BLOGS
Ciencia para llevar Ciencia para llevar

CURIOSIDADES CIENTÍFICAS PARA COMPARTIR

Entradas etiquetadas como ‘CSIC’

Emigrar a la ciudad, precaria solución para aves amenazadas

Por Álvaro Luna (CSIC) *

Cuando se piensa en una ciudad, rara vez se hace desde el punto de vista de la naturaleza que alberga. Sin embargo, hoy se estima que el 20% de especies de aves del mundo está presente en ciudades, y cada vez conocemos más casos de plantas y animales en peligro de extinción que encuentran un insospechado refugio en ecosistemas altamente humanizados.

Un ejemplo que recientemente hemos dado a conocer tiene como protagonistas a dos psitácidas (especies normalmente llamadas loros o papagayos). Se trata de dos aves autóctonas de La Española, isla caribeña que engloba a República Dominicana y Haití: la cotorra Amazona ventralis y el perico Psittacara chloropterus.

Pericos de La Española anidan en la ciudad de Santo Domingo. / Álvaro Luna

Pericos de La Española anidan en la ciudad de Santo Domingo. / Álvaro Luna

La transformación del hábitat para uso ganadero y agrícola fue relegando a estos animales a zonas cada vez más recónditas. Para más inri, han sido y son cazados al acudir a comer a los cultivos y, últimamente, el ‘mascotismo’ se ha unido al resto de factores que han llevado al límite a estos loros, convirtiéndose en un terrible problema que diezma las escasas poblaciones restantes a través de la captura ilegal, que se da incluso dentro de espacios protegidos.

Un estudio llevado a cabo por un grupo de investigación de la Estación Biológica de Doñana del CSIC ha profundizado en la alarmante situación de la cotorra y el perico de la isla La Española en sus ecosistemas originarios, y ha detectado escasos ejemplares incluso en las zonas mejor conservadas del país (se visitaron 12 espacios protegidos y todo tipo de hábitats), un escenario que resulta ser aún peor de lo que se estimaba.

Esta situación contrasta con las poblaciones de dichas especies que se han descubierto en las grandes ciudades de República Dominicana, único lugar donde se observa con facilidad a estos animales. Por ejemplo, en Santo Domingo se han censado dormideros con unos 1.500 ejemplares de perico, y en Santiago otro de 50 cotorras. En la naturaleza, por establecer una comparación, en un dormidero encontrado en la reserva de la biosfera, donde a priori están las mejores poblaciones, se contaron solo 137 pericos y 15 cotorras. Así, los datos obtenidos sobre observaciones de estas especies a lo largo y ancho del país arrojan que el perico es 6 veces más abundante en la ciudad que en entornos naturales, y 3 veces más en el caso de la cotorra.

Hábitat de cría usado por las poblaciones de loros urbanos en ciudades de República Dominicana. /Álvaro Luna

Hábitat de cría usado por las poblaciones de loros urbanos en ciudades de República Dominicana. / Álvaro Luna

No obstante, más allá de números, no hay que desatender el hecho de que estas especies realizan unas funciones ecológicas en la naturaleza que además, en el caso actual de esta isla, no pueden desarrollar otras especies, como es la dispersión de semillas de árboles. A modo de ejemplo, durante este estudio se recolectaron 306 semillas pertenecientes a 11 especies diferentes de árboles (el 99.5% aptas para germinar) que habían sido dispersadas por estos loros, y se midieron las distancias entre las semillas y el árbol más cercano de su misma especie. La distancia mínima media de dispersión fueron 37 metros, siendo el 93% de los casos dispersiones en un rango de entre 20-60 metros, con algunos casos de mayores distancias. Prácticamente todos los casos fueron en ciudad, dada la ausencia de las dos especies en el medio natural.

Se podría decir que para estas aves amenazadas puede que la ciudad sea su última baza para evitar la extinción, pero la desaparición de poblaciones viables de su hábitat real y originario acarreará también la extinción de funciones ecológicas en sus ecosistemas naturales, algo sobre lo que casi nadie está reparando. El hecho de que estos loros estén ecológicamente extintos en los bosques de la isla afectará a la estructura y dinámica de los mismos, con repercusiones presentes y futuras negativas.

 

* Álvaro Luna es investigador doctorando en la Estación Biológica de Doñana del CSIC y autor del libro Un leopardo en el jardín. La ciudad: un nuevo ecosistema (Tundra)

¿Somos los ‘Homo sapiens’ los únicos humanos que hemos habitado la Tierra?

Por Antonio Rosas (CSIC)*

Hasta muy recientemente, ‘ser humano’ significaba pertenecer a nuestra especie Homo sapiens. Otras formas similares más antiguas y arcaicas, como Homo erectus o los neandertales, aun siendo incluidas en el género Homo, eran vistas con cierta distancia y carentes de los atributos básicos que asociábamos al concepto de humano.

La evolución humana se percibía –y aún hoy muchos la siguen asumiendo– como una secuencia lineal y ascendente de especies. La condición más primitiva del género la definía la especie Homo habilis, de cara muy prominente y cerebro aún reducido (aproximadamente 700 cm3 de volumen encefálico). La fase intermedia venía definida por Homo erectus, caracterizada por un mayor encéfalo (aproximadamente 1.000 cm3). Y, por último, en la fase final aparecería la especie actual, Homo sapiens, con un gran volumen encefálico (aproximadamente 1.400 cm3), una cara muy reducida y una sofisticada cultura material. ¡Para algunos el zénit de la evolución!

Cráneos

Varios cráneos de neandertales y, al final de la hilera, un cráneo de sapiens. / Comunicación CSIC

Hoy en día la situación es algo más compleja y la respuesta a la pregunta ¿qué significa ser humano? ya no resulta tan inmediata. El avance de la ciencia ha puesto de nuevo en entredicho conceptos que teníamos casi por absolutos. En la actualidad sabemos que hace apenas 100.000 años coexistieron en el planeta Tierra al menos cinco linajes (especies) humanos, cada uno con un acervo cultural propio.

Durante algún tiempo, los humanos anatómicamente modernos (nosotros: H. sapiens) habitábamos el África subsahariana; los neandertales (H. neanderthalensis), centrados en Europa, poblaban el extremo occidental de Eurasia; los pequeños H. floresiensis, cuyo cuerpo conserva reminiscencias muy arcaicas, vivían en la Isla de las Flores (Indonesia); las últimas poblaciones de H. erectus perduraban en la Isla de Java y quizá también en el continente asiático; y un nuevo linaje humano –los llamados ‘denisovanos’ –, descubierto recientemente en las cuevas de Denisova (Siberia) e identificado a partir de su ADN fósil, habitó extensas áreas de Asia. En resumen, nada menos que cinco linajes humanos coexistiendo, cuya simple enumeración detrae un buen pedazo de arrogancia a nuestro ego de ‘especie elegida’.

Filogenia 5 expecies

Esquema de la filogenia de las cinco especies humanas. / Antonio Rosas

¿Cómo impacta sobre la noción de humanidad el hecho de haber existido diferentes especies humanas? En buena medida, creo que carecemos de los conceptos formales que nos permitan pensar con solidez en este asunto. Nos enfrentamos colectivamente al reto de articular un nuevo discurso antropológico basado en el conocimiento empírico y serio de la paleontología humana.

Pero, además, la definición de lo humano encuentra nuevas dificultades. Actualmente existe un interesante debate en torno al origen del género Homo y quienes fueron sus representantes. Así, mientras algunos especialistas consideran que la primera especie humana fue H. habilis, –de la que se han encontrado evidencias de hasta 2,8 millones de años–, para otros, entre los que me encuentro, dicha especie debería ser excluida del género, cuyo origen sería mucho más reciente.

En paralelo, la producción de herramientas ha sido, desde que así fuera propuesto por Darwin, uno de los rasgos más sintomáticos y esenciales de lo humano. Sin embargo, hoy conocemos herramientas, así como las marcas de su uso dejadas sobre los restos de animales, encontradas en yacimientos con antigüedades que rondan los 3,3 millones de años y que se remontan a tiempos muy anteriores al origen de Homo. Obviamente fueron otras criaturas las artífices de estos utensilios, que asociamos con alguna especie de Australopithecus. Por toscos que puedan ser esos utensilios son, de facto, herramientas concebidas y elaboradas por homininos no humanos.

Por lo común, la noción clásica de humanidad –conjunto de todos los seres humanos actuales y la manifestación de sus capacidades– encierra el carácter de ‘ser única’. De forma implícita, se admite que humanidad solo hay una. Visto desde el presente, por muy dispares que pudieran parecer los grupos raciales o sus etnias, hoy reconocemos en todos ellos una comunidad de rasgos y cualidades que los agrupan bajo una misma entidad que llamamos H. sapiens. Frente a concepciones racistas, admitimos que todos los seres humanos tenemos un mismo estatus evolutivo y jurídico.

Sin embargo, acabamos de nombrar cinco linajes humanos diferentes. ¿Debemos acaso hablar de cinco humanidades diferentes? Ante la pregunta de qué es el ser humano, la ciencia nos pone hoy frente a una cuestión previa: ¿de qué ser humano hablamos? ¿Hablamos de los humanos anatómicamente modernos: H. sapiens? ¿Nos referimos a H. floresiensis? ¿O acaso hablamos de los neandertales? Nuestra humanidad “sapiens” podría ser solo un subconjunto de lo potencialmente humano.

 

* Antonio Rosas es investigador del CSIC en el Museo Nacional de Ciencias Naturales y autor de los libros de divulgación Los neandertales, Los primeros homininos y La evolución del género ‘Homo’ (CSIC-Catarata). El texto del post ha sido extraído de este último libro. 

¿Tienes fotografías antiguas del Museo Nacional de Ciencias Naturales? ¡Puedes formar parte de su historia visual!

Por Soraya Peña Carolina Martín Albaladejo (CSIC)*

¿Cuántas personas se habrán retratado con el Megaterio, enorme cuadrúpedo del Pleistoceno, cuando se realizó su montaje en 1951 o cuando, unos años más tarde, Rocío Dúrcal volvió a ponerlo de moda con la película Acompáñame (1966), de Luis César Amadori? ¿Cuántas jóvenes volvieron entonces al Museo Nacional de Ciencias Naturales (MNCN) del CSIC para fotografiarse como la cantante?

Y los descubrimientos del elefante en Villaverde Bajo en 1958 y del mastodonte en Toledo en 1971, ¿cuánta expectación generaron cuando llegaron al Museo? Seguro que muchas personas guardan recuerdos de esos momentos y de otros parecidos en las cajas y los álbumes de sus progenitores, de sus abuelos o de ellas mismas. Son recuerdos vinculados a las pequeñas o grandes historias personales que ahora pueden ayudar a construir un relato colectivo más amplio, más complejo, el de un Museo que es parte fundamental de la historia de las ciencias naturales en España y reflejo de la propia historia de nuestro país.

Si tienes guardadas en algún rincón fotografías hechas en el MNCN-CSIC que sean anteriores a 1990, no dudes en contribuir a la recuperación de la memoria visual de la institución y participar en el concurso “Yo estuve en el Museo de Ciencias Naturales…”. Las imágenes han de subirse a la plataforma tuphotomuseo.es a través de un formulario y deben acompañarse de una pequeña descripción. Las fotografías recibidas serán compartidas en un álbum online y, además de pasar a formar parte del Archivo Histórico del Museo, podrán ser utilizadas en exposiciones y publicaciones de tipo divulgativo y de investigación. Puedes enviar las fotografías hasta el 15 de Mayo de 2019.

Un descanso mientras se cambia la tarima en el Salón de Zoología, 1935. / Archivo MNCN

Un descanso mientras se cambia la tarima en el Salón de Zoología, 1935. / Archivo MNCN

Un Museo con más de dos siglos de historia

Aunque el actual MNCN-CSIC fue creado por el Rey Carlos III en 1771 como Real Gabinete de Historia Natural, el periodo comprendido entre 1939 y 1985 es el menos conocido de su historia visual. En 1928, Miguel Primo de Rivera, como presidente del Gobierno Militar, prometió trasladar la Escuela de Ingenieros para que el Museo ocupara todo el edificio. Promesa vana que nunca se cumplió completamente, pero que sí permitió iniciar unas obras de remodelación y ampliar el Museo al ala sur donde hoy se muestra la exposición de Minerales, fósiles y evolución humana, que incluye una reproducción emblemática de un Diplodocus, quizá todavía esperando a tomar esa prometida y ansiada nave central.

En una imagen de ese traslado tomada en 1935 se ve a unos despreocupados obreros posando en un descanso del trabajo mientras cambian el piso de madera por losa. Años más tarde, una nueva remodelación haría regresar la madera original. Un botijo y una bicicleta protagonizan el primer plano y sus sonrisas no parecen predecir la violenta historia que comenzaría al año siguiente, la Guerra Civil Española (1936-1939).

Sala de Vertebrados (antes de 1935). / Archivo MNCN

Sala de Vertebrados (antes de 1935). / Archivo MNCN

A partir de 1939, al finalizar la guerra, muchas cosas se disgregaron en nuestro país y el Museo no fue una excepción. Incorporado al recién creado Consejo Superior de Investigaciones Científicas, se dividió, y el Museo quedó a cargo de las colecciones y de las exposiciones, mientras que tres nuevos centros de investigación dedicados a Zoología, Entomología, Geología y Paleontología se responsabilizaron de la investigación científica. Hubo que esperar hasta 1984 para que se volvieran a reagrupar, coincidiendo prácticamente con el final de una larga transición.

A la hora de repasar la historia del Museo, este periodo posterior a 1939 es uno de los menos conocidos. Por ello, con el objetivo de reconstruir la memoria reciente de la institución, y para dar a conocer y entender el significado de esa desconocida y quizá sorprendente trayectoria, el grupo Historia y Documentación de las Ciencias Naturales en España del MNCN-CSIC lo está sacando a la luz a través del proyecto de investigación ‘El Museo Nacional de Ciencias Naturales entre 1939 y 1985: de la disgregación a la reunificación en su contexto nacional e internacional’.

Uno de los primeros hallazgos de esta investigación ha sido comprobar la falta de documentación fotográfica de este periodo (1939-1985). No se conocen apenas imágenes y, sin embargo, seguro que hubo fotógrafos presentes en las distintas inauguraciones y que los visitantes se hicieron retratos al lado de las piezas más espectaculares o de sus animales preferidos. Es más que posible que los trabajadores que durante todos esos años poblaron sus espacios se retrataran en diferentes ocasiones… Miles de historias cruzadas que posiblemente quedaron guardadas en álbumes familiares quizá ya un poco olvidados. Esas imágenes son las que el Museo quiere recuperar para devolver el protagonismo a sus ocupantes, pero también para hacer suyo un periodo imprescindible de la historia de la institución.

Precisamente por ello se ha puesto en marcha el concurso “Yo estuve en el Museo de Ciencias Naturales…”. Apoyar este proyecto de investigación y subir las fotos recuperadas de ese baúl de los recuerdos, donde todos podemos rebuscar y reencontrarnos con nuestro propio pasado olvidado, significa integrarnos en otra historia colectiva, la del devenir de la ciencia, de lo pasado y de lo que está por venir. Entra en www.tuphotomuseo.es y sé parte del MNCN-CSIC y de su historia. En ese espacio nos encontraremos y nos redescubriremos.

 

* Soraya Peña de Camus Sáez es coordinadora de exposiciones del MNCN-CSIC. Carolina Martín Albaladejo es investigadora del grupo Historia y Documentación de las Ciencias Naturales del MNCN-CSIC.

Pedalear por la ciencia: una vuelta ciclista en defensa de la investigación

Por Pablo Vargas (RJB-CSIC), Fernando Valladares (MNCN-CSIC), Luis Navarro (Universidad de Vigo), Adrián Escudero (Universidad Rey Juan Carlos) y José María Sánchez (Universidad de Vigo)

El lunes 17 de septiembre, un día después de que concluya la Vuelta Ciclista a España, un pequeño grupo de investigadores nos embarcaremos en nuestra singular Vuelta Ciclista por la Ciencia. Pedalearemos cientos de kilómetros enlazando algunas de las principales universidades de nuestro país con el objetivo de acercar el conocimiento científico a la sociedad y transmitir la pasión por hacerlo avanzar.

Pelotón

Fernando Valladares y Pablo Vargas (primero y segundo por la izquierda), protagonistas de la Vuelta Ciclista por la Ciencia, junto con otros compañeros de pelotón.

Con el mismo impulso que impondremos a nuestras bicicletas y con el mismo entusiasmo que cruzaremos puertos y ciudades, trataremos de explicar los aspectos más novedosos y fascinantes de las ciencias naturales, como las lecciones que nos dan las plantas sobre el cambio climático, los recientes cambios acontecidos en la clasificación de los seres vivos o las consecuencias de las invasiones biológicas en España. También daremos nuestro punto de vista sobre los desafíos y dificultades de la ciencia que se hace en nuestro país y sobre las mejoras que a nuestro juicio necesitan acometer la Administración y los organismos de investigación.

Esta particular aventura física e intelectual pretende fomentar vocaciones y estimular la proyección del pensamiento científico en la sociedad. Partiremos de la Universidad de Vigo y recalaremos sucesivamente en las universidades de Santiago de Compostela (día 17), Oviedo (día 18), León (día 19) y Salamanca (día 20). Nuestro periplo concluirá en el campus de Móstoles (Comunidad de Madrid) de la Universidad Rey Juan Carlos (día 21).

Recorrido

Durante la mañana de cada jornada pedalearemos entre cien y ciento veinte kilómetros y aprovecharemos para realizar observaciones y descripciones de la biodiversidad vegetal y animal que vayamos encontrando. Ya por la tarde mantendremos un encuentro con los responsables de cada universidad y ofreceremos un ciclo de charlas breves en el que trataremos temas de actualidad en biología y en el que esperamos contar con una importante participación del público. El programa completo de la Vuelta puede consultarse en la web https://cienciavuelta.com

Nuestro objetivo final es que esta iniciativa tenga continuidad en el tiempo y se repita anualmente, de forma que en próximas ediciones aumente de modo significativo la envergadura del pelotón y se pueda contar con apoyo y ayudas para su organización. Los gastos de esta primera edición los hemos asumido entre los propios participantes, que también vamos a emplear nuestras respectivas vacaciones para poder divulgar los descubrimientos científicos de mayor interés.

Podéis seguirnos diariamente en la cuenta @CienciaVuelta de Twitter y cienciavuelta2018 de Instagram.

¿Por qué somos racistas?

Por Margarita del Olmo (CSIC)*

Hace 20 años, la Unión Europea publicó un cómic titulado ¿Racista Yo? El cómic tenía el objetivo de “luchar contra la discriminación por razones de sexo, raza, origen étnico, religión y creencias, minusvalías, edad o tendencias sexuales”. Para conseguirlo, trataba de demostrarnos que la respuesta a esa pregunta es un rotundo “SÍ”, que todos discriminamos en alguna ocasión a otras personas, incluso aunque seamos víctimas de la discriminación en ocasiones.

Pixabay

He dedicado muchos años de trabajo a contestar una pregunta parecida: ¿por qué somos racistas aunque no creamos serlo, incluso aunque no queramos serlo? Llegar a una respuesta me ha resultado muy complicado por dos razones fundamentales. En primer lugar, somos racistas porque nos hemos educado desde pequeños en una sociedad racista, y eso ha pasado sin darnos cuenta. Al mismo tiempo que hemos aprendido a comportarnos de esta manera, también nos han enseñado que ser racistas es algo ‘malo’. Así que hemos aprendido a ser racistas pero sin parecerlo, sin darnos cuenta de cómo, cuándo y por qué actuamos así. Parece que las personas racistas son solo aquellas que declaran querer serlo. Pero el racismo es un mecanismo social muy complicado, y para explicarlo siempre lo comparo con un iceberg. La parte visible del iceberg, la más pequeña, corresponde a las personas que no tienen ningún problema en reconocer que son racistas. El resto, los seres humanos que no queremos serlo, representamos la parte oculta del iceberg, la que no se ve desde la superficie.

La segunda razón por la que nos comportamos de manera racista es más complicada de explicar. En resumen, se trata de que a veces nos conviene porque sacamos beneficio inmediato de una situación concreta o en términos generales.

En una situación concreta utilizar un argumento racista en una discusión o en un conflicto es como jugar a las cartas con un as guardado en la manga que podemos sacar en el momento más efectivo. Es una forma de decirle a la otra persona: “no vales tanto, vales menos”, pero de una forma que le haga daño. Por ejemplo, cuando en una discusión se dice: “tú no eres de aquí, ¡vete a tu país!”, es negar a esa persona la pertenencia y la opinión. O en otra situación: “¿de dónde eres?”, “de aquí de Madrid”, “bueno sí pero y tus padres, ¿de dónde son?”… Esto significa que no consideramos ‘normal’ su color de piel o su manera de vestir o de hablar y, por lo tanto, pedir aclaración implica señalar la diferencia con lo que debería ser (pertenecer al mismo grupo que pertenece la persona que pregunta).

En términos más generales, un argumento racista esconde privilegios. Vivimos en una sociedad que atribuye las ventajas (dinero, poder, mejores condiciones de vida) a los méritos y al esfuerzo; a las oportunidades también, pero sobre todo al hecho de saber aprovecharlas. Pero eso implica pensar que todas las personas hemos nacido en las mismas condiciones y, si la vida se pudiera representar como una carrera, es como creer que partimos de la misma línea de salida. Sin embargo, esto no es así. El lugar en el que nacemos nos proporciona a algunas unos privilegios de partida y nos coloca en una posición que nos permite aprovechar las oportunidades con ventaja, como si hubiéramos nacido un poco adelantados con respecto a la salida de la carrera. Pero curiosamente, en vez de reconocerlo, lo que hacemos es ocultar los privilegios, de manera que nuestras ventajas puedan atribuirse al esfuerzo y al trabajo.

Portada del cómic ¿Racista yo? / Oficina de Publicaciones Oficiales de las Comunidades Europeas, Luxemburgo, 1998

Los argumentos racistas nos ayudan a esconder los privilegios de partida y desvían la atención hacia las personas que no salieron adelantadas, atribuyendo sus lugares más atrasados en esa carrera de la vida a determinadas características o carencias que ellas tienen. Les decimos, de manera que hasta ellas lo aceptan, que por ser mujer o por pertenecer a determinada religión o haber nacido en un lugar no tienen los mismos derechos, no pueden estar en igualdad de condiciones.

Los argumentos racistas son dolorosos, para las víctimas en primer lugar, porque suelen ser condiciones que no se pueden cambiar pero, sobre todo, porque las propias víctimas, que han crecido y se han educado en la sociedad racista, han aceptado que determinados colores de piel o género o lugar de nacimiento les excluyen de determinadas ventajas. Ocultamos los privilegios de partida porque queremos que atribuyan las ventajas al trabajo y al esfuerzo, y culpamos a las víctimas de sus desventajas haciéndoles responsables a ellas.

Si tuviéramos el convencimiento de que es necesario erradicar el racismo, deberíamos iniciar un proceso que nos ayude poco a poco a ser conscientes de cuáles son los privilegios que disfrutamos con respecto a otras personas y entender que son esos privilegios los que nos han permitido aprovechar las circunstancias, y no solo el esfuerzo y el trabajo como solemos pensar.

Y como no siempre somos verdugos, sino que en algunas ocasiones también somos víctimas, deberíamos aprovechar la sensibilidad que las víctimas tienen hacia la discriminación y el interés por combatirla, e incorporar esos aprendizajes para tener más cuidado en las ocasiones que actuamos como verdugos.

 

* Margarita del Olmo es investigadora en el Instituto de Lengua, Literatura y Antropología del CSIC

Illustraciencia VI anuncia sus premios: descubre las mejores ilustraciones científicas del año

Por Mar Gulis (CSIC)

El certamen internacional Illustraciencia, organizado por la Asociación Catalana de Comunicación Científica y el Museo Nacional de Ciencias Naturales (MNCN) del CSIC, ha dado a conocer las ilustraciones premiadas en su sexta edición. ¡No te las pierdas!

Ciervo Volante

Ciervo volante, de Rita Cortês de Matos (Portugal)
Ganadora de la categoría de ilustración científica

El ciervo volante (Lucanus cervus), el coleóptero más grande de Europa, es bien conocido por las largas mandíbulas de los machos. Las larvas se alimentan de madera podrida y tardan entre 4 y 6 años en llegar al estadio de su metamorfosis conocido como pupa. Los adultos emergen de la tierra en verano para aparearse y viven tan solo unas pocas semanas. En la península ibérica el ciervo volante se alimenta de árboles de hoja caduca como robles (Quercus) y castaños (Castanea sativa). Esta especie se encuentra protegida en Europa porque la actividad humana está provocando la desaparición de su hábitat. En particular, Lucanus cervus se ve afectado por las malas prácticas de gestión forestal, en las que se tiende a retirar la madera muerta de los bosques.

Siberian taiga

Siberian taiga, de Julia y Eugene Porotov (Rusia)
Ganadora de la categoría de ilustración naturalista

Este trabajo ilustra el entorno y las principales especies animales y vegetales que habitan en la taiga siberiana. Sus autores, que han crecido en Siberia, conocen perfectamente el ambiente y han avistado repetidas veces y dibujado directamente del natural a todos sus habitantes. Además, han tomado apuntes de su comportamiento y sus diferentes estrategias de supervivencia. En esta ilustración, han utilizado programas de dibujo digital.

Sudan

Sudán, el último rinoceronte macho blanco, de Larissa Ribeiro Lourenço Fernandes (Brasil)
Premio del público

Sudán fue el último rinoceronte macho blanco del mundo. Tras su fallecimiento, solo quedan dos miembros vivos de su especie: la hija y la nieta de Sudán. Para la autora de esta ilustración, que necesitó cuatro días para su elaboración, Sudán es “un símbolo de las especies en peligro de extinción y una señal de que si la forma en la que consumimos no cambia, tarde o temprano destruiremos el planeta y el proceso ecológico del cual dependemos los humanos”.

Hetermorphic

Heteromorphic Ammonoids of the Matanuska Formation, Turonian, Alaska, de Kate LoMedico Marriott (Estados Unidos)
Mención especial

La imagen es una reconstrucción de dos cefalópodos extintos que vivieron en el Cretácico Superior –época que se extendió desde hace 100 a 66 millones de años atrás–, y cuyas conchas son endémicas de los estratos de ese periodo hallados en algunas zonas de Alaska y Japón: Eubostrychoceras japonicum (izquierda) y Muramotoceras matsumoto.

RamphastosRamphastos, diversidad de picos del Neotrópico, de Santiago Forero Avellaneda (Colombia)
Mención especial

El género Ramphastos es uno de los cinco que componen la familia de los tucanes (Ramphastidae). Este género está compuesto por ocho especies de grandes y coloridos picos que se encuentran distribuidas a lo largo de las selvas de Centroamérica y Sudamérica.

Papagaios

Papagaios, de Wilma Ander (Brasil)
Mención especial

El papagayo del Amazonas o papagayo verdadero es un ave típica de Brasil muy apreciada como animal de compañía por su capacidad de hablar. Eso hace que muchos ejemplares sean capturados y comercializados clandestinamente. Habita en bosques, palmeras e incluso en áreas de cultivo de árboles; aunque es cada vez más común encontrarlo en áreas urbanas. En la naturaleza, evita a los depredadores quedándose inmóvil y callado.

megasoma

Megasoma elephas, de Carlos Ortega Contreras (México)
Mención especial

Megasoma elephas es un escarabajo que habita los bosques tropicales de México. Su ciclo de vida es largo: de 2 a 3 años en la etapa larval, que transcurre en árboles en descomposición y estiércol; y otros tantos en la vida adulta.

Illustraciencia, un proyecto creado por Connecta Ciència que cuenta con el apoyo de la Fundación Española para la Ciencia y la Tecnología, premia y divulga la ilustración científica y naturalista desde 2009. En la última edición se presentaron más de 500 obras.

Si te han gustado estas imágenes, en la web de Illustraciencia puedes encontrar las 40 que compondrán la exposición itinerante del certamen. La muestra se inaugurará el 4 de octubre en el MNCN y estará acompañada por actividades paralelas, como talleres infantiles y encuentros profesionales.

¿Qué nos dicen los anillos de los árboles sobre el calentamiento global?

Por Elena Granda (Universitat de Lleida) *

Una de las características más increíbles de los árboles es su longevidad; son seres vivos capaces de vivir muchísimos años. Sin ir muy lejos, en el Pirineo se pueden encontrar pinos de alta montaña que tienen más de 800 años y que, por tanto, germinaron en el siglo XIII. Incluso se han encontrado en Estados Unidos árboles con unos 5.000 años. Dado que los árboles son capaces de almacenar información (ecológica, histórica y climática) en cada año de crecimiento, encontrar un árbol viejo es como descubrir un archivo muy antiguo repleto de información. La dendroecología (rama de la biología especializada en el estudio de la ecología de los árboles a través del análisis de los anillos de crecimiento) se encarga de recopilar esa información para responder preguntas de ecología general y abordar problemas relacionados con los cambios ambientales a nivel local y global.

Para poder acceder a dicha información se obtiene un testigo de madera (o core en inglés), ”pinchando” el tronco con una barrena desde la corteza hasta el centro del árbol (médula). Así, se extrae un cilindro de madera en el que se ven todos los anillos de crecimiento. El estudio de estos cilindros ayuda a desvelar cómo ha sido el funcionamiento de distintos individuos y especies durante toda su vida.

De estos análisis se obtiene una valiosísima información que nos ayuda a comprender a qué peligros están expuestos actualmente nuestros bosques, cómo han actuado en el pasado ante factores de estrés y qué peligro corren en el futuro si no conseguimos reducir sus principales amenazas, como las emisiones de gases de efecto invernadero a la atmósfera, los incendios provocados, las especies invasoras o la desaparición de sus hábitats.

Gracias a la dendroecología podemos estudiar las causas de la mortalidad de los árboles, como el pino albar de las siguientes fotografías, a través de la comparación de árboles muertos (primera imagen) con aquellos vivos, mediante la extracción y posterior análisis de los anillos de crecimiento que se pueden observar en los testigos de madera (segunda imagen).

 

Los beneficios que aportan las plantas terrestres son incontables: dan cobijo a los animales, absorben contaminantes, favorecen las características del suelo, evitan la erosión, etc. Pero, sobre todo, son las responsables de generar gran parte del oxígeno (O2) que respiramos y de absorber de la atmósfera el dióxido de carbono (CO2), que es uno de los principales causantes del calentamiento global. Y, en el caso particular de las plantas leñosas, árboles y arbustos, su importancia radica en que son perennes; es decir, que no mueren tras la estación de crecimiento y reproducción. Esto implica que la cantidad de CO2 que pueden captar es muy grande y que este queda almacenado en los bosques, retenido en la madera, raíces, ramas y hojas durante mucho tiempo.

Durante las últimas décadas, y debido al aumento de gases de efecto invernadero en la atmósfera como el CO2 , se han producido alteraciones de la temperatura y las precipitaciones a nivel global. En países de clima mediterráneo, por ejemplo, se han registrado aumentos de temperatura en torno a 1,3 grados centígrados desde la revolución industrial, cuando se aceleró la emisión de estos gases a la atmósfera. Además han aumentado recientemente las condiciones extremas de sequía y hay mayor riesgo de incendios y lluvias torrenciales.

Cabría pensar que un aumento de CO2 atmosférico podría ser beneficioso para los árboles, ya que son organismos que se alimentan de dióxido de carbono. Sin embargo, esto normalmente no ocurre porque el aumento de CO2 está asociado a la sequía y al calentamiento global, y estos son factores que pueden producir estrés en las plantas. Dicho estrés da lugar al cierre de los estomas (poros que hay en las hojas por donde entran y salen moléculas de CO2 y agua) y, como consecuencia, no pueden aprovechar esa mayor cantidad de alimento. Si lo comparamos con los humanos, sería como si nos encontráramos ante una mesa llena de comida pero tuviéramos la boca cerrada y no pudiésemos comer nada. Dado que el cambio climático y la alteración de la atmósfera pueden perjudicar al funcionamiento de las especies leñosas, se esperan cambios en la composición de los bosques como los conocemos en la actualidad.

Por eso es importante conocer qué árboles están estresados, las causas y consecuencias, así como la forma en la que actúan ante ese estrés. Con el fin de predecir qué va a pasar en el futuro con nuestros bosques para poder minimizar las consecuencias del cambio climático, es de gran utilidad el estudio del crecimiento de los árboles a lo largo del tiempo: cuánto carbono han consumido y utilizado cada año, cómo han influido en ellos los cambios de temperaturas, las plagas, las sequías o los incendios, de manera que podamos desarrollar modelos de evolución de los futuros bosques.

Ilustración que representa las distintas fases en el estudio de los anillos de crecimiento: extracción del testigo de madera con una barrena (a); datación de los anillos para saber a qué año corresponde cada uno (b) y análisis de la información contenida en los mismos (c)

Gracias a la dendroecología podemos estudiar las causas de la mortalidad de los árboles, como el pino albar en la fotografía, a través de la comparación de árboles muertos (a) con aquellos vivos (b), mediante la extracción y posterior análisis de los anillos de crecimiento que se pueden observar en los testigos de madera.

 

Elena Granda es investigadora postdoctoral de la Universitat de Lleida y colaboradora del Instituto Pirenaico de Ecología (CSIC).

 

Organismos a la fuga: ¿escapan los seres vivos de la contaminación?

Por Ignacio Moreno-Garrido y Cristiano Venicius de Matos Araujo (CSIC)*

Pez cebra / Flickr-Photo-by-Lynn-Ketchum

Pez cebra / Flickr-Lynn Ketchum

Faraones, reyes, emperadores y nobles de tiempos pretéritos descubrieron, hace ya siglos, cómo funcionaban los ensayos de toxicidad. Ya que siempre hay gente interesada en cambiar unos gobernantes por otros, y dado que la mayor parte de los venenos preferidos por los asesinos actuaban por vía digestiva, era frecuente que los pretendientes al trono o sus aliados añadieran algunos simpáticos polvitos a las comidas de estos dirigentes con la aviesa intención de allanarles el camino a sus correspondientes sepulturas. Como el problema es que todo el mundo conoce el manual, estos gobernantes hacían probar la comida a sus sirvientes, y si estos ponían mala cara, mudaban el color epidérmico a tonos más verdosos y, acto seguido, se morían, aquellos solían pasar directamente a los postres obviando los segundos platos. Por supuesto, tales ensayos adolecían de rigor científico (aunque algunos tuvieran rigor mortis), y bastaba con procurarse un veneno de efecto retardado para solucionar el ligero inconveniente (y si no, que se lo cuenten al pobre emperador Claudio, por ejemplo).

Como quiera que sea, la base de los ensayos de toxicidad estaba servida: para conocer cómo de tóxica es una sustancia casi no nos queda otra que exponer material biológico a distintas concentraciones de tal sustancia, y observar qué pasa. Estos materiales biológicos, hoy día, pueden ser simples enzimas, cultivos celulares, tejidos, organismos, conjuntos de organismos o incluso ecosistemas, más o menos complejos. Sin embargo, los ensayos de toxicidad “clásicos” casi siempre se han centrado en la mortalidad (en el caso de organismos superiores) o en la inhibición del crecimiento (en el caso de poblaciones de microorganismos).

Pero, ¿qué pasa si los organismos, a concentraciones más bajas de las que les producen un efecto nocivo, detectan la contaminación y se fugan a sitios más limpios? Desde el punto de vista de la ecología, la fuga de los organismos de una zona equivale a su extinción, de modo que tal vez hayamos subestimado los efectos tóxicos de los contaminantes durante todos estos años.

Sistema lineal para estudiar el desplazamiento de los organismos / ICMAN-CSIC

Sistema lineal para estudiar el desplazamiento de los organismos / Cristiano Araújo

El primer paso que nos permite evaluar la capacidad de los organismos para huir de los contaminantes consiste en ponerlos en condiciones de elegir entre diferentes ambientes. En el Instituto de Ciencias Marinas de Andalucía (CSIC), miembros del grupo de investigación EEBAS (Ecotoxicología, Ecofisiología y Biodiversidad de Sistemas Acuáticos) estamos desarrollando dispositivos que simulan gradientes o manchas de contaminación en sistemas que permiten el libre desplazamiento de los organismos entre sus compartimentos, tanto en diseños lineales como en pequeños laberintos, como muestran las imágenes.

Con estos sistemas hemos realizado en el grupo de investigación diversos estudios que involucraban diferentes organismos. Ya se han llevado a cabo ensayos sobre microalgas (como la diatomea bentónica Cylindrotheca closterium), crustáceos (como el camarón Atyaephyra desmaresti o el anostráceo Artemia salina), peces (como Danio rerio –pez cebra– o Poecilia reticulata –guppy–) y renacuajos de tres especies de anfibios (Leptodactylus latrans, Lithobates catesbeianus y Pelophylax perezi). Los resultados, algunos ya publicados en revistas de ámbito internacional (Chemosphere, Environment International, Science of the Total Environment, Aquatic Toxicology o Plos One) muestran de manera inequívoca que prácticamente todos los organismos ensayados detectan la mayoría de los contaminantes y buscan las zonas menos contaminadas.

Sistema de laberinto / ICMAN-CSIC

Sistema de laberinto / Cristiano Araújo

Estos estudios de selección de hábitats también indican que, a pesar de ser la contaminación un factor capaz de expulsar organismos de una zona, la presencia de potenciales competidores en los tramos limpios o la presencia de comida en la zona contaminada pueden variar en gran medida la decisión, por parte de los organismos expuestos, de evitar o no los tramos con mayores cargas de contaminantes.

Este novedoso enfoque de estudio, que simula gradientes o manchas de contaminación, nos ha permitido incluir un nuevo concepto en los estudios medioambientales: la fragmentación química de los hábitats, basada en los efectos que un vertido contaminado puede tener impidiendo el paso de los organismos entre dos zonas limpias.

En resumen, nuestros resultados indican que los estudios sobre los efectos de los contaminantes no deberían estar exclusivamente enfocados en evaluar cómo los contaminantes dañan los organismos, ya que se ha puesto de manifiesto que el potencial “repelente” de las sustancias contaminantes, incluso a concentraciones muy por debajo de los valores letales, puede acarrear serias consecuencias para la estructura y dinámica de los ecosistemas, así como para la distribución espacial de los organismos.

* Ignacio Moreno-Garrido y Cristiano Venicius de Matos Araujo son investigadores en el Instituto de Ciencias Marinas de Andalucía (CSIC).

Cerebros de plastilina: ¿es posible conseguir una “supermemoria”?

Por Sandra Jurado Sánchez (CSIC)*

Ilustración de Silvia Jurado Sánchez

       Ilustración de Silvia Jurado Sánchez

En estas fechas de junio ya casi se pueden tocar las tan ansiadas vacaciones… Durante este mes, miles de estudiantes se han tenido que enfrentar a los exámenes de fin de curso, a la temida EBAU (antes Selectividad o PAU) o incluso a los exámenes de recuperación. En estas semanas el alumnado pone a prueba su templanza, pero sobre todo su memoria y conocimiento. Algunos demuestran una excelente capacidad de retención de manera innata (o, más probablemente, producto del trabajo continuado durante el curso), mientras que otros creen “conveniente” mejorar sus posibilidades con la ayuda de suplementos alimenticios. También hay quienes, dudando de su propia capacidad, se dedican al diseño de complejas formas de outsourcing intelectual o “chuletas” de última generación.

En estos momentos de incertidumbre, qué no daríamos por conocer los secretos de la memoria: ¿cómo aprendemos?, ¿cómo se forman nuestras memorias y recuerdos? Y sobre todo, ¿cómo podemos potenciar estas capacidades y generar una “supermemoria”? El cerebro guarda la clave de estos misterios, y la neurociencia, la ciencia encargada de estudiar el funcionamiento cerebral, trabaja sin descanso para entenderlos.

El desarrollo temprano durante la infancia es un momento crítico para el aprendizaje, pero las personas adultas seguimos aprendiendo y formando recuerdos sin que se produzcan cambios significativos en nuestro volumen cerebral. Una posible estrategia del cerebro adulto para codificar nueva información implicaría remodelar las conexiones neuronales ya existentes en función de su frecuencia de uso. Por ejemplo, consideremos el aprendizaje de un instrumento musical principalmente adquirido a través de constante repetición. Aquellos contactos neuronales o sinapsis que comienzan a emplearse con mayor frecuencia podrían verse potenciados, mientras que si abandonamos el entrenamiento, estos contactos o conexiones podrían comenzar a debilitarse, llegando incluso a desaparecer. Los puntos de contacto entre neuronas, o sinapsis, son regiones extremadamente flexibles que tienen la capacidad de responder a distintas necesidades según los estímulos que reciben, potenciándose o debilitándose en función de la frecuencia de uso durante un proceso conocido  como plasticidad sináptica.

El concepto del cerebro como una estructura plástica se introduce por primera vez en el siglo XIX por el psicólogo estadounidense William James, y posteriormente es asimilado por los padres de la neurociencia moderna, con su máximo exponente en la figura de Santiago Ramón y Cajal. Meticulosas observaciones de las redes neuronales en cerebros embrionarios convencieron a Cajal de que el tejido neuronal era lo suficientemente flexible como para permitir la formación y desaparición de conexiones dependiendo del momento del desarrollo, y que posiblemente esta flexibilidad se encontrara en la base de la formación de memorias y recuerdos en el cerebro adulto.

Dibujo de corteza cerebelosa realizado por Santiago Ramón y Cajal en 1904. / Ministerio de Ciencia, Innovación y Universidades

Dibujo de corteza cerebelosa realizado por Santiago Ramón y Cajal en 1904. / Ministerio de Ciencia, Innovación y Universidades

Aunque plausible e interesante, la plasticidad cerebral acabó siendo un concepto puramente teórico. Habría que esperar hasta principios de los años setenta para que los investigadores Timothy Bliss y Terje Lømo, de la Universidad de Oslo, detectaran por primera vez un fenómeno de plasticidad sináptica. Así, lograron demostrar que en respuesta a un aumento de la frecuencia de estimulación, la fuerza de las sinapsis en el hipocampo, una región cerebral importante para la memoria y afectada severamente en la enfermedad de Alzheimer, aumentaba muy rápidamente: ¡en cuestión de segundos podía aumentar hasta un 200%! Lo más importante era que estas conexiones permanecían potenciadas durante horas. Este aumento en la frecuencia de estimulación en el laboratorio mediante técnicas de electrofisiología in vivo pretendía mimetizar el aumento de la actividad de determinadas conexiones durante el proceso de aprendizaje. El resultado fue que estas conexiones eran capaces de adaptarse muy rápidamente y facilitarse tal y como se venía especulando desde el siglo XIX.

Este hallazgo revolucionó la neurociencia, ya que proporcionaba evidencias experimentales para el concepto de plasticidad cerebral, que hasta entonces era una mera hipótesis. En los años sucesivos, numerosos laboratorios profundizaron en el estudio de la plasticidad sináptica y, gracias al avance de las técnicas de biología molecular, electrofisiología y microscopía, se pudieron identificar diferentes moléculas claves para este fenómeno neuronal.

La identificación de estas moléculas abre la puerta al diseño de nuevas estrategias y fármacos destinados a potenciar los procesos cognitivos, principalmente en individuos afectados por patologías que afectan a la memoria, como las enfermedades neurodegenerativas. Aunque la tan ansiada “píldora de la memoria” aún está fuera de nuestro alcance, es intrigante pensar qué efectos podrían provocar estos fármacos en individuos sanos. Intuitivamente podríamos imaginar la aparición de una “supermemoria”. Sin embargo, es probable que llegar a obtenerla no sea tan sencillo. Consideremos que el efecto de estos fármacos, aún en vías de desarrollo, podría ser diferente en un cerebro sano y en un cerebro afectado por neurodegeneración, en donde el entorno neuronal se ve profundamente alterado con la aparición de agregados moleculares inexistentes en situaciones normales. En este escenario, es esperable que el uso de fármacos que modulan moléculas cuyo efecto es predominante en el cerebro enfermo no tendría por qué afectar positivamente a las capacidades de memoria de un cerebro saludable que carece de estas dianas.

Todas estas cuestiones han de ser analizadas meticulosamente, incluyendo la reflexión acerca de si es necesario desarrollar una “píldora para la memoria” en un mundo en donde gran parte de nuestros recuerdos se almacenan de manera digital. Tal vez mucha memoria no suponga ya una ventaja pues, como dijo Nietzsche, “la buena memoria es a veces un obstáculo al buen pensamiento”.

* Sandra Jurado Sánchez es investigadora en el Instituto de Neurociencias de Alicante, del CSIC y la Universidad Miguel Hernández. Más sobre su trabajo en: https://www.juradolab.com/

Insectos, algas y carne de laboratorio, ¿las proteínas del futuro?

Por Miguel Herrero (CSIC)*

En su novela Un mundo feliz, Aldous Huxley describe una sociedad futurista –e inquietante– en la que sus miembros se alimentan con pastillas que les aportan todo tipo de nutrientes. No es la primera vez que la ciencia ficción especula sobre cómo será la alimentación en un futuro más o menos lejano. Hoy, los avances que se están produciendo en las ciencias de la alimentación pueden dar pistas sobre la evolución de nuestra dieta. ¿De qué nos alimentaremos? Para responder a esta pregunta hay que considerar las necesidades nutricionales de la población global y los recursos existentes para cubrirlas.

Según la ONU, en 2050 habrá en la Tierra unos 9.000 millones de personas. A principios del siglo XX se calcula que había algo más de 1.500 millones de habitantes en el planeta. Es decir, en solo 150 años, esa cifra se habrá multiplicado por seis. Por tanto, es probable que tengamos que adoptar medidas para no llevar al límite los recursos disponibles: agua potable, aire no contaminado, energía limpia y, por supuesto, alimentos. Para aumentar la capacidad de generar alimentos, ya se ha comenzado a buscar fuentes alimenticias no explotadas suficientemente hasta el momento, y que no impliquen técnicas agrarias y ganaderas que perjudican al medioambiente.

Gusanos de seda cocinados.

Fundamentalmente se exploran nuevas fuentes de proteínas, pues estas se consideran el nutriente principal. Dado que la producción cárnica es muy ineficiente (en términos de recursos consumidos) y muy contaminante se pretende reducir la dependencia de la misma en la alimentación. ¿Cómo? Los insectos aparecen como la primera opción. La FAO ha destacado en más de una ocasión el papel que pueden jugar en la alimentación mundial futura. Aunque en Occidente no resulten demasiado apetecibles, estos animales poseen unas características nutricionales muy interesantes. Son una gran fuente de proteína, dado que este nutriente es su componente mayoritario. Pero, además, la cría de insectos puede ser utilizada también para la elaboración de piensos y alimentos para otros animales, liberando de ello cultivos que pueden ser redirigidos a la alimentación humana. Aunque en estas latitudes aún no se estilen los menús de insectos, aproximadamente un cuarto de la población mundial, mayoritariamente en Latinoamérica, ya se alimenta de ellos de forma regular.

Ensalada de algas.

Otra de esas posibles fuentes proteicas son las algas. Cualquier persona asiática aducirá que para ella las algas son un alimento del presente, no del futuro, pero en Europa su consumo aún es residual. Hay muchas algas ricas en proteínas, en particular varias especies del grupo de las microalgas. De tamaño microscópico, se pueden cultivar en plantas de producción que no tienen que estar necesariamente cerca de fuentes de agua salada, y por tanto en zonas costeras. Algunas ya se cultivan para producir alimentos para peces, por ejemplo, o para la generación de energía, pero de toda la producción tan solo una parte muy pequeña se dirige a la alimentación humana.

Las grandes algas son más frecuentemente utilizadas como alimento, aunque su consumo tampoco es equiparable al de los vegetales. En cuanto a su composición, todos los tipos de algas destacan por poseer altas cantidades de proteína y bajas proporciones de grasas que, además, suelen ser insaturadas y por tanto saludables. Sin embargo, algunas especies tienen un alto contenido en yodo, mientras que otras pueden acumular durante su crecimiento cantidades apreciables de metales pesados (como ocurre en algunos peces). Aun así, estas desventajas son claramente superables eligiendo de manera apropiada las especies a cultivar.

Finalmente, la carne obtenida a partir de cultivos de tejidos celulares y no de animales directamente es otra fuente que se está explorando. La producción de carne en laboratorio a partir de células madre que se convierten en células musculares idénticas a las que posee la carne está dando sus primeros pasos. De momento, las características de esta carne cultivada no son iguales a las de la carne a la que pretende sustituir, puesto que tan solo se compone de músculo y no contiene nada de grasa ni otros componentes que están entremezclados con la masa muscular en los animales. Esto provoca falta de jugosidad y unos sabores diferentes, menos apetecibles que los de la carne natural. Ahora bien, en los próximos años pueden producirse avances que permitan generar carne apetecible de forma económica y energéticamente más eficiente que a través de la cría de animales.

* Miguel Herrero es investigador en el Instituto de Investigación en Ciencias de la Alimentación (CIAL) del CSIC y la Universidad Autónoma de Madrid y autor del libro de divulgación Los falsos mitos de la alimentación, disponible en la Editorial del CSIC Los Libros de la Catarata.