BLOGS
Ciencia para llevar Ciencia para llevar

CURIOSIDADES CIENTÍFICAS PARA COMPARTIR

Entradas etiquetadas como ‘divulgación’

CRISPR: cómo las bacterias nos enseñan a editar los genes

Por Lluís Montoliu (CSIC)*

Frecuentemente pensamos en las bacterias como fuente de problemas. Efectivamente, son las causantes de enfermedades infecciosas tan graves como la tuberculosis, el cólera o la peste, pero también son las que nos proporcionan yogures y otros derivados lácteos. Además, las bacterias llevan miles de millones de años sobre la Tierra, muchísimos más que nosotros. Durante todo este tiempo han desarrollado un sistema de defensa muy eficaz que les permite zafarse de la infección por virus.

El sistema inmune de las bacterias fue descubierto por Francisco Juan Martínez Mojica, microbiólogo de la Universidad de Alicante, que lleva más de 25 años investigando sobre este tema. ¿Qué hace que este mecanismo de defensa sea tan especial? Pues, entre otras cosas, que se transmite genéticamente, de unas bacterias a sus hijas o descendientes. Por ejemplo, cuando nosotros nos vacunamos contra el virus del sarampión adquirimos unas defensas que evitan que desarrollemos esta enfermedad. Ahora bien, nuestros hijos no heredan esta defensa. Si queremos que ellos estén protegidos contra el sarampión, también tenemos que vacunarlos (algo sobre lo que nadie debería albergar hoy en día ninguna duda, por cierto). Las bacterias son más inteligentes que nosotros. Una vez aprenden a defenderse de un virus son capaces de transmitir esta defensa a sus hijas, y éstas a sus nietas, etc., perpetuando esta defensa. Este descubrimiento básico de Mojica, realizado en 2003, sirvió para que otros investigadores se dieran cuenta de que el mecanismo por el cual las bacterias se defienden de los virus también puede usarse, sorprendentemente, para editar los genes con una precisión nunca antes vista.

En 2012 varios científicos, entre ellos las investigadoras Jennifer Doudna y Emmanuelle Charpentier, describieron este sistema de edición basándose en los trabajos de Mojica. El sistema está formado por una proteína, denominada Cas, que actúa como una tijera molecular capaz de cortar el ADN de forma muy precisa dirigida por una guía, una pequeña molécula de ARN que le dice a la tijera Cas dónde tiene que cortar. Este sistema se denomina CRISPR (pronúnciese “crisper”), acrónimo en inglés que describe las características de estas secuencias genéticas que dirigen el corte de la tijera molecular. Éste fue el nombre, hoy en boca de investigadores de todo el mundo, acuñado también por Mojica en 2001.

El mecanismo por el cual las bacterias se defienden de los virus también puede usarse para editar los genes. / geneticliteracyproject.org

¿Qué podemos hacer con las herramientas CRISPR? Igual que cuando nos equivocamos al escribir un texto en el ordenador y podemos volver atrás y corregir, eliminar o sustituir la palabra o letras erróneas, con las herramientas CRISPR podemos editar los genes. Podemos añadir letras si faltan, eliminar letras si sobran, sustituirlas o corregirlas por otras. En definitiva, podemos modificar los genes a voluntad. Esto ha provocado una verdadera revolución en biología, biomedicina y biotecnología.

Ahora podemos desarrollar modelos celulares y animales más adecuados para el estudio de las enfermedades. Por ejemplo, tras diagnosticar a un paciente afectado por alguna de las miles de enfermedades raras de base genética que existen, y detectar el gen y la mutación causantes de esa enfermedad, podemos replicar exactamente esa misma mutación en ratones. A estos ratones que reproducen la misma alteración genética de un paciente los llamamos ‘ratones avatar’ para ilustrar la conexión existente entre ellos. Gracias a ellos podremos validar la seguridad y eficacia de nuevos tratamientos de una forma más efectiva, ya que son portadores del mismo error genético. Si somos capaces de introducir una mutación en ratones, también deberíamos poder usar las mismas herramientas CRISPR para revertir errores genéticos que afectan a los millones de personas con alguna enfermedad rara. No estamos todavía ahí, pero sí en el buen camino.

Ratones avatar modificados genéticamente con CRISPR. / Davide Seruggia

Los resultados preliminares de tratamientos genéticos basados en CRISPR probados en animales son muy esperanzadores, pero todavía no están listos para su aplicación efectiva en pacientes. ¿Por qué no podemos usar las herramientas CRISPR en el hospital? En primer lugar, la precisión que tienen las herramientas de edición genética CRISPR no es absoluta. En determinadas ocasiones pueden cortar en secuencias genéticas muy parecidas, causando alteraciones no deseadas en genes similares que no deberíamos modificar, y cuyos cambios pueden causar problemas mayores de los que queremos solucionar. Esta es una limitación que puede reducirse al mínimo si se diseñan cada vez mejores guías y se seleccionan tijeras moleculares con mayor precisión.

Pero lo más preocupante es la segunda de las limitaciones de las herramientas CRISPR. Toda la precisión que tienen para cortar el genoma en el gen y la secuencia correctas, no la tienen los mecanismos de reparación que entran en juego inmediatamente tras el corte, restaurando la continuidad del cromosoma. Estos sistemas de reparación, que tenemos en nuestras células, progresan de forma un tanto azarosa, añadiendo y quitando letras hasta conseguir enganchar los dos fragmentos del cromosoma cortado. Si bien es cierto que podemos inducir la reparación con secuencias genéticas molde que sirvan como patrón para la reparación, también sucede que no siempre las células usarán el molde y, por ello, al reparar el corte, generarán una nueva modificación genética no deseada. Tenemos que seguir investigando estos mecanismos de reparación, para poder controlarlos y hacerlos más precisos y seguros. Solamente entonces podremos recomendar, siempre con prudencia, el uso de las herramientas CRISPR en el tratamiento de enfermedades de base genética en personas.

Tras proponerlas como sistemas de edición genética en 2012, las herramientas CRISPR fueron usadas por vez primera en 2013. Hoy, apenas cuatro años más tarde, ya estamos pensando en maneras de optimizar su uso en terapias para enfermedades, para hacerlas más seguras y efectivas. Cuando estudiaba los microorganismos que habitan las salinas de Santa Pola, Mojica no podía imaginar el camino futuro que iban a tomar sus investigaciones de biología básica. Tratando de entender como esas bacterias se defendían de los virus que las acechaban, llegó hasta un hallazgo revolucionario. Ahí está la belleza y el poder de la ciencia. Un descubrimiento microbiológico, en apariencia menor, que pasa a ser la mayor revolución tecnológica en biología. Así pues, debemos de estar agradecidos a las bacterias, por mostrarnos nuevas formas de luchar contra las enfermedades. Y a Francisco Mojica, por haber descubierto este proceso de la naturaleza y habérnoslo contado, por haber descrito el sistema CRISPR que tantas aplicaciones biomédicas está produciendo.

Vídeo en el que la proteína Cas9 corta una molécula de ADN en tiempo real por microscopía de fuerza atómica. Imágenes de la Universidad de Tokio publicadas en este artículo.

 

* Lluís Montoliu es investigador del Centro Nacional de Biotecnología (CNB) del CSIC.

 

Los biocombustibles pueden ser más nocivos que el petróleo

Por Joaquín Pérez Pariente (CSIC)*

Bajo las etiquetas ‘combustible ecológico’ y ‘diésel verde’ circulan por las ciudades del mundo occidental vehículos que utilizan como combustible sustancias obtenidas a partir de productos agrícolas. Son los denominados biocombustibles, en los que el prefijo ‘bio’ pretende resaltar sus bondades medioambientales. Sin embargo, la realidad es que los biocombustibles pueden llegar a ser incluso más nocivos que el petróleo por su emisión de gases de efecto invernadero, responsables del cambio climático que está experimentando nuestro planeta. La causa de ese daño medioambiental estriba en la forma en la que se obtienen.

Si somos rigurosos, recibe el nombre de biocombustible todo combustible de origen biológico. El más común es la madera, pero también son biocombustibles las grasas animales y los aceites vegetales que han servido para iluminar durante siglos nuestros hogares. Pero los que nos interesan son los que se utilizan hoy en día en vehículos de transporte, que son de dos tipos. Uno es el alcohol denominado etanol, el mismo que se encuentra en el vino o la cerveza, que se obtiene mediante fermentación de azúcares como los de la caña de azúcar, o los de los cereales, entre los cuales destaca el maíz. El segundo es el biodiesel, que se produce mediante una reacción química entre el alcohol denominado metanol y aceites vegetales. Aunque se pueden utilizar diferentes aceites como materia prima para fabricar el biodiesel, en la práctica en todo el mundo se elabora a partir de aceites de soja y palma y, en mucha menor medida, de colza, sobre todo en Europa.

Los defensores del empleo de biocombustibles líquidos como sustitutos de la gasolina y gasoil derivados del petróleo argumentan sus efectos beneficiosos de la siguiente manera. Las plantas de las que se extraen las materias primas necesarias para su elaboración absorben dióxido de carbono, el principal gas de efecto invernadero, durante su crecimiento. Cuando los biocombustibles se queman en un vehículo, se emite dióxido de carbono a la atmósfera. Pero eso no supone un problema, porque las plantas volverán a asimilarlo cuando crezcan de nuevo. Tendríamos así un ciclo cerrado de captura-emisión de ese gas, que por lo tanto no produciría ningún aumento de su concentración en la atmósfera.

 

Producción mundial de bioetanol y biodiesel en miles de barriles por día. En el caso del etanol, 100.000 barriles por día equivalen a 3 millones de toneladas de petróleo anuales, mientras que para el biodiesel equivalen a 4,9 millones. La cantidad total de biocombustibles producidos en 2016 equivalió a 86 millones de toneladas de petróleo.

Sin embargo, esa explicación tan simple oculta un conejo en la chistera, que salta fuera de ella en cuanto nos asomamos a su interior. Esas plantas productoras de biocombustibles no crecen precisamente en el desierto, sino que se cultivan en terrenos fértiles que previamente estaban cubiertos por selvas y sabanas. Esos grandes bosques tropicales y subtropicales se destruyen simplemente quemándolos, para sustituirlos por los cultivos destinados a la producción masiva de biocombustibles, como la soja y la palma. Esos gigantescos incendios, visibles desde los satélites que orbitan el planeta y en ocasiones objeto por ello de atención televisiva, liberan a la atmósfera enormes cantidades de dióxido de carbono: entre 200 y 300 toneladas por hectárea, entre 20.000 y 30.000 toneladas por cada kilómetro cuadrado. Así se deforestan cada año decenas de miles de kilómetros cuadrados, hasta tal punto que provocan unas emisiones de gases de efecto invernadero casi iguales a las provenientes de los vehículos que utilizan combustibles derivados del petróleo. Aunque los biocombustibles contribuyen todavía relativamente poco a esa deforestación global, su amenaza es tan grave que el Parlamento Europeo aprobó en el mes de abril de este año una resolución para eliminar el aceite de palma como fuente de biocombustibles para el año 2020.

Por si fuera poco, los agrocombustibles, como en realidad deberían denominarse los biocombustibles, compiten con la producción de alimentos porque, al igual que estos, necesitan terrenos fértiles donde cultivarse. Y se trata de una competencia desleal, porque si se quisiera sustituir con ellos solo una parte de los que provienen del petróleo, habría que producirlos en tal cantidad que toda la superficie de nuestro planeta no bastaría para ello. Ahí radica el verdadero problema, en que los terrenos cultivables ya escasean y no podemos permitirnos el lujo de malgastarlos en un mundo que no es capaz de alimentar decentemente a toda su población.

No hay ninguna duda de que es necesario buscar alternativas al uso del petróleo, pero los biocombustibles no son la respuesta.

 

Joaquín Pérez Pariente es investigador del Instituto de Catálisis y Petroleoquímica del CSIC y es autor del libro Biocombustibles. Sus implicaciones energéticas, ambientales y sociales, editado por Fondo de Cultura Económica. La obra se presentará el día 19 en la librería Juan Rulfo (Madrid) a las 19:00 horas.

Las legumbres, aliadas en la lucha contra el cambio climático

Por Mar Gulis

Las legumbres son un alimento muy popular en nuestro país por su alto valor nutricional (pese a que su consumo está decayendo en los últimos años). Quizás menos conocido es que con ellas se producen harinas como sustituto del cacao, como el algarrobo, o que sus raíces se utilizan como especias (por ejemplo, el regaliz). Muchas legumbres se emplean además como alimento para animales (alfalfa, veza y trébol) o para la producción de principios activos medicinales, aceites, tinturas y fibras, entre otros productos. Como consecuencia, las leguminosas se encuentran entre los cultivos más importantes a nivel mundial, solo detrás de los cereales. Pero además las legumbres pueden ser aliadas en la lucha contra el cambio climático. Tal y como cuentan los autores del libro de divulgación Las legumbres (CSIC-Catarata), la clave está en que ayudan a fijar el nitrógeno orgánico, uno de los nutrientes, después del agua, más necesarios para el crecimiento de las plantas.

Cartel de la FAO realizado con motivo del Año Internacional de las Legumbres 2016.

En agricultura es muy habitual el uso de abonos nitrogenados. Sin embargo, además de su elevado coste, estos abonos tienen consecuencias medioambientales, ya que una cantidad significativa de ellos son emitidos al aire como óxido de nitrógeno, uno de los gases causantes del efecto invernadero y que, mezclado con el vapor de agua, produce la lluvia ácida. Su sustitución no es baladí si recordamos que, según el Panel Intergubernamental de Expertos sobre el Cambio Climático de la ONU, la agricultura es responsable de cerca del 14% de las emisiones globales de gases de efecto invernadero, un volumen similar al originado por el transporte.

El nitrógeno atmosférico es la forma más abundante de nitrógeno. Los únicos organismos capaces de transformarlo en nitrógeno orgánico son aquellos que poseen la enzima nitrogenasa. Estos organismos pueden realizar la transformación en solitario o en asociación con otros organismos, principalmente con plantas. En este sentido, la asociación simbiótica más importante se da entre unas bacterias del suelo denominadas rizobios y plantas de la familia leguminosae, de las que forman parte las legumbres. Su unión aporta cerca del 80% del total del nitrógeno atmosférico fijado de forma biológica.

La interacción leguminosa-bacteria y el establecimiento de la simbiosis son procesos de gran complejidad en los que intervienen numerosos factores estructurales, bioquímicos y genéticos. El establecimiento de la simbiosis comienza con el reconocimiento entre un rizobio determinado y su planta hospedadora, que consiste en un intercambio de señales químicas que activan recíprocamente programas genéticos específicos. El resultado exitoso de esta interacción es la formación de un órgano nuevo en la planta, el nódulo, donde se lleva a cabo la fijación biológica del nitrógeno atmosférico. La Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO) calcula que las leguminosas pueden llegar a fijar entre 72 y 350 kilos de nitrógeno por hectárea y año.

Este proceso, además de ayudar al crecimiento de la planta, mejora la calidad nutricional de los suelos. Ese suelo queda ‘abonado’ y sigue siendo útil para cultivos posteriores, lo que permitirá a su vez reducir el uso de fertilizantes nitrogenados.

Además de enriquecer los suelos, incluir legumbres en los cultivos reduce el riesgo de erosión y aumenta su potencial de absorción de carbono. Igualmente, las leguminosas soportan mejor los climas extremos y son más resistentes que otros cultivos. Por su amplia diversidad genética permiten obtener variedades mejoradas capaces de adaptarse mejor a condiciones climáticas adversas. ¿Se les puede pedir más?

Mucho más sobre estas plantas en el libro Las legumbres  (CSIC – Catarata), coordinado por Alfonso Clemente y Antonio M. de Ron, de la Estación Experimental del Zaidín del CSIC y la Misión Biológica de Galicia del CSIC, respectivamente.

¿Qué son las misteriosas luces que aparecen a veces con los terremotos?

Por Arantza Ugalde (CSIC)*

El suelo de México no ha parado de temblar en los últimos días con fatales consecuencias. Durante el pasado 8 de septiembre muchas personas presenciaron la aparición de extraños fenómenos luminosos en el cielo nocturno durante el terremoto de magnitud 8.1 que afectó México. Fotografías y vídeos de estas luces, tiñendo las nubes de diferentes colores al paso de las ondas sísmicas, circularon por las redes sociales y medios de comunicación. No era la primera vez que los habitantes de Ciudad de México observaban este raro fenómeno. Con ocasión de los terremotos de Petatlán en 1979 (7.2) y de Michoacán en 1985 (8.0) también se observaron fuertes variaciones en la luminosidad del cielo.

Estos fenómenos componen lo que se denomina luminescencia sísmica. Las apariciones de estas ‘luces de terremoto’ o EQL (Earth Quake Lights en inglés) cerca del suelo durante un seísmo aparecen descritas desde la Antigüedad. Sus características son muy variadas: desde brillos difusos, destellos y resplandores, hasta objetos luminosos esféricos o lineales. Se observan principalmente durante el terremoto, aunque también en los instantes previos y posteriores a él. Su localización también varía, pudiendo producirse desde en la zona del epicentro hasta a cientos de kilómetros de ella, en la tierra o en el mar. El rango de magnitudes en el que se observa este fenómeno es también amplio, aunque normalmente ocurre en los terremotos de magnitud superior a 5. A pesar de esto, las EQL no acompañan a todos los terremotos y ocurren en muy raras ocasiones.

Imágenes de CCTV con EQL. / Municipalidad de Miraflores (Perú)

El irlandés Robert Mallet, considerado el padre de la sismología, publicó a mediados del siglo XIX un catálogo de observaciones sísmicas luminosas que cubrían testimonios desde el año 1606 a.C. hasta el 1842 d.C.  A principios del siglo XX, el sacerdote y naturalista italiano Ignazio Galli compiló un catálogo de seísmos relacionados con diferentes tipos de luminiscencia, ocurridos entre el año 89 a.C. y 1910. Las descripciones de los fenómenos luminosos incluían en muchas ocasiones elementos fantásticos y religiosos asociados a interpretaciones y tradiciones culturales de la época y el lugar.

Debido a la falta de datos comprobables, no ha sido hasta tiempos recientes cuando el fenómeno de la luminiscencia sísmica ha despertado el interés científico. Hace poco más de 50 años,  T. Kuribayashi, un fotógrafo amateur, captaba por primera vez con su cámara las imágenes de unos fenómenos luminosos inusuales que aparecieron en la zona sísmica de los terremotos ocurridos en Matsushiro (Japón) de 1965 a 1967. Desde entonces, ha continuado la recopilación de testimonios gráficos de estos fenómenos coincidentes con terremotos en diversas partes del mundo como Taskent, Uzbekistán (1966); Santa Rosa, California (1969); Haicheng, China (1975); Vrancea, Rumanía (1977); Saguenay, Canadá (1988); Izmit, Turquía (1999); Pisco, Perú (2007); o L’Aquila, Italia (2009).

Imágenes de T. Koribayashi de las EQL. / Arantza Ugalde

Las observaciones son numerosas, pero examinadas individualmente algunas pueden resultar cuestionables. Así, algunos fenómenos luminosos con esas mismas características también han podido ocurrir en la misma zona sin coincidir con ningún terremoto.

La luminiscencia puede explicarse en muchos de los casos como auroras polares, otros fenómenos ionosféricos (dínamo ionosférica electrochorro ecuatorial), nubes noctiluentes (compuestas de cristales de agua helada), relámpagos, etc. En el caso del reciente terremoto de Pijijiapan (México), las luces observadas en el cielo nocturno pudieron deberse a cortocircuitos y pequeñas explosiones en los transformadores de la red eléctrica. Para otros casos, sin embargo, no se ha encontrado una explicación satisfactoria.

Actualmente no existe ninguna teoría que aclare completamente el fenómeno, que continúa siendo un tema controvertido a nivel científico. No obstante, se han publicado posibles explicaciones sobre la relación entre los terremotos y las EQL en revistas científicas cuyas teorías incluyen, entre otras, oscilaciones violentas del aire que provocan descargas eléctricas entre las capas bajas de la atmósfera y el suelo en condiciones geológicas favorables; el efecto piezoeléctrico (generación de electricidad por presión) en las rocas, la liberación de gas radón a la atmósfera, o las reacciones quimioluminiscentes debido a la emisión de gases inflamables de forma espontánea.

Quedan todavía muchas preguntas sin respuesta: ¿por qué la luminiscencia se manifiesta de formas tan diferentes?, ¿tiene relación con el proceso físico que generan los terremotos? Y, si es así, ¿cuál es? Será la ciencia la que deberá arrojar luz sobre este, aún, oscuro fenómeno.

 

* Arantza Ugalde es doctora en Ciencias Físicas e investigadora en el Instituto de Ciencias de la Tierra ‘Jaume Almera’ de Barcelona, del CSIC, y una de las autoras del libro Terremotos. Cuando la Tierra tiembla de la colección Divulgación.

 

‘Nanobásculas’ para pesar virus y bacterias en la detección de enfermedades

Por Eduardo Gil Santos, Alberto Martín Pérez y Marina López Yubero  (CSIC)*

Cada virus y bacteria tiene una masa diferente. El simple hecho de poder pesarlos nos permitiría identificarlos y distinguirlos y, con ello, detectar de forma altamente precoz las enfermedades que provocan. Los recientes avances en nanotecnología han permitido la creación de unos nuevos dispositivos, los sensores nanomecánicos, que actúan como básculas a escala nanométrica, permitiendo detectar estos objetos con una precisión mucho mayor que los métodos convencionales de diagnóstico de estas enfermedades.

Cuerdas de ukelele

Los nanosensores vibran como las cuerdas de una guitarra para detectar virus y bacterias.

La detección de estas partículas mediante sensores nanomecánicos se obtiene estudiando los cambios en su vibración. Estos sensores vibran igual que las cuerdas de una guitarra: cuando pulsamos una cuerda de una guitarra, esta vibrará y las ondas se transmitirán por el aire, lo que percibiremos como sonido. Además, si unimos un objeto a la cuerda, esta pesará más y, en consecuencia, su movimiento será más lento, lo que dará lugar a un sonido más grave. Esta diferencia en el tono del sonido se puede relacionar directamente con la masa del objeto unido. De la misma manera, los sensores nanomecánicos vibrarán más lentamente cuando se une a ellos una partícula (virus o bacteria). Esto se comprueba fácilmente adhiriendo un pequeño imán a un diapasón. Sin embargo, en estos sensores las vibraciones no son perceptibles por el oído y se necesitan métodos ópticos muy avanzados (similares a los utilizados en la detección de ondas gravitacionales, pero a escala nanométrica) para detectar estos cambios en la vibración del sensor.

Bacteria en nanosensor

Imagen de microscopía electrónica de barrido de una bacteria E. coli sobre un sensor nanomecánico con forma de micropalanca. El peso de esta bacteria es de 300 femtogramos (0,0000000000003 gramos, diez mil millones de veces menos que una hormiga).

Estos dispositivos también permiten medir otra propiedad muy interesante de las partículas depositadas: la rigidez. Conocer la rigidez de las partículas biológicas (virus, bacterias o células) puede ser de gran utilidad, ya que, por una parte, la rigidez junto con la masa permite una identificación todavía más precisa de los distintos virus o bacterias. Asimismo, podría permitir diferenciar entre células cancerígenas y sanas, ya que se ha descubierto que aunque ambas tienen una masa similar (lo que no permite distinguirlas a través de su masa), muestran una rigidez distinta: las células cancerígenas son menos rígidas que las células sanas. Por último, medir la rigidez de los virus hace posible distinguir su estado de maduración y conocer su capacidad infecciosa.

El grupo de Bionanomecánica del Instituto de Micro y Nanotecnología del CSIC desarrolla este tipo de dispositivos desde hace más de diez años. En la actualidad, este grupo lidera una serie de proyectos financiados por la Unión Europea (ViruScan, LiquidMass, Nombis) que contribuirán a la implantación definitiva de estas tecnologías a nivel clínico. En tan solo cinco años, estos sensores se probarán en países empobrecidos con gran riesgo de epidemias para la detección de los virus que producen fiebres hemorrágicas.

Al mismo tiempo, el equipo trabaja en el desarrollo de nuevas tecnologías para la comprensión y detección precoz de muchas otras enfermedades (distintos tipos de cáncer, Alzhéimer, etc.). En un futuro no muy lejano, este tipo de sensores estarán implantados directamente en el interior de nuestro cuerpo, preparados para detectar cualquier infección en el mismo momento de contraerla, lo que permitirá actuar contra ella de manera mucho más eficaz.

 

* Eduardo Gil Santos, Alberto Martín Pérez y Marina López Yubero son personal investigador del CSIC en el grupo de Bionanomecánica del Instituto de Micro y Nanotecnología.

Desertificación: cuando ya no hay marcha atrás

Por J.M. Valderrama (CSIC)*

Más de dos tercios del territorio español corren riesgo de desertificación. Tras esta afirmación, muchos de los lectores y lectoras pensarán que nuestro país se va a convertir en un secarral de tierras yermas y agrietadas, pero lo cierto es que esa imagen no es del todo correcta, ya que tendemos a confundir desiertos con desertificación. Mientras que un desierto es un tipo de ecosistema restringido a un territorio en el que se dan unas condiciones climáticas determinadas, la desertificación es un tipo de degradación ambiental propia de los territorios áridos, y es consecuencia de las variaciones climáticas, que se acentúan con el cambio climático, y las actividades humanas inadecuadas. Así lo especifica el artículo 1 de la Convención de Naciones Unidas de Lucha contra la Desertificación, firmada el 17 de junio de 1994, de ahí que el próximo domingo se celebre el Día Mundial de Lucha contra la Desertificación.

Este fenómeno se achaca a tres grandes motivos: el sobrepastoreo, la deforestación y las actividades agrarias inadecuadas, como el sobrecultivo y la salinización de suelos o aguas subterráneas. El abandono de las tierras de cultivo y el turismo son considerados como causas de desertificación dentro del ámbito Mediterráneo, según apuntan diversos autores. Pero, ¿cuáles son las causas de las causas? O dicho de manera más específica: ¿por qué se sobrepastorea un determinado lugar? ¿Qué lleva a intensificar el uso de las tierras de cultivo? En definitiva, ¿qué hace que las actividades humanas sean “inadecuadas”, como dice la definición oficial de desertificación?

Imagen de Tabernas, Almería. / Colin C Wheeler (CC 3.0).

El ser humano ha desarrollado estrategias para adaptarse a las zonas secas, en las que llueve poco y de manera impredecible. El truco para mantenerse en estos territorios es estar atento a las señales de escasez y adaptar las tasas de extracción de recursos (el pasto consumido, el agua extraída de los acuíferos, los árboles talados) a las de regeneración. El estereotipo que mejor refleja esta situación son los nómadas que siguen las erráticas lluvias y el pasto que brota tras su paso. Cuando la hierba se acaba, deshacen su campamento y buscan nuevos pastizales. La zona pastoreada volverá a ser productiva tras un periodo de regeneración.

En un sistema autorregulado (punto 1 en la figura) como el descrito no pueden darse episodios de desertificación. Pero más que vivir, se sobrevive. Por eso, cuando ocurre alguna perturbación que le es favorable (punto 2), el ser humano la aprovecha. Puede ser un periodo de lluvias extraordinario; o una novedad tecnológica que permita establecerse permanentemente en un territorio y vivir de un modo más desahogado e incluso con lujos hasta entonces impensables.

De repente el sistema aparenta ser más productivo (punto 3). Una subida del precio del trigo en los mercados internacionales puede convertir en un negocio redondo los rácanos campos de secano. En consecuencia, aumentan las tasas de extracción y se genera un sistema económico de mayor envergadura. Este nuevo equilibrio es muy precario, inestable. Tanto, que una vez que aparezcan las primeras señales de escasez -bien porque vuelvan las sequías o porque el ecosistema muestre los primeros síntomas de agotamiento- será necesario retraer el sistema económico a sus dimensiones originales (recorrido del punto 5 al 1). Sin embargo, puede suceder que la nueva situación haya desmantelado las antiguas vías de organización, y ya no sea posible la marcha atrás.

Estructura de los procesos de desertificación. / Los desiertos y la desertificación (CSIC-La Catarata).

En caso de mantener la sobreexplotación —porque deliberadamente se ignoran los síntomas de deterioro o porque no se perciben correctamente—, el sistema se dirige hacia unos umbrales que, a escala humana, son irreversibles como es el caso de pérdida de suelo fértil o salinización de los acuíferos. Este proceso de esquilmación en el que se sobrepasan puntos de no retorno se denomina, en el ámbito climático señalado, desertificación.

Ante la disyuntiva (punto 5) que sugiere este esquema, ¿por qué no detenemos la desertificación eligiendo la opción de regresar del punto 5 al 1 antes de que sea demasiado tarde? Hay tres razones, no necesariamente independientes, para entender -que no justificar- el camino destructivo del NO.

  1. El carácter oportunista resulta en una visión cortoplacista de la realidad. Esto implica maximizar el rendimiento económico en el menor tiempo posible, lo que no deja de ser un caso más de la Tragedia de los Comunes. Esta teoría afirma que cuando varios individuos explotan un recurso compartido limitado y actúan de manera independiente y motivados solo por el interés personal, terminan por arruinar ese recurso común, aunque a ninguno de ellos, ya sea como individuos o en conjunto, les convenga que tal destrucción suceda.
  2. La segunda explicación tiene que ver con la racionalidad limitada del ser humano, principio enunciado por el premio Nobel Herbert Simon y con la distorsión de las señales de escasez. Por un lado, nuestra mente tiende a simplificar las interacciones y elementos que componen un sistema y por otro el componente emocional interfiere en la interpretación de la información. Además, muchas veces ésta es escasa y confusa y no sabemos, a tiempo real, cual es el estado de un sistema. Puede que un acuífero se esté agotando y que al mismo tiempo los precios que se paguen por los productos que se riegan con ese recurso sean muy elevados e inciten a seguir bombeando agua.
  3. El coste de oportunidad. En muchas ocasiones la rentabilidad de las actividades alternativas a la que se realiza es tan baja que es preferible mantenerse en un uso poco productivo e insostenible. Por tanto, para aliviar la presión sobre unos recursos maltratados, han de implementarse políticas que favorezcan la versatilidad socioeconómica del lugar. El desarrollo de la industria agroalimentaria para amortiguar los períodos de crisis que afectan a los centros de producción agrícola es un buen ejemplo de esta estrategia.

Esta visión del problema incide en un hecho simple pero rotundo: la desertificación no consiste en el avance de los desiertos. El enemigo está en casa y para adelantarse al desastre, a que los paisajes empiecen a parecerse a un desierto, es necesario integrar las distintas políticas que afectan a los territorios (agricultura, gestión forestal, agua) y tratar de acoplar nuestras ambiciones a las reglas de la naturaleza. Pensemos con más amplitud de miras.

* J.M. Valderrama es investigador de la Estación Experimental de Zonas Áridas (EEZA) del CSIC y autor del libro Los desiertos y la desertificación de la colección ¿Qué sabemos de?, disponible en la Editorial CSIC y La Catarata. También escribe el blog Dando bandazos.

Neumáticos que se reparan solos: un sueño hecho realidad

Por Marianella Hernández (CSIC)*

Uno de los problemas a los que se enfrenta la sociedad en la actualidad es la cantidad de desechos plásticos. Entre ellos, se encuentra el gran número de cauchos utilizados en la fabricación de neumáticos para aeronaves, vehículos de carga y de pasajeros. Tras una larga vida, los neumáticos se convierten en inservibles y necesitan ser desechados.

Tradicionalmente estos materiales se venían depositando en vertederos al aire libre; con los riesgos medioambientales que esto conlleva debido a que no se descomponen fácilmente. Sin embargo, a partir de julio de 2006 y gracias a la entrada en vigor del Real Decreto 1619/2005 sobre gestión de neumáticos fuera de uso, ha quedado prohibido arrojarlos en los vertederos como medida para paliar el problema medioambiental.

cementerio de neumaticos

Cementerio de neumáticos.

Por ende, se han comenzado a explorar diferentes alternativas para la disposición de desechos de neumáticos, siendo el reciclado una de ellas. No obstante, de cerca de tres millones de toneladas que se lanzan cada año a la basura en Europa, solo en España se reciclan unas 200.000 toneladas. Nos preguntamos entonces ¿por qué es tan difícil reciclar neumáticos? Esta dificultad viene asociada a su complicada estructura y composición. Un neumático está formado por varios tipos de cauchos que han sido vulcanizados con azufre, además de filamentos de acero y fibras de nylon, poliéster o celulosa. Todos estos componentes deben ser separados y clasificados durante el proceso de reciclado. Adicionalmente, los neumáticos son materiales insolubles y estables térmicamente que no pueden ser reprocesados fácilmente, como sí lo son las botellas de agua o de bebidas gaseosas por ejemplo, que comúnmente consumimos y desechamos en los contenedores amarillos de reciclaje.

Es por ello que además de gestionar el reciclado de neumáticos, los fabricantes están investigando nuevos materiales que generen un impacto menor en el medioambiente. Así pues, los materiales auto-reparadores se presentan como otra alternativa para solventar el problema de la disposición de desechos de neumáticos. ¿En qué consisten estos materiales? Para entenderlo de manera sencilla, veamos ejemplos presentes en la naturaleza capaces de auto-repararse. Cuando una persona sufre algún daño en su piel, ésta se regenera mediante el proceso de cicatrización. A los lagartos después de cierto tiempo les crece alguna parte de su cuerpo que haya sido previamente cortada. Mientras que los tallos y ramas de los árboles se regeneran de manera espontánea después de ser podados.

Ciclo de reparación de un caucho natural.

Ciclo de reparación de un caucho natural.

Inspirados en estos mecanismos propios de la naturaleza, los neumáticos auto-reparadores buscan imitarlos, de manera que una vez que se pinchen o se rompan, las fisuras o daños creados se reparen una y otra vez, extendiendo el ciclo de vida regular de los mismos y contribuyendo a disminuir la cantidad de desechos generados. Un estudio reciente de la firma n-tech Research ha identificado el potencial comercial de los materiales auto-reparadores que están emergiendo de laboratorios industriales. La firma ha cuantificado la relevancia económica de estos materiales y ha proyectado un crecimiento de 2.500 millones de euros para el año 2020.

Actualmente, en el Instituto de Ciencia y Tecnología de Polímeros del CSIC estamos desarrollando materiales con inherente capacidad auto-reparadora, y estudiando la integración de materiales reciclados con nuevos sistemas de auto-reparación. La tecnología está basada en los enlaces de azufre presentes en el caucho que han sido previamente dañados y que son capaces de reformarse al aplicar temperatura por un tiempo determinado. Los resultados logrados son muy prometedores, alcanzando actualmente una capacidad reparadora de más del 70%.

En conclusión, creemos que el impacto global de estos desarrollos será extraordinario. El concepto de auto-reparación mejorará significativamente la seguridad y eficiencia energética de los materiales desarrollados por el ser humano. Además, la prolongada vida útil de los productos hechos con estos materiales inteligentes ayudará a solventar el problema de los desechos y disminuirá los costos de mantenimiento. Y quizás, en muy poco tiempo el sueño de tener neumáticos que se reparen solos sea una realidad.

*Marianella Hernández es investigadora del Instituto de Ciencia y Tecnología de Polímeros del CSIC.

Diez años de Top 10 de especies asombrosas

Por Mar Gulis (CSIC)

Una saltamontes rosa brillante y una araña con forma de sombrero de mago con increíbles dotes para el camuflaje; plantas que ‘sangran’ y orquídeas que recuerdan a la representación del diablo son algunas de las Top 10 descubiertas en 2016. Como cada año, el comité liderado por el doctor Quentin D. Wheeler, del International Institute of Species Exploration , en el que participa el investigador del CSIC en el Museo Nacional de Ciencias Naturales Antonio García Valdecasas, elabora esta lista que nos recuerda la importancia de conocer y clasificar la biodiversidad.

Este año se cumplen diez años desde que comenzó a elaborarse este listado. El objetivo de la iniciativa es recordar que la crisis de la biodiversidad actual hace que las especies se extingan antes de que dé tiempo a descubrirlas.

La lista se da a conocer hoy para celebrar el aniversario de Carlos Linneo, botánico sueco del siglo XVIII considerado padre de la taxonomía moderna. Las cifras varían, pero, según la comunidad científica, quedan alrededor de 12 millones de especies por descubrir, cinco veces más de las que ya se conocen.

Las especies Top 10 de 2016

1. Eriovixia gryffindori, una araña con sombrero de mago

Esta araña diminuta, de menos de dos milímetros de largo, debe su nombre al sombrero del mago Godric Gryffindor, uno de los personajes de la saga de Harry Potter. Hasta  ahora solo se han descubierto hembras de esta especie cuyas forma y colores le sirven para camuflarse en la hojarasca en la que se esconde durante el día. Se cree que la especie es nocturna y endémica de los bosques húmedos de la zona centro-occidental de la India donde construye redes verticales en forma de esfera.

Eriovixia gryffindori. / Sumuka J. N.

2. Eulophophyllum kirki, la saltamontes rosa de camuflaje

Algunas especies se encuentran cuando menos te lo esperas. Esta experta del camuflaje fue descubierta mientras los investigadores buscaban tarántulas y serpientes en Borneo. Las hembras de estos saltamontes aprovechan su color y su capacidad para mimetizarse (tanto el cuerpo como las patas parecen hojas) para esconderse entre el follaje. Miden unos cuatro centímetros y frente al rosa brillante que exhiben, los machos de la especie son completamente verdes.

Debido a que la zona en la que viven está altamente protegida, los investigadores no han podido colectar ningún ejemplar y solo las fotografías prueban su existencia. A veces el avance de la ciencia choca con las medidas que se imponen para proteger áreas naturales.

Eulophophyllum kirki. / Peter Kirk

3. Pheidole drogon, una hormiga con grandes espinas para masticar

Es una de las dos especies de hormigas espinosas descubiertas en Papúa Nueva Guinea. Hasta ahora se pensaba que las espinas dorsales características de este grupo de especies eran un mecanismo de defensa, pero su estudio pormenorizado, que incluye microtomografías (imágenes de rayos x en tres dimensiones), sugiere que algunas de estas espinas sirven de anclaje para los músculos encargados de sostener unas cabezas y mandíbulas, especialmente grandes en el caso de los soldados. Estas hormigas usan las espinas para triturar semillas que, de otra manera, no podrían utilizar como alimento.

Pheidole drogon. / Masako Ogasawara

4. Gracilimus radix, la rata omnívora

Esta rata parece ser una buena muestra de inversión evolutiva ya que es la única de entre sus parientes, estrictamente carnívoros, que mantiene una dieta variada. Es gris-marrón, pequeña y esbelta con orejas redondeadas y una cola con poco pelo. Está estrechamente emparentada con las ratas de agua de la isla indonesia de Célebes e incluye raíces en su alimentación, de ahí su nombre. Incluyendo esta, ya se han descubierto siete especies de ratas en esta isla desde 2012.

Gracilimus radix. / Kevin Rowe

5. Scolopendra cataracta, un ciempiés submarinista en peligro

Este nuevo ciempiés es negro, tiene 20 pares de patas y llega a medir 20 centímetros de largo. Es la primera especie de ciempiés jamás observada capaz de sumergirse en el agua y correr por el fondo de la misma manera que en tierra firme. La situación de su población es muy preocupante debido a que su hábitat está desapareciendo rápidamente por el aumento de la actividad turística en el área.

Scolopendra cataracta. / Siriwut Edgecombe

6. Potamotrygon rex, una raya de agua dulce brasileña

Potamotygon Rex. / Marcelo R. de Carvalho

Esta gran raya de agua dulce es endémica del río Tocantins, en Brasil. El espécimen tipo mide 1.110 milímetros de longitud y los ejemplares grandes pueden pesar 20 kilos. Es otra de las 350 especies de este río que no es encuentran en ningún otro lugar de la Tierra. Es de color pardo negruzco y con motivos sorprendentes amarillos y anaranjados.

7. Solanum ossicruentum, un arbusto con frutos ‘sangrientos’

Cuando maduran, los frutos de este arbusto son duros, como si fueran huesos de frutas y al cortarlos, la planta parece sangrar. Esas características han servido para bautizarlo como ossicruentum, hueso sangriento. Cuando se corta, su carne se oxida y pasa del color verde blanquecino al rojo sangre. Los botánicos conocen la especie desde hace 50 años, pero erróneamente se había considerado que era una variación de la especie S. Dioicum.

Solanum ossicruentum. / Christopher T. Martine

8. Illacme tobini, el milpiés extensible

Los milpiés Siphonorhinid  tienen el record de número de patas con 750, pero esa cifra se podría ver superada por Illacme tobini. Este milpiés recién descubierto tiene 414, pero continúa añadiendo segmentos de cuerpo con las patas correspondientes a lo largo de su vida. Alargado, similar a un hilo de unos dos centímetros de longitud y sin ojos, este milpiés, descubierto en el Parque Nacional Sequoia (EEUU),  pertenece a un antiguo linaje de hace 200 millones de años. Vive en pequeñas grietas bajo la superficie del suelo y segrega un producto químico desconocido para defenderse. Cuatro de sus patas están modificadas para transferir espermatozoides a las hembras que segregan seda.

Illacme tobini. / Pail Marek

9. Telipogon diabolicus, la orquídea del diablo

Dicen que el diablo está en los detalles. En este caso, está en esta orquídea. La nueva especie Telipogon diabolicus tiene una estructura reproductiva derivada de la fusión de la flor masculina y femenina con un aspecto que recuerda a las representaciones de la cabeza del diablo. Considerada en peligro crítico, la especie es conocida solo en el sur de Colombia, donde crece en un bosque de montaña actualmente muy amenazado por la reconstrucción de una carretera. Solo en Colombia existen alrededor de 3.600 especies de orquídea, cientos de ellas a la espera de ser descritas.

Telipogon diabolicus. / M. Kolanowska

10. Xenoturbella churro, un gusano primitivo y simétrico

Descubierto a más de 1.700 metros de profundidad en el Golfo de California,  Xenoturbella churro, un gusano marino de diez centímetros de longitud, es un representante de un grupo de gusanos primitivos de una de las ramas más tempranas en el árbol genealógico de animales bilateralmente simétricos. Al igual que algunos de sus parientes, se cree que se alimenta de moluscos. Es de color naranja rosáceo y tiene cuatro surcos longitudinales profundos que recuerdan a los churros, de ahí su nombre. Estas criaturas primitivas tienen boca, pero no ano, y nos recuerdan la increíble biodiversidad que habita en los océanos.

Xenoturbella churro. / Greg Rouse

De los indígenas olmecas a las tropas aliadas en la II GM: historia del chocolate

Por María Ángeles Martín Arribas (CSIC)*

Muy pocos productos han sufrido tantas transformaciones a lo largo de su historia como el chocolate. Y no solo ha experimentado cambios en su producción; el chocolate ha llegado a cambiar su nombre, estatus, temperatura, sabor, forma, color y hasta sus ingredientes con el paso de los siglos. Para explicar un poco más en profundidad esta compleja transformación remontémonos a su origen.

Fruto y semillas de cacao. /Jing

El chocolate, tal y como lo conocemos hoy, es un producto derivado del cacao cuyos primeros cultivadores fueron los indígenas olmecas. Esta civilización acabó siendo absorbida por el imperio Maya, que denominó este preciado grano como kakaw, por el color rojo del fruto y las ideas de fuerza y fuego que los indígenas asociaban a él. Posteriormente, la palabra se transformó en lengua náhuatl en cacáhuatl o ‘agua de cacao’, una bebida limitada al consumo de nobles y comerciantes debido a su alto precio y su origen divino, ya que según la creencia, el dios Quetzalcóatl robó a sus hermanos el ‘árbol del cacao’ o queachahuatl. El paso del cacao al chocolate, o más bien del cacáhuatl al xocoatl (agua amarga), se produjo al combinar ambas bebidas, el ‘agua de cacao’ y el ‘agua amarga’ a base de maíz molido, extendiendo así, tras su abaratamiento,  el uso del xocoatl a todas las clases sociales. Tras la colonización española, el xocoatl derivó en ‘chocolate’, que fue el nombre que se extendió al resto de países y continentes.

Hernán Cortés fue el primer español en degustar la bebida de cacao en un banquete en honor de Moctezuma II, y tras quedar asombrado por su sabor y sus posibilidades en el continente europeo, decidió enviar un cargamento de cacao a España en 1528. Fue en el monasterio de Piedra de Nuévalos, en Zaragoza, donde se cree que se preparó el primer chocolate de Europa gracias a fray Jerónimo de Aguilar, monje que viajaba en la expedición de Cortés, quien envió cacao al abad del monasterio, Don Antonio de Álvaro, con instrucciones para su elaboración. Fueron precisamente los monjes españoles los que adoptaron la bebida al gusto de la aristocracia europea y convirtieron el frío, amargo y fuerte sabor del cacao en una bebida caliente aderezada con miel, vainilla, canela y azúcar.

Ración del ejército de EE.UU. /KingaNBM

Con el chocolate expandido ya por Europa, fue en Inglaterra donde la familia Fry construyó la primera fábrica en 1728, usando maquinaria hidráulica para moler el cacao. Ya en el siglo XIX se dio el paso definitivo para producir lo que hoy conocemos como chocolate. En 1828, el maestro chocolatero holandés,Conrad Van Houten inventó una prensa que permitía la separación de la manteca del cacao de la pasta, eliminando así su acidez y amargura y haciendo más fácil su disolución en agua. El segundo paso llegó en 1875, cuando el suizo Daniel Peter utilizó la leche en polvo de Henri Nestlé para mezclarla con cacao y crear el primer chocolate con leche del mundo y dar comienzo así a la fama del chocolate suizo. Posteriormente, en 1880, Rudolphe Lindt desarrolló una máquina de ‘conchar’ el chocolate que permitió un refinado del mismo que mejoraba su gusto, textura y cremosidad.

Ya en el siglo XX, el chocolate se abarató enormemente debido a la caída de precios del cacao y el azúcar, por lo que se hizo asequible para un número aún mayor de personas en todo el mundo. Incluso el ejército de los Estados Unidos llegó a incluirlo en las raciones de combate de la II Guerra Mundial, debido a su alto valor energético, su poco peso y su mínimo tamaño. Y así, tras el conflicto bélico, los soldados que regresaban a casa siguieron consumiéndolo y ayudaron a afianzar el mercado del chocolate.

Diferentes variedades de chocolate. /Max Pixel

En la actualidad, este alimento se ha diversificado en multitud de formatos para atender a todos los gustos y exigencias con variedades de chocolate más saludable (negro y puro), orgánico, vegano, blanco, con frutas, con frutos secos, en polvo, líquido, etc. No obstante, las sequías del África ecuatorial, las plagas de América Central y del Sur y su sustitución por cultivos más rentables pueden derivar en una previsible escasez de cacao hacia el año 2020, debido también al continuo aumento de su demanda y la incapacidad de los países productores de crear las infraestructuras necesarias para su elaboración. Como apunte final, un dato preocupante: del total del mercado del chocolate, estimado en 110.000 millones de dólares anuales, tan solo el 6% del precio final revierte en los países cultivadores.

* Esta información ha sido extraída del  ‘El chocolate’ (CSIC-Catarata) de la investigadora María Ángeles Martín Arribas, del Instituto de Ciencia y Tecnología de Alimentos y Nutrición ICTAN-CSIC .

 

Minería a cielo abierto y la restauración del territorio

Por J.M. Valderrama y Lourdes Luna (CSIC)*

Las canteras a cielo abierto constituyen uno de los impactos más evidentes de la actividad humana en el territorio. Este tipo de minería supone laminar el suelo, desmontar la montaña y arrancar enormes bloques de roca, lo que acaba por recordar a una manzana mordisqueada. La restauración de los daños paisajísticos y estructurales en los que incurre esta actividad es obligatoria. Para ello la legislación actual prevé una fianza sobre la base de un proyecto inicial de explotación que se deposita hasta que los trabajos de restauración devuelvan la zona afectada a un estado lo más parecido posible al de antes de la actividad minera.

Haciendo cuentas, el dueño de la cantera generalmente prefiere perder ese dinero a invertir una suma mayor en la reparación de los destrozos. Las secuelas de la minería no tardan en aparecer. Más allá de la evidencia en el paisaje, el principal problema ocurre cuando, debido a la pérdida de cubierta vegetal, se disparan las tasas de erosión, que conducen a la degradación irreversible de la zona.

Obras de minería en superficie. /Albert Solé, de la EEZA (CSIC).

El trabajo desarrollado en la Estación Experimental de Zonas Áridas (EEZA) por la investigadora Lourdes Luna, bajo la tutela de Albert Solé, tiene como objeto la restauración de canteras de roca calcárea. Se trata de buscar las soluciones más adecuadas, a un coste asumible por las empresas, para devolver el aspecto y la funcionalidad a un paisaje dolorosamente alterado.

En territorios áridos, la escasez de lluvia, su torrencialidad y las altas tasas de evaporación, suponen inconvenientes que condicionan las técnicas de restauración a emplear. Se trata de crear, de manera artificial, algo que se parezca al suelo original, es decir, que tenga nutrientes, agua y cierta estructura, de manera que sirva como capa protectora frente a los agentes erosivos y se genere un ente biológico con vida propia que se mantenga por sí mismo. Un suelo, finalmente, es una especie de ser vivo complejísimo que logra transformar sus residuos en nutrientes, resultando esencial en numerosos procesos de un ecosistema.

En esta tesis doctoral se han ensayado diversas alternativas para buscar la más eficaz a un coste asumible por el empresario. Así, se han probado diversas técnicas de restauración, especies vegetales, enmiendas orgánicas y acolchados, con el fin de seleccionar las más idóneas para los territorios secos.

Labores de restauración del terreno./Albert Solé, de la EEZA (CSIC).

Un resultado muy interesante es la posibilidad de reutilizar lodos y compost de origen local, lo que permite cerrar el ciclo de los nutrientes, convirtiendo la basura orgánica en una fuente de vida. Estas enmiendas orgánicas mejoraron extraordinariamente la porosidad del suelo, incrementando su infiltración y, en consecuencia, reduciendo la escorrentía.

El trabajo de la investigadora Lourdes Luna dibuja un prometedor horizonte dado que, tras años de investigación, de tomar datos en el campo y de bregar con los diversos inconvenientes que rodean a la actividad científica, ha logrado establecer unas recomendaciones prácticas que ayudarán a recuperar zonas muy dañadas.

El trabajo pone también de manifiesto un hecho que no debemos perder de vista. La naturaleza no es fácilmente reemplazable. Es posible que existan soluciones tecnológicas, pero ponerlas en práctica a gran escala tiene un coste enorme. Por tanto, apliquemos el principio de prevención. Curar las heridas sale muy caro, y a veces es imposible.

*J.M. Valderrama es investigador postdoctoral de la Estación Experimental de Zonas Áridas (EEZA) del CSIC y autor del blog ‘Dando bandazos, en el que entremezcla literatura, ciencia y viajes.

**Lourdes Luna es autora de la tesis doctoral ‘Restauración de canteras de roca calcárea en clima semiárido’ e investigadora posdoctoral de la (EEZA) en el CSIC.