pesar de la fuerte clusterización en disciplinas, se observa claramente que existe cierta conexión entre los diferentes ámbitos del conocimiento.

Se pueden identificar de forma clara tres clústeres que pertenecen a su vez a cada una de las semillas que utilizamos para generar el grafo. Pero lo realmente interesante es la posibilidad de visibilizar los elementos que conectan los diferentes ámbitos del conocimiento. El pintor Jean Metzinger y su obra Du Cubism junto a Henri Poincaré y su libro Science and Hypothesis constituyen los elementos centrales del intercambio de ideas y conceptos entre el cubismo y la relatividad. De este modo, el formalismo de las redes complejas nos permite crear mapas culturales para estudiar la estructura y la dinámica de los cambios de paradigma y cómo estos se alimentan de ideas, personas y conceptos provenientes de las más diversas disciplinas.

*Gustavo Ariel Schwartz es investigador en el Centro de Física de Materiales (CSIC-UPV/EHU).

FOTCIENCIA llega a su 20 edición. ¡Participa con tus fotografías!

Por Mar Gulis (CSIC)

Si te gusta la fotografía, FOTCIENCIA20 te invita conseguir hasta 1.500 euros retratando aspectos de la realidad relacionados con la ciencia. Para participar, solo tienes que coger una cámara o un microscopio, hacer una foto de algún fenómeno que llame tu atención, acompañarla de un breve texto explicativo y enviar la propuesta a través de la web de la iniciativa. Estás a tiempo: el plazo de presentación se abre hoy y se extiende hasta las 13:00 horas del 3 de noviembre de 2023 (hora peninsular).

Anímate y participa en la convocatoria número 20 de esta esta iniciativa organizada por el Consejo Superior de Investigaciones Científicas (CSIC) y la Fundación Española para la Ciencia y la Tecnología (FECYT) con la colaboración de la Fundación Jesús Serra (Grupo Catalana Occidente) y Leica. Se trata de una edición muy especial en la que un comité seleccionará diez fotografías, que pueden recibir hasta 1500 euros, y que incluye nuevas modalidades de participación.

En concreto, en FOTCIENCIA20 hay dos modalidades básicas:

  • Fotografía General, cuando la dimensión real del objeto fotografiado sea mayor a un milímetro.
  • Fotografía Micro, cuando la dimensión real del objeto fotografiado sea menor o igual a un milímetro o la imagen haya sido obtenida mediante un instrumento de micrografía- Es decir, cuando se trate fotografía ´microscópica`.

Tres modalidades especiales nuevas:

  • Sinergias (Arte, Ciencia, Tecnología y Sociedad), cuando se trate de trabajos fotográficos colaborativos entre dos personas, una que se dedique al arte y otra al ámbito científico.
  • Física de partículas, que admite imágenes sobre esta temática.
  • Año Cajal, dedicada por segundo año consecutivo a imágenes relacionadas con las neurociencias y los estudios del cerebro.

Y tres modalidades específicas habituales:

  • Agricultura sostenible, promovida por el Instituto de Agricultura Sostenible (IAS-CSIC) y que recoge imágenes relacionadas con este ámbito.
  • Alimentación y nutrición, impulsada desde el Instituto de Agroquímica y Tecnología de los Alimentos (IATA-CSIC) y centrada en estas temáticas.
  • La ciencia en el aula, dirigida a estudiantes de educación secundaria, bachillerato y formación profesional.

Un comité de selección formado por especialistas en el ámbito de la fotografía, la comunicación y la ciencia seleccionará las 10 mejores fotografías: dos en la modalidad General, dos en Micro y una en el resto de modalidades. El comité valorará tanto la imagen –su calidad técnica, originalidad y valor estético– como la claridad de la explicación aportada por el autor o autora.

Si tu fotografía es elegida como una de las mejores en alguna de las categorías de FOTCIENCIA, recibirás una remuneración de 1.500 euros en las modalidades General, Micro o Sinergias. En el caso de las modalidades Física de partículas, Agricultura sostenible, Alimentación y nutrición o La ciencia en el aula, conseguirás 600 euros. Y si tu imagen es seleccionada como la mejor en la modalidad Año Cajal, te llevarás una cámara fotográfica Leica D-Lux 7.

Además, aunque no fuera elegida como una de esas 10 mejores, hay más oportunidades para que tu imagen forme parte de FOTCIENCIA20, pues con una selección más amplia de unas 50 imágenes se elaborará un catálogo y una exposición itinerante que recorrerá distintas salas y centros culturales de toda España (y más allá) a lo largo de 2024 y 2025.

'Collage' con las ocho mejores imágenes de la edición anterior, FOTCIENCIA19

‘Collage’ con las ocho mejores imágenes de la edición anterior, FOTCIENCIA19.

Recuerda que pueden participar personas mayores de edad de cualquier parte del mundo, salvo en La ciencia en el aula, que está dirigida a estudiantes de secundaria y formación profesional.

¡E intenta presentar algo original y diferente! Para inspirarte, aquí puedes descubrir las imágenes seleccionadas en ediciones anteriores. También puedes escuchar los textos que acompañaban a las imágenes de la muestra aquí o consultar el calendario de exposiciones para visitar la exposición física de la pasada edición. En estos momentos, puedes visitar FOTCIENCIA19 en la Casa de la Ciencia del CSIC en Valencia hasta el 31 de octubre.

¿Te animas a participar? FOTCIENCIA20 quiere descubrir la ciencia y la tecnología a través de tu mirada. Consulta las normas completas de participación en www.fotciencia.es.

El redescubrimiento de las zanahorias moradas

Por Laura Sáez Escudero, Gracia Patricia Blanch Manzano, María Luisa Ruiz del Castillo (CSIC)* y Mar Gulis

Los primeros cultivos de zanahoria datan del año 3.000 a. C. en la zona que hoy ocupa Afganistán. Sin embargo, la variedad más popular en la actualidad, la zanahoria naranja, no apareció hasta el siglo XVII, cuando agricultores holandeses cruzaron de forma deliberada varias zanahorias cultivadas y silvestres para que el color de esta hortaliza coincidiese con el de la casa real holandesa de Orange.

Hasta entonces la variedad dominante había sido la zanahoria morada. Las primeras zanahorias cultivadas eran de un color morado oscuro, casi negro. A medida que los comerciantes árabes fueron llevando su semilla por África y Oriente Próximo, surgieron nuevas variedades blancas, amarillas y rojizas, pero el dominio de la zanahoria naranja tardaría aún varios siglos en llegar.

Sin embargo, el consumo de zanahoria morada está volviendo a adquirir cierta popularidad. Esto se explica por su sabor, similar al de las zanahorias naranjas pero un poco más dulce y con cierto toque picante, y por sus propiedades nutricionales. Al igual que las zanahorias naranjas, las moradas contienen carotenoides, compuestos antioxidantes y precursores de la vitamina A que son responsables del color naranja y amarillo de estas hortalizas. Pero la zanahoria morada, además, contiene antocianinas, unos polifenoles responsables del color rojo, violeta o azul que hace atractivos a muchos vegetales y que tienen también efectos antioxidantes. Hasta el momento, se han descubierto hasta 500 antocianinas diferentes en las plantas.

Tanto a los carotenoides como a las antocianinas se les ha atribuido una acción preventiva frente a ciertos tipos de cáncer, enfermedades cardiovasculares y patologías relacionadas con la edad. Ambos compuestos forman parte de los denominados fitonutrientes: moléculas defensivas que las plantas generan en respuesta al estrés ambiental y que nos aportan sus propiedades protectoras cuando las ingerimos. Se trata de sustancias bioactivas que no nos proporcionan calorías pero que pueden tener muchos efectos positivos para el organismo humano.

Zanahorias hervidas, horneadas o liofilizadas

En el Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN) del CSIC hemos estudiado cómo diferentes formas de cocinar la zanahoria morada afectan al contenido de sus compuestos bioactivos (carotenoides y polifenoles, como las antocianinas) y a su capacidad antioxidante.

En concreto, hemos considerado el hervido, la cocción al vapor, el horneado durante diferentes tiempos y la deshidratación mediante liofilización (un proceso que da lugar a zanahoria en polvo, que se emplea como colorante natural). Si comparamos el hervido y la cocción al vapor, ambos procedimientos provocan un aumento de carotenoides, pero en el hervido se observó una disminución drástica de antocianinas por arrastre de estos compuestos al agua de cocción. La liofilización dio lugar a un aumento de antocianinas, pero provocó la pérdida de los carotenoides. El horneado fue el método de cocinado que dio lugar a resultados más equilibrados, ya que no se observó aumento de ninguno de los pigmentos bioactivos estudiados, pero tampoco pérdida.

También es interesante resaltar la correlación directa entre la presencia de antocianinas y la actividad antioxidante de la muestra. Las antocianinas son los antioxidantes que contribuyen en mayor medida a las propiedades biológicas de esta variedad de zanahoria

En conclusión, la zanahoria morada es un alimento muy interesante por sus propiedades promotoras de la salud. Sin embargo, seleccionar su forma de consumo es vital si queremos aprovechar estas propiedades. Aunque cada tipo de cocinado presenta ventajas e inconvenientes, en general, la cocción a vapor y el horneado ofrecen un producto más equilibrado y completo.

 

* Laura Sáez Escudero, María Gracia Blanch Manzano y María Luisa Ruiz del Castillo forman parte del grupo de investigación ENANTIOMET en el Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN) del CSIC.

 

 

 

¿Está el útero materno libre de microbios?

Por Alejandro Fernández Llorente* y Mar Gulis

Aunque muchos microorganismos nos hacen enfermar, la gran mayoría no son perjudiciales para los seres humanos y algunos incluso son beneficiosos y necesarios para nuestra salud. Por eso hay bacterias, virus y hongos que nos acompañan a lo largo de toda la vida: forman lo que conocemos como el microbioma humano.

Con ellos mantenemos una estrecha relación mutuamente ventajosa: nuestro cuerpo les proporciona alojamiento, alimento y protección y, a cambio, estos microorganismos se encargan de realizar importantes funciones para nuestro bienestar. Pero, ¿cuándo se alían con nuestro organismo y comienzan a influir en nuestra salud? 

embrión

Imagen de archivo de un embrión. / NATURE – Archivo

Colonización del microbioma

Al nacer nos exponemos a un ambiente lleno de microorganismos. Una gran parte de ellos proceden de la madre si el parto fue natural. Se trata de los principales colonizadores de nuestro cuerpo y ocupan la mayoría de las superficies, tanto externas como internas.

Durante la infancia, tienen un papel esencial en nuestra salud. Por ejemplo, controlan el desarrollo del sistema inmunitario y el de otros órganos, impiden que se asienten otros microorganismos perjudiciales y producen vitaminas y otros compuestos necesarios.

Entonces, ¿comenzamos a interactuar con el mundo microbiológico cuando nacemos? Aunque desde hace tiempo no había duda de que así era, en los últimos años la respuesta a esta pregunta ha dejado de ser tan clara. Recientemente se ha cuestionado si el útero, que nos mantiene alrededor de nueve meses de media antes de nacer, está libre de bacterias o incluso de virus. 

¿Hallazgo revolucionario o contaminación de muestras?

El feto es muy vulnerable a las infecciones, así que el útero debe mantener un ambiente interno sin amenazas de microorganismos invasores. Aun así, para algunos investigadores esto no significa que el interior del útero deba ser estéril necesariamente, a diferencia de lo que se ha asumido hasta la actualidad.

Existen estudios que han detectado ADN de bacterias, hongos y virus en la placenta y el líquido amniótico, dos componentes del útero en estrecho contacto con el feto. Algunas investigaciones han llegado incluso a detectar microorganismos en su intestino. Esto podría sugerir que el feto convive, al menos en algunas de las fases de su desarrollo, con microorganismos que le ayudarían a conformar su sistema inmune antes de que se exponga al mundo exterior, un entorno agresivo al que se tendrá que enfrentar sin la protección inmunitaria de la madre.

Sin embargo, hay estudios que ponen en duda de la fiabilidad de los resultados anteriores, ya que no se puede descartar que lo detectado sencillamente una contaminación de las muestras. Con las técnicas actuales, al intentar detectar poblaciones muy pobres de microorganismos, como las que podría haber en el feto, es complicado demostrar que aquello que se está observando pertenece de verdad al interior del útero materno.

Cuestiones abiertas

No obstante, aunque aún no se pueda probar con claridad la existencia de un microbioma en el feto, algunos patógenos sí logran acceder a él durante ciertas infecciones. De modo que deben de existir mecanismos que eviten la barrera inmunitaria que constituye el útero. Y, si existen, ¿podrían ser utilizadas también por otros microorganismos que sean inofensivos?

Por otra parte, no es de extrañar que algunos microorganismos merodeen por el interior de nuestro cuerpo. En fluidos como la sangre y el líquido cefalorraquídeo, que antiguamente se consideraban estériles cuando no había una infección, se ha llegado a detectar una gran diversidad de virus. Por ello, si se han podido encontrar microorganismos en nuestro interior estando sanos, ¿por qué sería extraño pensar que también los hay durante la gestación?

 

* Alejandro Fernández Llorente es técnico del Centro de Biología Molecular Severo Ochoa (CBMSO, CSIC-UAM).

Tres buenas razones para creer en extraterrestres

Por Ester Lázaro* y Mar Gulis (CSIC)

¿Quién no ha fantaseado alguna vez con la existencia de vida más allá de nuestro planeta? Si, como la ciencia ha demostrado, la Tierra no es el centro del universo y los seres humanos no somos el centro de la creación, ¿por qué no puede haber otras tierras habitadas por organismos similares o diferentes a los terrestres?

Es cierto que, hoy por hoy, la única vida que conocemos es la de este planeta, pero hay fuertes argumentos a favor de la existencia de vida extraterrestre. Aquí te presentamos tres de ellos.

Planetas y satélites

1. El universo es enorme y, como dijo Carl Sagan, “si solo estamos nosotros, sería un auténtico desperdicio de espacio”. En nuestra galaxia, la Vía Láctea, hay entre 100.000 y 400.000 millones de estrellas. Si ca­da una tuviera un sistema planetario como nuestro sistema solar, el número de planetas podría acercarse al billón. Pero la Vía Láctea es solo una de las aproximadamente 100.000 millones de galaxias que hay en el universo, así que el número de planetas extrasolares podría supe­rar las decenas o los cientos de miles de trillones, una cifra casi imposible de concebir por la mente humana. Si, además, tenemos en cuenta que muchos de esos planetas podrían tener sus propias lunas, el número de escenarios capaces de albergar vida sería aún mayor. Aunque este razonamiento pueda parecer meramente estadístico, con tantos planetas y satélites, ¿cómo es posible que no exista vida en alguno de ellos?

2. Algunos de los ingredientes básicos de la vida son muy comunes en el cosmos. La vida terrestre se ha desarrollado fundamentalmente a partir del carbono y su combinación con el hidrógeno, el nitróge­no, el oxígeno, el fósforo y el azufre, elementos que se agrupan en el acrónimo CHONPS. No parece una casualidad: el hidrógeno, el oxígeno y el carbono se encuentran entre los ocho elementos más abundantes del universo y se combinan en moléculas orgánicas que están presentes en todo el cosmos. De hecho, hasta el momento hemos sido capaces de detectar más de un centenar de tipos distintos de moléculas orgánicas en el espacio; entre ellas, el aminoácido más simple: la glicina.

3. La vida es mucho más robusta de lo que pensábamos hace unas décadas. Durante mucho tiempo se creyó que la vida era un fenómeno muy frágil, que solo podía desa­rrollarse en el rango de condiciones que nos resultan más fa­vorables a los seres humanos. Es decir, temperaturas y presiones moderadas, agua en abundancia y algún tipo de protección frente a la radiación. Todo esto cambió con el descubrimiento de los extremófilos: organismos (microorganismos en su mayor parte) que vi­ven en condiciones fisicoquímicas próximas a los límites compatibles con los procesos biológicos.

Algunos de sus hábitats más ex­tremos son las proximidades de las chimeneas volcánicas submarinas, donde se combinan temperaturas muy elevadas con presiones muy altas; desiertos tan secos y áridos como el de Atacama; el agua ácida y rica en metales pesados de algunos ríos, como río Tinto, en la península ibérica; salinas o las aguas a temperaturas bajísi­mas que existen bajo el hielo de la Antártida.

Conan

‘Deinococcus radiodurans’, también conocida como Conan, la bacteria invencible, puede soportar dosis de radiación gamma hasta 1.500 veces mayores que las que causarían la muerte humana. / Wikipedia.

Desde su hallazgo, el estudio de estos organismos ha sido una pieza esencial de la astro­biología, ya que entender las soluciones que los extremófilos han adoptado para sobrevivir en condiciones aparentemente inhóspitas resulta muy útil a la hora de imaginar la vida en otros lugares del cosmos.

Planetas diferentes, formas de vida distintas

Estos argumentos implican que la búsqueda de vida extraterrestre no debería limitarse a localizar escenarios similares a la Tierra.

Si echamos la vista atrás veremos que nuestro planeta no siempre ha sido como es ahora y, sin embargo, ha albergado vida desde hace más de 3.500 millones de años. En sus inicios, la Tierra estaba cubierta de lava y las elevadas temperaturas no permitían la existencia de agua líquida en su superficie. Pero, poco a poco, se fue enfriando y el vapor de agua pudo condensarse y caer en forma de lluvia para formar los primeros océanos. El oxígeno no estuvo presente en la atmósfera en cantidades apreciables hasta hace unos 2.000 millones de años. Mucho antes de esa fecha, la vida ya había sido capaz de abrirse camino y, aunque no había pasado del estado microscópico, ya poseía todas las propiedades que caracterizan a la vida actual.

Por tanto, la vida podría existir en escenarios muy distintos a la Tierra actual y, si así fuera, lo esperable es que fuese muy diferente de la que conocemos. Por ejemplo, a pesar de su diversidad, la vida terrestre ‘solo’ es capaz de obtener energía de la luz solar (organismos fotótrofos), de las reacciones químicas que ocurren en el ambiente (qumiótrofos) o de otros organismos que la han almacenado en las moléculas que forman sus estructuras corporales (heterótrofos). Sin embargo, nada impide imaginar formas de vida que utilicen otras fuentes de energía, como la energía térmica, la eólica o la gravitatoria.

Planeta y estrella

Tampoco podemos descartar la existencia de organismos simples con una química muy diferente a la de la vida terrestre. Aunque poco probable, en condiciones muy determinadas, podrían existir formas de vida simples basadas en el silicio en lugar del carbono o seres que no utilizaran agua en su metabolismo, sino amoniaco, nitrógeno o metano líquidos, estado en el que estas sustancias se encuentran cuando las temperaturas son muy bajas.

En cualquier caso, estas posibilidades hacen mucho más probable encontrar formas de vida simple que vida inteligente. Esto no quiere decir que la vida inteligente extraterrestre no pueda existir, sino que será menos abundante que otras formas de vida porque la aparición de inteligencia requiere un grado de complejidad biológica que precisa tiempos mucho más largos para surgir.

¿Seríamos capaces de reconocer la vida extraterrestre?

Por último, las diferentes formas que podría tener la vida nos plantean un interrogante muy particular: ¿sabríamos reconocer esa vida que ha surgido y evolucionado en condiciones tan distintas de la vida que conocemos?

Aunque la vida en la Tierra sea enormemente diversa, todos los organismos terrestres compartimos rasgos comunes, como estar organizados en células y estar constituidos por cuatro macromoléculas principales: proteínas, glúcidos, lípidos y ácidos nucleicos. ¿Debemos interpretar nuestros rasgos comunes como propiedades esenciales de la vida o simplemente como la mejor solu­ción para prosperar en el ambiente de nuestro planeta?

Para en­tender qué es lo esencial de la vida, necesitaríamos poder comparar la vida terrestre con otra vida que tuviera un origen diferente. El resultado de esa comparación sería un hallazgo de gran trascendencia para comprender qué es realmente la vida y cuál es su significado en la evolución del universo. Así pues, tendremos que seguir buscando.

* Ester Lázaro Lázaro es investigadora del CSIC en el Centro de Astrobiología (CSIC-INTA), donde dirige el grupo de Estudios de evolución experimental con virus y microorganismos, y autora del libro La vida y su búsqueda más allá de la Tierra (CSIC-Catarata), en el que está basado este post.

 

Proteínas recombinantes: una historia de mutantes zombis al servicio de la ciencia

Por María Zapata Cruz, Laura Tomás Gallardo y Alejandro Díaz Moscoso (CSIC)*

Las proteínas son las moléculas que más funciones diferentes desempeñan en los seres vivos. Entre muchas otras cosas, forman nuestros órganos y tejidos, como hace el colágeno; refuerzan nuestras defensas en forma de anticuerpos; y realizan el metabolismo, como las enzimas que transforman los nutrientes en energía y en otras moléculas necesarias para la vida.

Además, las proteínas resultan muy útiles fuera del organismo: la prueba PCR (Reacción en cadena de la Polimerasa), que se hizo famosa durante la pandemia de COVID-19, o las herramientas de edición genética CRISPR-Cas, conocidas como ‘tijeras moleculares’, basan su funcionamiento en estos ingredientes básicos de la vida. Y lo mismo ocurre con medicamentos como la insulina y algunas vacunas.

Por todo ello, fabricar proteínas despierta un gran interés científico e industrial. Necesitamos producirlas para hacer funcionar esas aplicaciones y para analizar su comportamiento en condiciones controladas, algo que hacemos en el Centro Andaluz de Biología del Desarrollo con el objetivo de conocer mejor su funcionamiento.

Sin embargo, crear una proteína en el laboratorio enlazando uno a uno los aminoácidos que la componen puede resultar muy lento y laborioso: en cada proteína se suelen unir cientos de estas moléculas formando una cadena. Una solución muy práctica para obtener proteínas es ‘secuestrar’ la maquinaria natural de las células para que hagan el trabajo, es decir, conseguir células que fabriquen las proteínas que nos interesan.

Domesticando bacterias

Vamos a explicar este procedimiento con algo más de detalle. Para ello, necesitamos saber que las instrucciones para fabricar una proteína se encuentran en el ADN. En el código genético, hay un gen con las indicaciones para crear cada proteína uniendo de una forma determinada los veinte tipos de aminoácidos que existen en la naturaleza.

Los aminoácidos se unen unos a otros químicamente mediante un ‘enlace peptídico’. Podríamos plantearnos tener veinte botes en el laboratorio, cada uno con un aminoácido distinto, e ir uniéndolos según nos indique el gen correspondiente para fabricar la proteína que nos interesa. Pero, como veíamos, los seres vivos poseen una maquinaria celular mucho más eficaz para formar estos enlaces.

Se pueden utilizar distintos tipos de células para fabricar proteínas, pero la más popular entre los científicos es, sin duda, Escherichia coli, una bacteria que vive de forma natural en el intestino de los seres humanos y otros animales sanos. En las últimas décadas, hemos aprendido a criar esta bacteria en el laboratorio y ha resultado ser una ‘mascota’ muy agradecida que, además, es muy fácil de cuidar.

Puede vivir en un rango amplio de temperaturas; incluso permanecer congelada durante largos periodos de tiempo y después recuperar su actividad normal como si nada. Además, su alimentación es muy barata y crece muy rápido, tanto que es capaz de duplicarse en apenas veinte minutos, lo que permite tener un ‘ejército’ de millones de bacterias en un solo día.

Pero lo más importante es que también hemos aprendido a introducir genes de otros seres vivos en Escherichia coli de forma muy sencilla (lo que se conoce como ‘ADN recombinante’). Esto permite meter en la bacteria un gen con las instrucciones para fabricar una proteína de cualquier otro ser vivo, es decir, crear un mutante.

Da igual si el gen es de otra bacteria, de un pez, una mosca, un ratón, una planta, un lobo o un ser humano. Como las bases moleculares de la vida, el lenguaje del ADN y la síntesis de proteínas son iguales en todos los seres vivos de este planeta, la maquinaria de las bacterias es capaz de construir cualquier cadena de aminoácidos (proteína) independientemente de su origen genético.

Sin embargo, no todo es tan sencillo. Por muy pequeñas que sean, las bacterias no son tontas y no se van a poner a sintetizar, así por las buenas, una proteína extraña que no les sirve para nada o que incluso podría hacerles daño. Para resolver este problema, los investigadores han conseguido bacterias capaces de leer el gen de interés solo cuando queremos que lo lean.

Añadiendo una sustancia específica al cultivo de bacterias, estas pierden parcialmente el control de sus actos y empiezan a fabricar la proteína que queremos como si en ello les fuese la vida. Y así es como conseguimos tener un ejército de bacterias mutantes y zombis que realiza el duro trabajo de fabricar la proteína que nos interesa.

Placas de cultivo con distintas bacterias mutantes. Cada puntito blanco es una colonia de bacterias compuesta por millones de células que ha crecido a partir de una sola célula.

¿Y qué hay de lo mío?

Finalmente, hay un último problema que resolver. La gran mayoría de las veces, producir una sola proteína extraña no es suficiente para que las bacterias cambien de aspecto. No les salen alas, ni garras, ni ojos, ni nada que nos permita distinguirlas. A simple vista, una bacteria normal y una bacteria mutante son exactamente iguales. Para saber si nuestras bacterias mutantes han fabricado la proteína que queríamos, hay que destruir las bacterias y ver si, entre toda la mezcla de proteínas que normalmente fabrican para vivir, se encuentra la nueva.

Se pueden utilizar distintas características que nos permitan distinguir unas proteínas de otras en esta mezcla. Una de las características más utilizadas es su tamaño. En cualquier célula podemos encontrar proteínas desde muy grandes hasta muy pequeñas, según lo larga que sea la cadena de aminoácidos que las forman. Y como la secuencia de aminoácidos de la proteína que nos interesa la podemos conocer a partir del gen que previamente hemos introducido en las bacterias, podemos calcular el tamaño que tendrá.

Para separar las proteínas por su tamaño, utilizamos una técnica llamada ‘electroforesis’. Etimológicamente, este término proviene de la unión de los vocablos ‘electro-’, que hace referencia al uso de electricidad, y ‘-foresis’, que en griego significa ‘transporte’. La técnica consiste en poner la mezcla de proteínas en un medio que hace que adquieran carga negativa. Después, se aplica una corriente eléctrica a la mezcla que hace que las proteínas cargadas negativamente se desplacen a un polo positivo (ánodo).

En su camino, las obligamos a pasar por un gel que forma una red de microtúneles. Al encontrarse con este obstáculo, las proteínas pequeñas serán capaces de avanzar mucho más rápido que las grandes, que se irán quedando retrasadas. Más retrasadas cuanto más grandes sean. Así, al cortar la corriente eléctrica y ver el resultado de la ‘carrera’, observaremos bandas que corresponden a proteínas de distintos tamaños. Las más pequeñas cerca del polo positivo y las más grandes cerca del punto de partida.

Comparando el patrón de bandas de bacterias naturales con el de bacterias mutantes, deberíamos poder ver una única diferencia. Una proteína que esté en la mezcla de bacterias mutantes, que no esté en las naturales y que tenga el tamaño calculado para la proteína que nos interesa. Si es así, ¡¡premio!!, habremos conseguido que las bacterias mutantes zombies fabriquen la proteína que necesitábamos.

Ejemplos de electroforesis de proteínas. Cada una tiene 3 carriles: uno con una muestra de referencia de tamaños (Ref), otro con la mezcla de bacterias naturales (Nat) y otro con la mezcla de bacterias mutantes (Mut). La proteína nueva se indica con una flecha.

* María Zapata Cruz, Laura Tomás Gallardo y Alejandro Díaz Moscoso son el equipo técnico de la Plataforma de Proteómica y Bioquímica del Centro Andaluz de Biología del Desarrollo, centro mixto del CSIC y la Universidad Pablo de Olavide de Sevilla.

Fasciolosis, la enfermedad que afecta al ganado y, cada vez más, a las personas

Por Marta López García* (CSIC)

Afirmar que los parásitos son fascinantes no solo es atrevido, sino que es poco frecuente. Solemos verlos como seres dañinos y nos produce rechazo escuchar la palabra. Sin embargo, desde un punto de vista científico, los parásitos son seres increíbles porque tienen una gran diversidad de formas de vida y sus adaptaciones les permiten vivir dentro de otros organismos (hospedadores). Y esta asombrosa capacidad de moverse entre los hospedadores para asegurar su supervivencia es lo que les hace fascinantes en términos biológicos.

Desde el Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC) se trabaja para frenar esta enfermedad

Sin embargo, los parásitos también pueden tener consecuencias muy negativas para la salud y el bienestar del ser humano y los animales. Por eso, conocer su compleja biología supone un gran reto científico en la actualidad. Ante su elevada prevalencia global es necesario desarrollar herramientas de prevención y control frente a ellos.

En este sentido, desde el Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), trabajamos para frenar la fasciolosis. Esta enfermedad, causada por gusanos del género Fasciola, especialmente Fasciola hepatica, afecta principalmente al ganado ovino y bovino. Tiene una alta prevalencia en Castilla y León, al estar presente hasta en el 50% del ganado. Además, puede infectar a los seres humanos y, de hecho, es considerada una enfermedad emergente porque se encuentra en más de 2,5 millones de personas y 17 millones están en riesgo de infección.

La relación entre ‘Fasciola hepatica’ y hospedador

Fasciola hepatica es el protagonista de nuestra investigación. Se trata de un gusano plano, con forma de punta de lanza, que puede medir hasta 5 cm de largo y 1,5 de ancho cuando es adulto. Trabajamos para conocer las bases moleculares que rigen la infección del parásito dentro del hospedador vertebrado.

Tras ingerir el hospedador alimentos o agua contaminados con las formas infectivas de Fasciola hepatica (formas larvales denominadas metacercarias) se inicia la infección. Cuando estas alcanzan el intestino, salen del quiste como gusanos juveniles y son capaces de atravesar la pared del intestino delgado hasta la cavidad peritoneal, donde inician una compleja ruta de migración hasta el hígado. Allí se mantienen durante mucho tiempo creciendo al alimentarse del tejido hepático. Finalmente llegan a la vesícula biliar, donde se convierten en parásitos adultos y liberan huevos al medio ambiente, a través de las heces del animal, para completar su ciclo de vida.

La patología asociada a la enfermedad se relaciona con la presencia de los parásitos en el hígado. A medida que se alimentan del parénquima hepático (el componente del hígado que filtra la sangre para eliminar las toxinas) pueden causar inflamación y daño en el hígado con síntomas como dolor abdominal, diarrea, fiebre, pérdida de peso y, en los casos más graves, hepatitis, fibrosis y cirrosis. Aunque las infecciones en humanos suelen ser menos comunes que en el ganado, pueden ser graves si no se tratan adecuadamente. En cuanto a las perspectivas de tratamiento, existen medicamentos antiparasitarios, como el triclabendazol para tratarla tanto en seres humanos como en ganado. Sin embargo, cada vez se muestran más indicios de resistencia del parásito, por lo que disminuye la eficacia de este fármaco. Por la complejidad del ciclo biológico del parásito y su inminente resistencia a los fármacos necesitamos nuevas herramientas de control como las vacunas. Desde el laboratorio, tratamos de replicar el ciclo de vida de Fasciola hepatica para desentrañar las moléculas clave que utiliza durante su infección. Esto nos permite conocer qué molécula podría ser una buena candidata para desarrollar una vacuna en los animales frente a la fasciolosis.

Fasciola hepatica afecta principalmente al ganado ovino y bovino / Máximo López Sanz

Sin embargo, como en muchas enfermedades infecciosas, la prevención sigue siendo la clave y es necesario promover prácticas adecuadas de higiene (evitar la ingestión de alimentos y agua contaminada) para reducir la exposición a los parásitos y combatir así la enfermedad.

Como hemos visto, los parásitos son organismos fascinantes que han coexistido con el ser humano desde tiempos inmemoriales, en este caso a través de uno de sus principales sustentos: el ganado. Los estudios sobre los parásitos nos ofrecen una valiosa información sobre la biología y la evolución de sus hospedadores. Por ello, aunque los parásitos no son organismos bienvenidos, sin lugar a duda, nos brindan un gran conocimiento sobre las complejidades de la vida en nuestro planeta.

 

*Marta López García es investigadora del Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC).