Entradas etiquetadas como ‘divulgación’

Las dos medallas del Nobel que escaparon a los nazis

Por Mar Gulis (CSIC)*

9 de abril de 1940: el químico húngaro George Hevesy, conocido por haber descubierto el hafnio, acude como cada mañana a su trabajo en el Instituto de Física Teórica de la Universidad de Copenhague, Dinamarca. No es un día como cualquier otro: Alemania está invadiendo el país. Los ataques han comenzado durante la madrugada y el gobierno danés, consciente del desequilibrio de fuerzas, no ha tardado en presentar la rendición.

A su llegada, Hevesy encuentra a Niels Bohr, premio Nobel de Física en 1922 y director del instituto. El ‘padre’ de la mecánica cuántica está preocupado. No es ser hijo de madre judía lo que le inquieta en ese momento –al fin y al cabo, al nacer fue bautizado en el catolicismo–, sino que los ocupantes encuentren lo que obra en su poder. Bohr esconde las medallas del premio Nobel de dos físicos alemanes que, de una u otra forma, se han significado como opositores al régimen nazi: Max Von Laue, galardonado en 1914 por sus trabajos en cristalografía de rayos X, y James Franck, premiado en 1925 por sus investigaciones sobre el comportamiento de los electrones. Ambos han depositado sus condecoraciones en el instituto precisamente para evitar que caigan en manos de las autoridades de su país.

Se trata de un legado demasiado comprometedor. La Alemania de Hitler castiga incluso con la pena de muerte sacar oro del país; y las medallas están hechas con 200 gramos de oro de 23 quilates cada una. Franck, de origen judío, vive exiliado en Estados Unidos, pero Von Laue permanece en Alemania. “El nombre de Laue estaba grabado en la medalla, su descubrimiento por las fuerzas invasoras habría tenido muy serias consecuencias para él”, escribe Hevesy acabada la Segunda Guerra Mundial.

De izquierda a derecha: James Franck, Max Von Laue, George Hevesy y Niels Bohr.

Hay que darse prisa. El húngaro propone enterrar los metales, pero Bohr teme que alguien pueda descubrirlos. Entonces, echan mano de sus conocimientos sobre química. El oro es inalterable por el aire, el calor, la humedad y la mayoría de los elementos químicos, pero puede disolverse con agua regia, una combinación de una parte de ácido clorhídrico y tres de ácido nítrico.

Hevesy se pone manos a la obra y pasa la jornada encerrado en el laboratorio disolviendo las medallas. No es un trabajo fácil: “El oro es extremadamente no reactivo y difícil de disolver”, cuenta años después a Von Laue. Mientras tanto, en las calles de Copenhague ya desfilan las tropas invasoras.

Hasta 1980 todas las medallas del premio Nobel fueron acuñadas en oro de 23 quilates.

Cuando los nazis ocupan el instituto no advierten nada sospechoso. En 1943, Bohr y Hevesy, que acaba de recibir el Nobel por el estudio de organismos vivos mediante trazas radioactivas, parten al exilio. Temeroso de que Alemania se adelante en la carrera armamentística, el primero acaba en Estados Unidos colaborando con el proyecto Manhattan, que da lugar a la primera bomba atómica.

El oro permanece disuelto en agua regia hasta el fin de la guerra. Tras su regreso a Dinamarca, Bohr lo recupera y en 1950 lo envía a la Real Academia Sueca de Ciencias junto con una carta en la que explica lo sucedido. La Fundación Nobel refunde el metal y acuña con él nuevas medallas similares a las originales. Frank recibe el galardón en 1952 en una ceremonia celebrada en la Universidad Chicago. El relato más extendido sostiene que Von Laue también ‘recupera’ su medalla, aunque de esto no queda registro oficial.

 

* Si quieres descubrir más historias sorprendentes relacionadas con la química, consulta la web de la Yincana Virtual Entre Matraces, organizada por el Instituto de Química Médica del CSIC en colaboración con la FECYT. 

Te mostramos en un minuto las mejores imágenes científicas de FOTCIENCIA17

Por Mar Gulis (CSIC)

La extraordinaria anatomía de los caballitos de mar retratada a través de cuatro técnicas lumínicas, una imagen de microscopio que nos muestra los grandes ojos compuestos de los mosquitos o los surcos geométricos de un cultivo sostenible de cebada observados desde un dron. Estas son algunas de las siete propuestas seleccionadas en la 17ª edición de FOTCIENCIA, una iniciativa del Consejo Superior de Investigaciones Científicas (CSIC) y la Fundación Española para la Ciencia y la Tecnología (FECYT), con apoyo de la Fundación Jesús Serra, que trata de acercar la ciencia a la sociedad mediante la fotografía.

Las enormes antenas en forma de abanico que algunas luciérnagas de Brasil utilizan para detectar las feromonas del sexo opuesto o la asombrosa estructura del nanoplancton marino amenazado por el cambio climático en el Mediterráneo son otros de los fenómenos reflejados en las imágenes, que han sido escogidas por un comité compuesto por profesionales relacionados con la fotografía, la microscopía y la comunicación científica.

Las dos fotografías restantes llaman nuestra atención sobre los microplásticos que se encuentran en los organismos que constituyen la base de la cadena trófica marina y que llegan a los consumidores finales, los seres humanos, así como sobre el hecho de que la naturaleza es química y que la química está en la naturaleza. Puedes ver todas ellas en el vídeo que acompaña a este post.

Con estas imágenes y una selección más amplia de entre las cerca de 450 presentadas, próximamente se realizará una exposición itinerante y un catálogo.

Para saber más sobre las imágenes escogidas, pincha aquí.

En esta 17ª edición, FOTCIENCIA se ha sumado a los 17 Objetivos de Desarrollo Sostenible declarados por Naciones Unidas.

¿Sabías que la herrumbre (si es muy pequeña) tiene muchos usos médicos?

Por Fernando Herranz (CSIC)*

El tamaño sí que importa y lo cierto es que la herrumbre, el hierro oxidado que puede terminar apareciendo en piezas metálicas al estar tiempo sometidas a las condiciones atmosféricas, deja de ser una molestia si la empleamos a escala nanométrica. No solo eso, sino que cuando su tamaño es muy pequeño –justo antes de llegar al mundo de los átomos y las moléculas– algunos compuestos de la herrumbre –hidróxidos y óxidos de hierro– pueden utilizarse para diagnosticar enfermedades o tratar el cáncer.

Herrumbre

No hay duda de que a escala macroscópica la herrumbre constituye un serio problema, tanto a nivel estético –cuando afecta a superficies pintadas– como estructural ­–ya que, si penetra en profundidad, el metal presenta una resistencia mecánica mucho menor–. Esto explica la variedad de productos que se venden para evitar la formación de herrumbre o facilitar su eliminación.

Sin embargo, compuestos como la magnetita, uno de los óxidos más presentes en la herrumbre, tienen numerosas aplicaciones en el ámbito de la nanotecnología. Esta rama de la ciencia consiste en la producción y manipulación de materiales a escala nanométrica, es decir, que tienen al menos una dimensión de alrededor de 100 nanómetros (nm). A esta diminuta escala, empezamos a ver cosas muy curiosas que hacen que el óxido de hierro presente nuevas propiedades.

Pero, ¿qué ocurre cuando un material como la magnetita se forma a escala nanométrica para que sea tan distinto a cuando nos lo encontramos en el día a día? La magnetita macroscópica es fuertemente magnética, un imán, para entendernos. Cuando ese material se tiene en, por ejemplo, una esfera (una nanopartícula) de un diámetro de 10 nm, pasa a mostrar una propiedad llamada superparamagnetismo. De forma muy simple; todos los ‘pequeños imanes’ que constituyen el material están orientados en el mismo sentido dentro de la esfera. Debido a su tamaño, a temperatura ambiente, estas nanopartículas en agua no presentan magnetismo ya que cada esfera está dando vueltas al azar, sin una orientación definida. Sin embargo, cuando se acerca un imán, todas las nanopartículas se orientan y producen una respuesta magnética muy intensa. Esta propiedad de poder ‘enceder y apagar’ su magnetismo tiene múltiples aplicaciones.

Cabeza resonancia magnética

Imagen de una cabeza humana obtenida por resonancia magnética.

Por ejemplo, en medicina. Las nanopartículas basadas en magnetita, o materiales relacionados como la maghemita, se usan en imagen médica, en técnicas como la imagen por resonancia magnética o la imagen de partículas magnéticas. En esta aplicación las nanopartículas se dirigen, una vez inyectadas, a la enfermedad que se quiere diagnosticar y, una vez allí, es posible detectarlas por la señal que producen. En la imagen por resonancia magnética lo que hacen las nanopartículas es modificar el comportamiento magnético de las moléculas de agua de nuestros tejidos. Los dos hidrógenos de la molécula de agua (H2O) son los responsables de la señal en esa técnica de imagen. Las nanopartículas de magnetita modifican la señal que se obtiene de esos hidrógenos; de esa forma permiten saber dónde se han acumulado las nanopartículas y, por tanto, dónde se encuentra la enfermedad. Otra ventaja de las nanopartículas para imagen por resonancia es que, según las condiciones en las que se produzcan, pueden hacer que la señal sea más brillante o más oscura, lo que ayuda al diagnóstico de distintas enfermedades.

Brújulas vivientes

El comportamiento magnético de estas nanopartículas también explica otra de sus aplicaciones más interesantes en el tratamiento del cáncer. La técnica se llama ‘hipertermia magnética’ y consiste en acumular las nanopartículas en el tumor para, una vez allí, aplicar un campo magnético desde el exterior y producir un calentamiento de las células tumorales que acabe con ellas. Dicho calentamiento es posible gracias a las propiedades magnéticas de este nanomaterial.

Cadena de magnetosomas en el interior de la bacteria

Cadena de magnetosomas en el interior de la bacteria. / Alicia Muela; Estibaliz Etxebarria (UPV/EHU).

No solo el ser humano se ha dado cuenta de la utilidad de las nanopartículas de magnetita: ¡las bacterias también lo saben! Algunos de estos microorganismos producen en su interior pequeñas nanopartículas de magnetita (y también algunos otros compuestos relacionados) que se disponen de forma alineada a lo largo de la bacteria; son los llamados magnetosomas. Pero, ¿qué ganan con esto las bacterias? La respuesta es la magnetorrecepción: la capacidad de detectar las líneas del campo magnético terrestre y, de esa manera, orientarse. De hecho, los microorganismos que producen magnetosomas en el hemisferio norte se ven atraídos por el sur magnético, mientras que aquellos en el hemisferio sur se ven atraídos por el norte magnético (es decir, se sienten atraídos por el imán más potente que ‘sientan’). Las bacterias se convierten en minúsculas brújulas vivientes gracias a la nanotecnología.

En resumen, en nanotecnología, el tamaño importa, y mucho. Un mismo material que a escala macroscópica presenta pocas propiedades interesantes, cambia completamente cuando se presenta en la escala de los nanómetros.

 

* Fernando Herranz dirige el Grupo de Nanomedicina del Instituto de Química Médica del CSIC y colaborador habitual del blog DCIENCIA.

¿Cómo suena un agujero negro?

Por Enrique Pérez Montero (CSIC)*

La mayoría de las personas piensan que el sentido de la vista es imprescindible para estudiar los astros, dado que ninguno de los otros cuatro sirven para darnos información sobre ellos.

El gusto, el olfato y el tacto están basados en el contacto directo de nuestros receptores con moléculas y átomos, mientras que el oído requiere que las vibraciones que producen el sonido se transmitan a través de un medio material. Es imposible que una onda sonora sea capaz de surcar el vacío del medio interplanetario, interestelar o intergaláctico para traernos información sobre cuerpos que se encuentran a distancias difíciles de concebir. En cambio, la luz puede atravesar sin problemas ese vacío y traer con ella datos sobre el brillo y el color de las estrellas y las galaxias más lejanas.

agujero negro

Primera imagen real en la historia de un agujero negro. Se trata de un agujero supermasivo ubicado en el centro de la galaxia M87, presentado el 10 de abril de 2019 por el consorcio internacional Telescopio del horizonte de sucesos.

De lo que muchas personas no son conscientes es que la inmensa mayoría de la información que los astrónomos utilizamos para analizar los astros es invisible. Esto se explica en parte por la debilidad de la luz que nos llega del cosmos y que, solo parcialmente, logramos compensar con el uso de telescopios –que recolectan y concentran esa débil señal–, fotografías –que recogen en un tiempo extendido esa luz para su mayor definición– o de la espectroscopia –que ayuda a descomponer la luz por su contenido energético, algo que el ojo es incapaz de hacer por sí mismo más allá de la percepción de los colores–.

Pero es que además la mayoría de la radiación electromagnética emitida por los cuerpos luminosos que hay en el cosmos es imperceptible para el ojo humano, capaz únicamente de captar una estrecha franja de energía llamada luz óptica y que abarca los colores a los que estamos acostumbrados a ver. Afortunadamente, en el último siglo se han desarrollado un gran número de instrumentos para sondear el espacio –muchos de ellos en órbita alrededor de nuestro planeta– y recoger todas esas radiaciones, que van desde las ondas de radio hasta los rayos gamma.

Entonces, ¿cómo nos las apañamos los astrónomos para analizar esas imágenes si son invisibles? El truco está simplemente en que luego esa información puede traducirse a señales eléctricas que, a su vez, se traducen a un canal que sea perceptible para el científico que las analiza. Normalmente esa traducción se produce usando imágenes que representan esa información en colores y contrastes fácilmente reconocibles. De hecho, casi siempre esas imágenes se modifican para combinar distintos filtros o limpiarlas de otras señales que pueden alterar las medidas que se quieren tomar, o simplemente porque se quiere realzar su belleza, por lo que al final las imágenes no son completamente fieles a la realidad.

Por tanto, debemos siempre distinguir entre lo que los instrumentos precisos miden y la manera en que nosotros nos relacionamos con las medidas que esos instrumentos nos están mostrando: el hecho de ver en una imagen una exposición de una galaxia tomada en rayos X no quiere decir que seamos capaces de ver en rayos X.

En ese caso, ¿qué nos impide hacer esa misma traslación a algún otro canal que podamos percibir? Transformar en sonidos o, dicho de una manera más formal, sonificar los datos astronómicos no solo es posible, sino que en algunas ocasiones puede ser conveniente.

Un ejemplo muy claro lo constituye el poder enseñar conceptos astronómicos a personas con discapacidad visual, que pueden acceder a la información sobre el cosmos a través de los sonidos. En las actividades de divulgación que llevamos a cabo en el proyecto Astroaccesible, que tiene como fin explicar astronomía de una manera inclusiva, hemos enseñado a personas ciegas por vez primera una lluvia de estrellas fugaces, la caída de la noche con la aparición de miles de estrellas o el brillo de una aurora boreal.

De hecho, la sonificación ayuda a entender mejor a las personas que no tienen ningún problema de visión algunos procesos que tienen una variación temporal, como la caída de gas en un agujero negro (escucha el vídeo que aparece a continuación), la evolución de una estrella o la expansión del universo.

Todo esto hace de las sonificaciones un recurso muy inclusivo y rico en matices, ya que podemos usar las distintas características del sonido para transmitir diversos conceptos. Además, en el caso de los sonidos es más fácil darse cuenta de que la elección de los parámetros usados para codificar una señal eléctrica –básicamente, volumen, tono y timbre– es arbitraria y no hay reglas fijas en su utilización; al contrario de lo que ocurre en las imágenes, donde a veces se toman por ciertas muchas características arbitrarias que no están totalmente justificadas en la realidad. Esto hace que las sonificaciones redunden en un mejor juicio crítico con respecto a las medidas y representaciones visuales.

Por otro lado, la utilidad de los sonidos para el análisis de datos astronómicos no se limita solo a su uso con fines educativos o divulgativos. Este recurso está ayudando a algunos astrónomos ciegos de todo el mundo a analizar datos de manera directa. No solo eso, sino que la transformación en sonidos de ciertas medidas ayuda a otros astrónomos a detectar mejor ciertas variaciones dinámicas, así que es un recurso que empieza a extenderse entre los astrónomos que estudian astrosismología o participan en la búsqueda de planetas extrasolares a partir de los tránsitos u ocultaciones (escucha el vídeo que aparece a continuación).

Sin duda, en los próximos años veremos una mayor proliferación de este recurso y pronto nos acostumbraremos a ver las animaciones e imágenes que nos tratan de explicar cómo funciona el universo acompañadas de su correspondiente sonificación, que nos ayudará a entenderlo mejor.

Para saber más:

Proyecto Astroaccesible: http://astroaccesible.iaa.es

Proyecto Cosmonic de sonificación: http://rgb.iaa.es/cosmonic

 

* Enrique Pérez Montero es investigador del CSIC en el Instituto de Astrofísica de Andalucía (IAA).

¿Cuánto pesa un fantasma? Los aprietos de la ciencia para averiguar la masa del neutrino

Por Pablo Fernández de Salas*

Todo lo que podemos ver en el planeta Tierra, en nuestra galaxia o incluso más allá de sus límites se ha formado a partir de bloques pequeños. Como piezas de LEGO muy avanzadas, se combinan hasta dar forma a los objetos que existen en el mundo. Estos bloques son las partículas elementales, es decir, partículas indivisibles, las pequeñas piezas que ya no podemos separar más. Entre las partículas elementales más conocidas están los fotones (los constituyentes de la luz) y los electrones (los que permiten que haya corriente eléctrica). Los protones y neutrones, sin embargo, son en realidad partículas compuestas, formadas por la unión de tres partículas elementales llamadas quarks.

Todas las partículas elementales conocidas son diferentes. Algunas tienen carga eléctrica, otras no tienen masa, pero entre ellas hay una que ha fascinado especialmente a los físicos, incluso después de que se supiera su existencia. Se trata del neutrino. En realidad, neutrino no hay solo uno, sino tres tipos distintos que se diferencian según su forma de interactuar con las demás partículas. Pero esta interacción es tan débil que los neutrinos pueden atravesar fácilmente materiales muy densos, ¡incluso el planeta Tierra! Por este motivo, al neutrino a veces se lo conoce como la partícula fantasma.

Experimento KATRIN

Espectrómetro del experimento KATRIN, cuyo objetivo es descubrir la masa del neutrino, pasando por Eggenstein-Leopoldshafen, Alemania, en 2006 de camino al Instituto Tecnológico de Karlsruhe. / Karlsruhe Institute of Technology.

Los neutrinos son unas partículas elementales muy especiales, ya que no se comportan como las demás. En concreto, como vemos, su capacidad de interacción es inusualmente baja, pero lo que más sorprende a los físicos es que los neutrinos cambian de tipo según se mueven. Son, por así decirlo, como jugadores de fútbol que pasan continuamente de un equipo a otro, cambiando su chaqueta con un patrón oscilatorio, de ida y vuelta constante. Precisamente, el descubrimiento de esta propiedad, conocida como oscilación de los neutrinos, motivó la concesión del Premio Nobel de Física al físico japonés Takaaki Kajita y al físico canadiense Arthur B. McDonald en 2015.

La oscilación de los neutrinos es importante porque nos asegura que estas partículas elementales tienen masa. Podría no haber sido así. De hecho, el modelo estándar de física de partículas, la teoría que describe el comportamiento de todas las partículas elementales conocidas, predice que los neutrinos son partículas sin masa, al igual que los fotones. Pero, si este fuera el caso, ¡los neutrinos no cambiarían de tipo cuando se propagan! Este es otro motivo por el que la oscilación de los neutrinos es tan importante: nos indica que hay física por descubrir más allá del modelo estándar.

Modelo estándar

Conjunto de partículas elementales conocidas y que constituyen el denominado modelo estándar de la física de partículas.

Entonces, ahora que sabemos que los neutrinos tienen masa es cuando nos podemos hacer la pregunta: ¿cuánto pesa un neutrino? (o lo que es casi lo mismo: ¿cuánto pesa un fantasma?). La dificultad de esta tarea es obvia: no podemos atrapar un neutrino, que se mueve a velocidades muy, muy cercanas a la de la luz, y ponerlo en una balanza. Además, debido a la poca capacidad de interacción que tienen estas partículas, tampoco podemos aplicar las técnicas que fueron utilizadas para conocer el peso de los electrones, cuya manera de curvarse en un campo magnético depende del valor de su masa.

No puedes poner un neutrino en una balanza

A día de hoy, los físicos han ideado varias formas independientes de pesar los neutrinos, de las cuales destacan dos. La primera consiste en estudiar el efecto de la masa de estas partículas en el universo. Pero, ¿cómo puede una partícula tan pequeña afectar a todo el universo? La clave está en la exorbitante cantidad de neutrinos que surca el espacio desde los primeros instantes tras el Big Bang. Aproximadamente, el volumen de un vaso de agua contiene unos cien mil neutrinos cósmicos. ¡Imagina cuántos vasos de agua son necesarios para llenar no solo el planeta Tierra, sino todo el universo! La presencia de tal cantidad de neutrinos a lo largo de la historia del cosmos cambia, entre otras cosas, la manera en que las galaxias se distribuyen en el espacio. En especial, cuanto más ligeros son los neutrinos, más dispersa es la distribución de las galaxias, y eso es algo que podemos observar.

Distribución de galaxias locales generada con los datos del Sloan Digital Sky Survey (SDSS). Cada punto representa una galaxia. / SDSS

El segundo método consiste en estimar la masa de los neutrinos en el laboratorio. Como ya hemos mencionado, no podemos colocar un neutrino en una balanza, así, sin más. En lugar de ello, para pesar un neutrino en un laboratorio los científicos explotamos uno de los principios más básicos de la física: la conservación de la energía.

Uno de los procesos en los que se producen los neutrinos es en un tipo de desintegración radiactiva de los núcleos atómicos. Por ejemplo, cuando un neutrón que forma parte del núcleo se transforma en un protón. Como resultado de esta desintegración, el núcleo atómico produce un electrón (la conocida radiación beta) y un neutrino. De hecho, fue estudiando la energía de los electrones de la radiación beta como se supo en primer lugar que tenía que existir el neutrino, conclusión a la que llegó el físico Wolfgang Pauli en el año 1930.

Hoy en día, varios experimentos siguen estudiando la energía de dichos electrones, esta vez en busca del valor de la masa de los neutrinos. Cuando un átomo se desintegra emitiendo radiación beta, produce tanto un electrón como un neutrino, de modo que toda la energía que es radiada se distribuye entre estas dos partículas.

Si los neutrinos no tuvieran masa, podría ocurrir de vez en cuando que el electrón emitido adquiriera toda la energía liberada en el proceso. Sin embargo, como sabemos gracias a la famosa expresión E=mc² de Albert Einstein, crear cierta cantidad de masa cuesta una determinada cantidad de energía. Y los neutrinos tienen masa, algo que hemos aprendido al descubrir que oscilan al desplazarse. Por lo tanto, el electrón emitido en la radiación beta nunca podrá absorber toda la energía liberada en la desintegración atómica, ya que una parte es necesaria para crear la masa del neutrino, aunque este se produzca en reposo.

Uno de los experimentos más importantes que busca descubrir la masa del neutrino, basándose en la conservación de la energía en la radiación beta, es el experimento alemán KATRIN. Desafortunadamente, la masa del neutrino es tan pequeña que incluso la avanzada tecnología actual no nos ha permitido discernir todavía el peso de estas partículas. Sin embargo, los físicos podemos poner un límite superior al valor de su masa.

Recientemente, el equipo de investigadores que pertenecen al experimento KATRIN ha publicado sus primeros resultados, que nos dicen que el valor de la masa de los neutrinos tiene que ser inferior a dos millonésimas partes de la masa de un electrón. ¡Haría falta cerca de un cuatrillón (¡un uno seguido de veinticuatro ceros!) de neutrinos para alcanzar el peso de una minúscula mota de polvo! Por otro lado, el estudio de las propiedades cosmológicas de nuestro universo nos indica que los neutrinos podrían ser incluso diez veces más ligeros que el límite obtenido por KATRIN.

Con una masa tan pequeña y una capacidad de interacción casi nula, no es de extrañar que el neutrino sea conocido como la partícula fantasma.

 

* Pablo Fernández de Salas es investigador de la Universidad de Estocolmo. Hizo el doctorado en el Instituto de Física Corpuscular (IFIC), centro mixto del CSIC y la Universidad de Valencia.

¿Qué es la nanomedicina?

Por Fernando Herranz (CSIC)*

La nanomedicina consiste nada más (y nada menos) que en la aplicación de la nanotecnología para el diagnóstico y tratamiento de distintas enfermedades. Se trata de una rama de la medicina cuyo uso se está extendiendo a prácticamente todos los ámbitos de la salud, como la lucha contra el cáncer, las patologías cardiovasculares y las enfermedades raras; el desarrollo de nuevos antibióticos; o, como veremos, la mayoría de los test de embarazo que se realizan en la actualidad.

Spaghetti celulares

Células de tejido conectivo sobre material biomédico. / Álvaro A. González y Salvador D. Aznar (FOTCIENCIA12)

Pero, empecemos por el principio: ¿qué es la nanotecnología? Esta se puede definir como la producción, manipulación y estudio de la materia con, al menos, un tamaño en el rango de los 100 nanómetros (nm). Para hacernos una idea, el diámetro medio de un cabello humano es de unos 70.000 nanómetros. Estamos hablando por tanto de lo muy muy pequeño: la escala más pequeña antes de entrar en el mundo de las moléculas y los átomos.

¿Qué tiene de especial esa escala? ¿Por qué no hablamos simplemente de “micromedicina”? La clave está en que cuando confinamos la materia en la escala nanométrica los objetos se comportan de forma muy diferente a cómo lo hacen a escalas de tamaño mayores, debido a que en el nanomundo las propiedades fisicoquímicas de los materiales varían según su tamaño. Lo que podemos hacer con una partícula de dos nanómetros de un material es totalmente distinto a lo que podemos hacer con una partícula de 10 nanómetros del mismo material.

Estamos habituados a pensar que los compuestos químicos, como los principios activos de los medicamentos, muestran propiedades distintas cuando cambian su composición. Para explicarlo con un ejemplo muy simple: en el mundo macroscópico, si los compuestos químicos fueran fruta y quisiéramos obtener distintos sabores, lo haríamos utilizando distintas frutas: naranja para el sabor naranja, manzana para el sabor manzana, etc. De igual manera, el paracetamol sirve para el dolor, pero el antibiótico para la infección bacteriana. Sin embargo, en la escala nanométrica, el sabor no solo depende de la composición de un compuesto, sino también de su tamaño: una naranja de tres nanómetros de radio sabría completamente diferente a una naranja de ocho nanómetros de radio.

 

Nanopartículas de oro en los test de embarazo

Fijémonos por ejemplo en las nanopartículas de oro, uno de los materiales más empleados en nanomedicina. Cuando hablamos de nanomedicina, una de las herramientas más empleadas son precisamente las nanopartículas; esferas con un tamaño nanométrico.

A diferencia del oro que estamos acostumbrados a ver en el día a día, las nanopartículas de oro presentan una gama amplia de colores muy vivos que varían del rojo al morado según su tamaño. En esta variedad de colores radica la clave de una de sus aplicaciones: su uso como sensores. Un sensor se puede definir, de forma muy resumida, como un compuesto que da una señal y que, en presencia de aquello que queremos detectar, cambia dicha señal.

En el caso de las nanopartículas de oro, lo importante es que cuando se unen al compuesto que se trata de detectar, su superficie se modifica, cambian de tamaño y, por tanto, de color. Ese cambio puede ser observado a simple vista, lo que permite la identificación del compuesto en cuestión.

Nanopartículas de oro de tamaños diferentes dispersas en agua.

Nanopartículas de oro de tamaños diferentes dispersas en agua.

Hay multitud de usos médicos de las nanotpartículas de oro basados en su capacidad de cambiar de color, pero quizás el test de embarazo es el más conocido. En ese caso, la típica banda que aparece si el resultado es positivo, se debe al cambio de tamaño de las nanopartículas de oro que se produce solo si se unen a la hormona gonadotropina coriónica humana, cuya presencia determina si hay un embarazo.

Como en toda nueva tecnología, el tiempo dirá cuáles de los nuevos desarrollos se convierten en nuevas terapias al alcance de todos y cuáles se quedarán por el camino. Al menos, por el momento, podemos olvidarnos de las típicas imágenes de ciencia ficción donde pequeños robots circulan por la sangre haciendo distintas labores. Lo que está claro es que la nanomedicina ha venido para quedarse y que su uso abre un campo inmenso de posibles y revolucionarias aplicaciones destinadas a mejorar el diagnóstico y tratamiento de algunas de las enfermedades más difíciles de diagnosticar y tratar en la actualidad.

 

* Fernando Herranz dirige el Grupo de Nanomedicina del Instituto de Química Médica del CSIC y colaborador habitual del blog DCIENCIA.

Cremas solares: ¿una amenaza para el Mediterráneo?

Por Antonio Tovar (CSIC)*

¿Sabías que España es, sólo por detrás de Francia, el segundo destino mundial en cuanto a visitantes extranjeros? Cada año batimos nuestro récord, con 82,6 millones de visitantes en 2018, casi el doble de la población española. La mayoría buscan un turismo de sol y playa: cerca de la mitad se concentran en las zonas costeras, muy particularmente en la costa mediterránea durante los meses de verano. Si contamos los turistas que reciben otros países del área (por ejemplo, Italia, Francia, Turquía, Grecia, Croacia o Marruecos) veremos que en 2016 se alcanzaron en el Mediterráneo 329,2 millones de visitas, cifra equivalente a la población del tercer país más poblado del mundo, Estados Unidos. Esta afluencia afecta positivamente a la economía de estos países –la actividad turística generó a la Unión Europea 1,1 billones de euros durante 2016–, pero supone también un impacto en el medio ambiente, especialmente en el medio marino, que requiere de una urgente atención.

Crema solar

Entre los múltiples impactos que tiene el turismo sobre los mares, la contaminación por el uso de las cremas solares está recibiendo especial atención de la comunidad científica, ya que nos encontramos ante un problema de alcance global. Las pruebas que sustentan esta afirmación son:

  • La creciente preocupación en las últimas décadas sobre los riesgos asociados con la exposición de la piel a la radiación ultravioleta (UV) se traduce en un incremento en el uso de protectores solares. Estos productos acaban en el mar, bien durante el baño o indirectamente a través de las plantas de aguas residuales.
  • El aumento del turismo de sol y playa lleva aparejado un incremento del consumo de cosméticos. De hecho, el valor de los protectores solares en el mercado alcanzó en 2018 los 7.350 millones de euros y se pronostica que llegará a los 10.430 millones de euros en 2025.
  • Se trata de cosméticos en cuya formulación se incluyen multitud de ingredientes químicos, no todos específicamente indicados en sus etiquetas.
  • Estudios científicos recientes han demostrado la toxicidad de las cremas solares en su conjunto o de alguno de sus ingredientes (como el dióxido de titanio, el óxido de zinc, o la oxibenzona) sobre organismos del ecosistema marino (microalgas, mejillones, erizos, crustáceos, peces, corales, etc.).
  • Se han encontrado ingredientes químicos usados en la formulación de las cremas solares en multitud de animales, como peces, delfines o huevos de aves, y en lugares muy remotos del planeta, como la Antártida.

Todo apunta, por tanto, a que nos encontramos con un problema real, de alcance global y con efectos de magnitud aún desconocida. Ante tales ‘pistas’, algunos gobiernos ya han adoptado medidas sin precedentes para tratar de proteger sus ecosistemas. Así, el estado de Hawái (Estados Unidos) aprobó en 2018 una ley para prohibir la venta y distribución de protectores solares que contengan entre sus ingredientes oxibenzona y sus derivados, que resultan tóxicos para los corales. En el mismo año, y por el mismo motivo, el archipiélago de Palaos (Micronesia) aprobó una ley para prohibir por completo el uso de cremas solares, convirtiéndose en el primer país del mundo en adoptar dicha medida. Sin embargo, existen otras zonas del planeta, como el Mediterráneo, donde el problema puede estar especialmente magnificado, y donde no se ha adoptado ninguna medida encaminada a evaluar o minimizar el impacto de las cremas solares en sus ecosistemas marinos.

Punto caliente de biodiversidad

A pesar de que este impacto no ha sido aún evaluado, el Mediterráneo presenta una serie de características físicas, químicas, biológicas y socioeconómicas que hace que sus ecosistemas sean, desde el punto de vista de la contaminación, unos de los más amenazados del mundo.

Este mar es una cuenca semi-cerrada donde la pérdida de agua por evaporación supera la entrada por precipitaciones y descargas de los ríos. Esto genera un déficit hídrico que se compensa parcialmente con un intercambio limitado de agua con el océano Atlántico a través del Estrecho de Gibraltar (de tan solo 12,8 km de ancho y unos 300 metros de profundidad), y que es la única conexión con el océano abierto. Todo ello hace que la renovación del agua del Mediterráneo sea mucho más lenta que la de cualquier otra zona oceánica, y por tanto el efecto de cualquier contaminante, como podrían ser las cremas solares, permanezca en sus aguas durante más tiempo.

Posidonia

Posidonia oceanica. / Alberto Romeo (CC BY-SA 2.5).

Con más de 17.000 especies marinas, el Mediterráneo es uno de los puntos calientes de biodiversidad del planeta, con especies endémicas de gran valor ecológico y muy sensibles a la contaminación, como las praderas de Posidonia oceanica. A pesar de su riqueza biológica, es un mar oligotrófico, es decir, su producción primaria es muy baja como resultado de la escasa concentración de determinados nutrientes disueltos en sus aguas, principalmente el fósforo. Esta característica confiere a sus aguas un aspecto azulado y cristalino.

Además tiene una media de 250 días de sol al año, el clima es suave y húmedo durante el invierno, y cálido y seco durante el verano. Todo esto, junto con un rico patrimonio cultural y una situación sociopolítica favorable, crea en las regiones costeras mediterráneas un escenario idílico que atrae a millones de turistas cada año.

Nos encontramos, por tanto, ante una región que recibe de manera masiva turistas atraídos en buena parte por las características medioambientales y ecológicas del medio. Esto genera una gran riqueza económica, pero a la vez perjudica y amenaza los recursos ambientales. Es una responsabilidad de los gobiernos buscar alternativas que garanticen un turismo sostenible que priorice la conservación de los ecosistemas y evitar que el crecimiento turístico del que presumimos se convierta en víctima de su propio éxito. La búsqueda de dichas alternativas requiere ineludiblemente de la cooperación entre la comunidad científica, empresas cosméticas y farmacéuticas, gestores ambientales y políticos.

 

* Antonio Tovar es investigador en el Instituto de Ciencias Marinas de Andalucía, del CSIC.

Arte y ciencia se alían contra la contaminación urbana

Por Fernando del Blanco Rodríguez (CSIC)*

Zabol, Onitsha, Peshawar, Gwalior… Tal vez a un oído europeo no le diga mucho el nombre de estas ciudades. Sin embargo, cada una de ellas se encuentra representada en uno de los doce relojes que conforman la instalación artística conTIMEminación, que se exhibe el Centro de Investigación y Desarrollo de Barcelona (CID-CSIC). ¿Por qué?

conTIMEminacio

Pues precisamente porque estas ciudades presentan algunos de los índices de polución ambiental más altos del mundo si atendemos a los datos de la Organización Mundial de la Salud (OMS) de 2016 sobre calidad de aire y, en concreto, a los indicadores de presencia de material particulado en suspensión (PM).

Este material particulado al que alude la OMS y que es posible detectar en la atmósfera de nuestras ciudades se suele clasificar en dos grupos según el tamaño de las partículas que lo constituyen: por un lado, las partículas de diámetro aerodinámico igual o inferior a los 10 micrómetros (µm) –un micrómetro equivale a una milésima parte de un milímetro–, denominadas PM10; y, por otro, la fracción respirable más pequeña, las partículas de diámetro aerodinámico inferior o igual a los 2,5 micrómetros, a las que nos referimos como PM2,5.

El tamaño no supone la única diferencia entre ambos grupos. Las PM2,5, consideradas las más potencialmente peligrosas para la salud, se originan sobre todo en fuentes de combustión creadas por los seres humanos, como las emisiones de los motores diésel. Mientras, una parte significativa de las partículas de mayor tamaño suele ser de tipo metálico o mineral, ya sea de origen antrópico (humano) o natural.

La instalación conTIMEminación, creada por el artista Francisco Martínez Gómez, explora los problemas derivados de la presencia de estas partículas en nuestros entornos. Consta de doce relojes en funcionamiento, cada uno de los cuales ha sido inyectado con un producto metafóricamente tóxico que detendrá su mecanismo a medida que la agujas ya no sean capaces de superar la resistencia creciente e incesante de la sustancia extraña que las entorpece.

El proyecto, que cuenta con la colaboración de los investigadores del CSIC Xavier Querol y Sergi Díez, propone una reflexión en torno al volumen de contaminación al que estamos sometidos los habitantes de los núcleos urbanos y esboza el desenlace alegórico al que nos abocaría no comprender la magnitud de este riesgo.

Cada reloj representa una ciudad: Zabol (Irán), Onitsha (Nigeria), Peshawar (Pakistán), Riyadh (Arabia Saudí), Gwalior (India), Guangzhou (China), Moscú (Rusia), Estambul (Turquía), Buenos Aires (Argentina), París (París), Barcelona (España) y Lima (Perú). El artista y los investigadores matizan que la instalación no pretende reflejar los datos científicos de forma precisa, sino ilustrar la dimensión global del problema. Estas ciudades sufren significativos problemas de polución, aunque no todas presentan los indicadores más altos de contaminación.

Tendencias opuestas

“La tendencia de la calidad del aire en el mundo puede llegar a seguir evoluciones temporales opuestas en función del desarrollo económico”, explica Querol. “Mientras en Europa, Australia, EEUU, Japón y otras sociedades desarrolladas, la calidad ha mejorado drásticamente en las últimas décadas, en algunas ciudades de Irán, Pakistán, India y China se evidencia un empeoramiento muy marcado”, aclara este investigador del Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA) del CSIC.

Concentración de material particulado con diámetro aerodinámico igual o menor a 2,5 micrómetros (PM2,5) en cerca de 3.000 áreas urbanas, 2008-2015. / Organización Mundial de la Salud, 2016

Mapa PM 10

Concentración de material particulado con diámetro aerodinámico igual o menor a 10 micrómetros (PM10) en cerca de 3.000 áreas urbanas, 2008-2015. / Organización Mundial de la Salud, 2016

El caso de España está en sintonía con el europeo. Si en 2005 en nuestro país 49 zonas incumplían la normativa para PM, en la actualidad solo lo hace una (Avilés). Esta tendencia ha reducido notablemente las muertes prematuras anuales atribuibles a la mala calidad del aire en la Unión Europea: según la Agencia Europea de Medio Ambiente, se ha pasado de una estimación de un millón de muertes al año en 1990 a otra de 400.000 en 2016.

Querol considera que “los países y ciudades más avanzados en política ambiental han asumido social y políticamente que la calidad del aire no es un tema solamente de ecologismo, sino que lo es de salud pública en primer lugar”. Sin embargo, estos avances no han servido para alcanzar metas como la estrategia europea inicial en materia ambiental. “Prueba de ello es que desde 2010 debíamos cumplir una legislación en dióxido de nitrógeno que se ha infringido ampliamente en toda la Europa urbana; o que aún no se han adoptado como normativos los valores guía para PM de la OMS, a pesar de que la primera directiva de calidad del aire en Europa establecía que esto debía hacerse en 2010”, afirma el investigador.

A su juicio, para reducir la contaminación urbana es necesario adoptar medidas que “afectan al vehículo privado y la distribución de mercancías”. En esta dirección se enfoca el proyecto europeo Airuse Life +, galardonado como el mejor proyecto `Ciudades Verdes´ de 2018 y coordinado por este especialista. La iniciativa propone una reformulación urbanística, logística y del transporte muy profunda como estrategia para conseguir reducir la contaminación del aire en nuestras ciudades.

Mientras esto pasa en Europa, conTIMEminación se pregunta si estas medidas –en caso de que se implementen– llegarán a tiempo, y si lo harán en aquellos entornos –como los de los países en desarrollo– donde sus habitantes sufren un tipo de pobreza aun escasamente contemplada como un fenómeno de desigualdad geoeconómica: la pobreza ambiental. La imposibilidad de respirar aire digno.

Zabol, Onitsha, Peshawar, Gwalior…

* Fernando del Blanco Rodríguez es bibliotecario en el Centro de Investigación y Desarrollo del CSIC.

¿Cómo funciona un espejismo? El misterio de la ‘fata morgana’

Por Mar Gulis (CSIC)*

Hace ya tiempo que las gentes de Reggio Calabria, ciudad costera del sur de Italia, están acostumbradas a ver imágenes surreales, que parecen espectros, cuando miran al horizonte. Sobre el mar, en la línea donde este parece juntarse con el cielo, pueden observarse embarcaciones navegando por encima del agua, como si estuvieran en suspensión.

Lo que ven los lugareños no es una alucinación ni una ilusión óptica, sino un espejismo, una visión real que se produce por la confluencia de varios factores. Hoy tenemos una explicación científica sobre esta anomalía, pero antiguamente marineros y navegantes sentían pánico cuando veían estas imágenes en alta mar, pues las atribuían a maldiciones o hechizos. Estos espejismos distorsionan la apariencia de los objetos situados en el horizonte, que son proyectados como si flotaran.

esquema espejismo

Esquema del proceso de formación de los espejismos. / Camilo Florian Baron

El fenómeno del que hablamos se conoce como ‘fata morgana’, una denominación que procede del latín y significa hada Morgana, en alusión a la hermana del legendario rey Arturo, que según la leyenda era un hada cambiante. El espejismo, frecuente en el estrecho de Mesina, hace que las personas vean cosas donde no las hay debido a la existencia de distintas capas de aire con densidades diferentes. Como resultado, los rayos de luz se refractan, pero quien ve el espejismo no percibe esas diferentes capas, y de ahí el desconcierto.

Para entenderlo, hay que acudir a la óptica. El libro Descubriendo la luz (Editorial CSIC – Los Libros de la Catarata) explica cómo se produce la ‘fata morgana’. “Los espejismos son fenómenos asociados a la propagación de la luz en medios no homogéneos, donde el índice de refracción varía continuamente con la altura y, por tanto, la luz describe trayectorias curvas. Dichas curvas presentan una concavidad en la dirección de aumento del índice de refracción. Es decir, la luz se curva hacia el medio (agua, aire, etc.) con mayor índice de refracción”. En otras palabras, en un espejismo la luz ‘se dobla’ al atravesar las capas de aire a distinta temperatura. Como resultado, “la posición real del objeto está sujeta a la interpretación humana, ya que la formación de la imagen está condicionada por la refracción de la luz”.

Fenómeno de la fata morgana. / Wikimedia commons

Fenómeno de la fata morgana. / Wikimedia commons

Los espejismos pueden clasificarse en inferiores y superiores. La ‘fata morgana’ que alucina a los habitantes y turistas de la costa meridional de Sicilia es un ejemplo de espejismo superior. Como explica el libro Descubriendo la luz, “este se produce cuando el índice de refracción disminuye con la altura, algo que suele darse en zonas frías, donde la capa de aire próxima al suelo es muy fría y es más densa que las capas superiores”. Precisamente lo que sucede en el mar, donde generalmente el agua está a menor temperatura que el aire, produciendo un enfriamiento de las capas de aire más próximas a la superficie del agua. De este modo cambia su densidad y, por tanto, la forma en la que los rayos de luz se refractan. El resultado es el espejismo, bajo la apariencia de barcos que flotan sobre el mar o elementos en el horizonte como islas, acantilados o témpanos de hielo, con siluetas alargadas que les dan una apariencia fantasmal. Estos efectos suelen ser visibles por la mañana, después de una noche fría.

* Este texto está inspirado en los contenidos del libro Descubriendo la luz. Experimentos divertidos de óptica (Editorial CSIC – Los Libros de la Catarata), coordinado por María Viñas, investigadora del Instituto de Óptica del CSIC.

Pinos, ¿nativos o exóticos?

Por Mar Gulis (CSIC)*

Los pinos están tan extendidos por nuestro territorio que resulta prácticamente imposible imaginar un paisaje natural sin su presencia. Pero, ¿alguna vez te has parado a pensar si esos árboles son nativos o exóticos? Es decir, si están ahí de forma natural o han sido introducidos por el ser humano.

A escala regional, la respuesta es clara: los estudios de biogeografía, el registro fósil y el registro de polen en estratos antiguos de las turberas nos dicen que han existido pinos desde hace millones de años. En la península ibérica y las islas baleares hay, según Flora iberica, seis especies nativas: el pino carrasco (Pinus halepensis), el pino negral (P. nigra), el pino resinero (P. pinaster), el pino piñonero (P. pinea), el pino silvestre (P. sylvestris) y el pino negro (P. uncinata). Otras especies, como el pino de Monterrey (P. radiata), han llegado de la mano de los seres humanos. Mientras, en el archipiélago canario el único pino nativo que hay es el pino canario (P. canariensis), que se diferencia de todos los anteriores porque sus hojas en forma de aguja se presentan en grupos de tres y no de dos.

Bosque natural de pino negro (‘Pinus uncinata’) en el pirineo de Andorra. / Jordi Garcia-Pausas.

Sin embargo, no todas las especies nativas pueden vivir en cualquier parte, sino que se distribuyen por el territorio según el clima, el suelo o la frecuencia de incendios. Así, por ejemplo, mientras el pino carrasco y el piñonero suelen vivir a baja altitud y soportan bien el calor y la sequía, el pino negro suele vivir en las montañas y está adaptado al frío. Además, en algunas zonas los pinos forman bosques puros y en otras se mezclan con otros árboles o arbustos. Y hay zonas en las que prácticamente no crecen pinos de forma natural, ya sea por las condiciones ambientales o por la competencia con otras especies más adaptadas a esas situaciones.

Lo que pasa es que los humanos, a lo largo de la historia, hemos ido modificando la distribución natural de cada especie mediante cortas, talas, plantaciones y restauraciones forestales, con el objetivo de aprovechar los numerosos recursos que proporcionan los pinos: madera, resina, piñones, protección del suelo, etc.

Reforestar con pinos no es la única solución

Sin duda, las restauraciones forestales han tenido un gran impacto sobre el territorio. Antiguamente se plantaban árboles (reforestación) para restaurar áreas degradadas sin pensar mucho en su origen, ni teniendo en cuenta si la especie era o no autóctona o si la variedad era local o no. Cuando más adelante se plantaron pinos autóctonos, algunas veces se hizo en zonas típicas de la especie, y otras en zonas donde la especie estaba ausente o en baja densidad.

Estas restauraciones, que sirvieron para frenar la erosión y controlar los recursos hídricos, son aún visibles en nuestros paisajes. Muchas de ellas se asemejan bastante a ecosistemas naturales, pero otras se parecen más a cultivos para la producción de madera, muy propensos a propagar fuegos intensos si están mal gestionados.

Actualmente, existe un gran acuerdo entre ecólogos y gestores del medio ambiente en que ni los pinos, ni los bosques en general, constituyen la única alternativa en paisajes mediterráneos: los matorrales son también autoctónos, naturales, diversos y antiguos, y contribuyen en gran medida a la elevada biodiversidad de los ecosistemas mediterráneos, además de favorecer la protección de sus suelos.

Un claro ejemplo de esto son los pinares sobre dunas de Doñana, donde hay plantaciones documentadas desde el siglo XVI, aunque masivas sólo en el XX. La finalidad de estas plantaciones era bienintencionada: fijar las dunas, crear puestos de trabajo y generar un ambiente forestal agradable. En aquella época, se valoraba más cualquier estructura arbolada densa, aunque fuese pobre en especies, que un matorral, por muy diverso en especies que fuera. Además, plantar pinos era mucho más fácil y agradecido (mayor supervivencia) que plantar otras especies arbóreas.

Pinar en dunas

Pino piñonero (‘Pinus pinea’) en las dunas de Doñana. / Pedro Jordano

Con los años, esos pinares han pasado a formar parte de nuestro paisaje cultural. La vegetación original de estas dunas litorales era probablemente un mosaico donde alternaban arbustos y árboles pequeños típicos de los ecosistemas mediterráneos, plantas de los brezales y sabinares ibéricos, y herbáceas propias de dunas. En ellas la densidad de pinos era baja, pero el sobrepastoreo y la explotación de leña fueron degradando esos ecosistemas y generando erosión y movimientos no deseables del terreno, lo que motivó las plantaciones de pino.

Tras el incendio que afectó a los pinares de la zona de Doñana en julio de 2017, se ha constatado una regeneración muy satisfactoria de muchas de las especies del mosaico de matorral y brezal que dominaron antes de las plantaciones, mientras que el pino prácticamente no se ha regenerado. Si se facilita y potencia la regeneración de estos matorrales, que son muy diversos en especies, los incendios (inevitables) que ocurran en el futuro serán menos intensos (por la menor biomasa) y el ecosistema se regenerará más rápidamente.

En un contexto de calentamiento global, la reducción de la densidad de pinos en dunas litorales y otros ecosistemas está justificada siempre que se favorezca una vegetación alternativa con importantes valores de conservación. En cualquier caso, ante cualquier intención de reducción drástica de un pinar antiguo, se debería evaluar que no haya especies que dependan de él.

 

* Este texto es una adaptación de la entrada del mismo título realizada por miembros de la Asociación Española de Ecología Terrestre (AEET), y publicada en el blog de Juli G. Pausas y en el del Centro de Investigación Ecológica y Aplicaciones Forestales (CREAF).