Entradas etiquetadas como ‘insectos’

Insectos y otros artrópodos: más de un millón de especies imprescindibles para los ecosistemas

Por Jairo Robla Suárez (CSIC)*

A pesar de recibir el apodo de ‘bichos’, en ocasiones con cierto desprecio, la importancia y la repercusión que tienen los insectos y otros artrópodos para la vida en nuestro planeta son desconocidas para muchas personas. Estos organismos con exoesqueleto externo y apéndices articulados suponen más del 50% de toda la biomasa animal actual de nuestro planeta. Aunque actualmente su diversidad dista mucho de ser bien conocida, suman más de un millón las especies de artrópodos que podemos encontrar campando a sus anchas en absolutamente todos los ecosistemas que atesora nuestro cuerpo celeste. Son capaces de vivir en regiones desérticas que parecen propias de un relato sobre el infierno, en paisajes blancos helados por las temperaturas más frías, en las cortinas de intenso color verde de bosques, selvas o praderas, en cursos de agua y volcanes; pero también habitan en ambientes ruderales (muy alterados por el ser humano) y en nuestras propias casas, pueblan las zonas más altas del planeta y hasta ocupan el gran fondo azul. En todos estos ecosistemas hay artrópodos y en todos ellos realizan una función tremendamente importante y vital, aunque esta nos pase desapercibida.

Insecto de la subfamilia phaneropterinae / Luis F. Rivera Lezama ©RiveraLezama

Insecto ‘hoja’, de la subfamilia Phaneropterinae. / Luis F. Rivera Lezama ©RiveraLezama

Mucho más que polinizadores

La polinización es, sin duda, la misión estrella que se ha atribuido a una gran variedad de insectos voladores. No en vano, más del 90% de las plantas con flor que encontramos en todo el planeta necesitan de un agente animal, concretamente un insecto, para fructificar. Quizá nos acordemos más de ellos cuando compramos esas opulentas y brillantes frutas en nuestro mercado de confianza. Abejas, moscas, escarabajos, mariposas, avispas y un sinfín de pequeños organismos más trabajan día a día por transferir el polen entre las flores para continuar con el milagro de la vida vegetal. Todos ellos nos dan mucho sin pedir nada a cambio.

‘Mosca abejorro’, familia Bombyliidae. Sus larvas son predadoras de los huevos y larvas de otros insectos, tales como orugas, abejas y escarabajos. / Luis F. Rivera Lezama ©RiveraLezama

Pero, más allá de la polinización, podríamos decir que los artrópodos son sustento de todos los hábitats y que son muchas más las funciones que desempeñan. Por encima de las plantas, en las cadenas tróficas, están ellos. Sirven de recurso nutricional para todos aquellos animales que nos llaman más la atención, que nos parecen más bonitos o a los que, desde luego, nunca osaríamos llamar ‘bichos’ con tanto recelo. Si los insectos decidieran hoy ponerse en huelga y viajar a un planeta ignoto más allá de nuestro sistema solar, todas las especies animales, incluyendo los seres humanos, no tardaríamos en extinguirnos. Por lo tanto, es innegable pensar que el mundo actual está dominado por los artrópodos y que estos cargan sobre sus hombros el peso de la vida en nuestro planeta.

Hormiga transportando un pétalo. Género ‘Acromyrmex’. / Luis F. Rivera Lezama ©RiveraLezama

Existen muchos insectos y otros artrópodos que participan en la dispersión de semillas. El hecho de que este bosque que hoy llega hasta aquí mañana llegue un poco más allá puede ser obra de pequeños artrópodos que ayudan a otros dispersores más clásicamente estudiados, como las aves. Conocidos son, por ejemplo, los casos de las hormigas, que, en su incesante colecta de semillas para alimentarse, acaban moviendo estos gérmenes de vida más allá de su planta madre, contribuyendo a que la vegetación se extienda cada vez más.

Detalle de escarabajo joya gema (México), género ‘Chrysina’. / Luis F. Rivera Lezama ©RiveraLezama

También realizan una función esencial por debajo del suelo que pisamos: junto a otros muchos organismos, son los principales aireadores, fertilizadores y preparadores del sustrato. Su actividad genera un suelo con unas condiciones óptimas para el crecimiento de los organismos vegetales. Mientras paseamos por un prado cualquiera en el que aparentemente no vemos nada más que hierbas, bajo nuestros pies se encuentra toda una comunidad subterránea que trabaja día y noche para que todo esté en equilibrio: milpiés, bichos bola, escarabajos, larvas de diferentes organismos y muchos más. Los artrópodos son artífices de este equilibrio gracias a que son los mayores expertos en reciclaje: ayudan en la transformación de los excrementos, cadáveres y restos de otros organismos, devuelven los nutrientes al sistema y los ponen a disposición del resto de organismos.

‘Chrysina quetzalcoatli’ (México). Como en el caso del escarabajo joya gema, sus larvas viven en troncos en descomposición. / Luis F. Rivera Lezama ©RiveraLezama

Además, controlan las poblaciones de otros artrópodos, plantas y de grandes vertebrados al evitar que se establezcan como plagas. Son incontables los artrópodos que viven como parásitos sobre la piel de otros animales o sobre los tejidos de otros vegetales. De esta manera son capaces de extraer de los ecosistemas a aquellos organismos peor adaptados y de evitar que las poblaciones de otros organismos se desmadren. Son como los jinetes del apocalipsis, buscando que todo aquello que les rodea funcione a la perfección.

Araña trampera, altos de Chiapas (México). / Luis F. Rivera Lezama ©RiveraLezama

Grandes benefactores para el equilibrio, amenazados 

Los artrópodos son unos de los organismos más importantes de nuestro mundo y, sin embargo, gran parte de lo que hacemos consigue afectarles. Hemos esquilmado la vegetación natural, tan necesaria para que obtengan refugio y alimento; les hemos bombardeado con pesticidas y otros químicos para alejarlos de nuestras tierras, aun cuando nos proporcionan más beneficios que perjuicios; hemos hecho lo posible por convertir nuestros campos en terrenos baldíos para los artrópodos, en los que encontrarse una mariposa es como buscar una aguja en un pajar; hemos desecado lagunas, urbanizado todas las zonas posibles, contaminado aguas e incluso llevado basura a cuevas y hasta las cimas más altas del Himalaya; hemos provocado la llegada de especies invasoras a prácticamente todos los puntos del planeta. Con todo ello, hoy muchos artrópodos tratan de sobrevivir a duras penas. Parece que les hemos declarado la guerra a estos organismos tan importantes para nuestro planeta y para nuestra propia supervivencia, a pesar de que guardan muchas de las claves que nos permitirían solucionar gran parte de los desafíos actuales. Y, sin embargo, durante todo el tiempo que llevan en la Tierra, estos animales de pequeño tamaño no han hecho más que dar beneficios sin pedir nada a cambio.

Conservar, proteger, cuidar y educar sobre los artrópodos es educar en el equilibrio de los ecosistemas, en el perfecto funcionamiento de las cosas. Y es que, ¿cómo no van a ser importantes más de un millón de especies para la vida en la Tierra y para nuestros ecosistemas?

Insecto ‘palo’, orden Phasmida o Phasmatodea. Entre los fásmidos se encuentran los insectos más pesados y los más grandes. / Luis F. Rivera Lezama ©RiveraLezama

*Jairo Robla Suárez es investigador en la Estación Biológica de Doñana (EBD-CSIC), donde estudia la restauración de comunidades vegetales sometidas a degradación en el entorno del Guadiamar, afectado por el desastre de Aznalcóllar en 1998. Es autor de La astucia de los insectos y otros artrópodos (ed. Guadalmazán).

**Ciencia para llevar agradece especialmente al fotógrafo Luis F. Rivera Lezama por su generosa colaboración con las imágenes que acompañan al texto.

Ciencia de lo cotidiano: el experimento en una cocina que se publicó en ‘Nature’

Por Alberto Martín Pérez (CSIC)*

¿Has visto que hay insectos capaces de caminar sobre el agua? Es un fenómeno cotidiano pero muy sorprendente. Y, aunque parezca magia, no lo es. Si lo fuera, al preguntarnos por qué ocurre, la única respuesta que obtendríamos sería un frustrante “porque sí”. Por suerte, la ciencia nos proporciona respuestas mucho más gratificantes.

‘La gota que colma la moneda’, fotografía seleccionada en FOTCIENCIA13, en la modalidad La ciencia en el aula / Aránzazu Carnero Tallón y Mª de los Ángeles de Andrés Laguillo

Lo que hacen estos insectos es aprovechar un fenómeno conocido como tensión superficial del agua. El agua (y cualquier otro líquido) tiene una propiedad muy curiosa: su superficie se comporta como un sólido elástico. Si recibe fuerza sobre su superficie, se deforma y, cuanta más fuerza recibe, mayor es su deformación. Dicho con otras palabras: la superficie del agua se comporta igual que una cama elástica.

Pero, ¿por qué los insectos pueden obrar el ‘milagro’ de caminar sobre las aguas y los seres humanos nos tenemos que conformar con aprender a nadar? La analogía de la cama elástica nos vuelve a dar la respuesta. Si en una cama elástica depositamos un peso demasiado grande, la lona se romperá y caeremos al suelo. Ocurre lo mismo en el agua, aunque el peso mínimo para romper su superficie es mucho menor que en el caso de la lona. Como los insectos tienen un peso minúsculo, pueden caminar sobre el agua sin romper su superficie mientras que las personas, al tener un peso mayor, rompemos la superficie del agua al rozarla.

Los insectos tienen un peso minúsculo que les permite caminar sobre el agua sin romper su superficie

La tensión superficial del agua en un experimento de Agnes Pockels

Ahora que conoces una posible explicación a este hecho cotidiano, ¿te lo crees o intentarías comprobarlo? Puede que mucha gente no se moleste en hacerlo pensando que para hacer una demostración científica se necesita utilizar máquinas y métodos muy complejos. Sin embargo, esta idea está tan equivocada como extendida. Aunque es cierto que no podemos construir en casa un acelerador de partículas como el LHC del CERN o un súper telescopio como el James Webb, lo cierto es que puede haber ciencia en todo lo que hacemos, hasta en las acciones y objetos más simples del día a día (cocinar, hacer deporte, escuchar música…). Podemos hacer y aprender mucha ciencia a partir de los fenómenos cotidianos; solo tenemos que fijarnos un poco en aquello que nos rodea. De hecho, la científica que en el siglo XIX sentó las bases del estudio de la física y química de las superficies fue Agnes Pockels, que utilizó exclusivamente objetos de su cocina.

Pockels era una científica poco convencional. No pudo estudiar en la universidad y su ocupación no era la que esperarías, ya que no era profesora ni investigadora, sino ama de casa. Pero consiguió superar las barreras para dedicarse a la ciencia e ideó el siguiente experimento. Llenó una cubeta con agua hasta hacerla rebosar y, después, depositó una lámina de metal muy fina sobre la superficie, que quedaba flotando –igual que los insectos que hemos mencionado antes–. Al mirar la cubeta de frente, se apreciaba a simple vista cómo la superficie del agua se deformaba cerca de la lámina.

Este experimento sería suficiente para probar que lo que ocurre con los insectos es cierto, pero Pockels quiso ir más lejos y decidió estudiar cómo cambia la tensión cuando se disuelven distintas sustancias en el agua. Utilizó azúcar, sal o alcanfor que encontró en su cocina-laboratorio, y con una regla midió cuánto se deformaba la superficie del líquido al depositar la lámina. Si la deformación es más grande en el caso de la disolución que en el agua pura, la sustancia disuelta disminuía la tensión superficial del agua y viceversa. Gracias a este sencillo método, Pockels llegó a conclusiones de gran importancia en física y química relacionadas con la estructura de la materia a escala atómica. Las investigaciones de Pockels fueron tan relevantes que acabaron publicándose en la revista Nature y sentaron las bases para investigaciones posteriores.

Este no es un caso aislado. Hay muchísimos fenómenos físicos y químicos que se pueden observar y comprobar fácilmente a través de situaciones y objetos de uso cotidiano. La ciencia no es algo reservado en exclusiva a las universidades y los laboratorios de investigación. Olvidarse de esta faceta cotidiana significa perderse la mejor parte de la ciencia.

*Alberto Martín Pérez es investigador en el grupo de Optomecánica del Instituto de Ciencia de Materiales de Madrid (ICMM) del CSIC. Con el objetivo de romper la equivocada idea de que la ciencia es algo opaco e inaccesible, lleva a cabo el proyecto de divulgación ‘La mejor parte de la ciencia’. Con vídeos breves (Tik Tok, Instagram, Twitter y YouTube) muestra que la ciencia se encuentra en nuestra vida cotidiana a través de preguntas aparentemente simples: ¿te has fijado que cuando caminas, conduces o vas en bicicleta utilizas las tres leyes del movimiento de Newton?, ¿sabías que al practicar fútbol, tenis o baloncesto usas el tiro parabólico? o ¿te has parado a pensar que al cocinar preparas disoluciones y se producen reacciones químicas?

‘Operación polinizador’: el imprescindible trabajo de los insectos para el futuro de la agricultura

Por Alberto Fereres (CSIC) *

Trichodes octopunctatus (Familia Cleridae) / Alberto Fereres

Trichodes octopunctatus (Familia Cleridae) / Alberto Fereres

Con la llegada de la primavera, en plena ‘operación polinización’, esta imagen se repite cada año en campos, parques y jardines. Insecto y planta cooperan para obtener un beneficio mutuo, fenómeno que en biología se llama simbiosis. Estas interacciones, de crucial importancia en los ecosistemas naturales y en los agrícolas, se iniciaron hace más de 200 millones de años, en el Jurásico.

Las primeras angiospermas, plantas con flor, dependían del viento para asegurar su reproducción, igual que las gimnospermas, pinos y especies relacionadas. El ovario producía una secreción pegajosa llamada exudado para atrapar los granos de polen que llegaban a él. Este exudado contenía proteínas y azúcares y servía de alimento a los insectos, que empezaron a transportar de manera accidental el polen de una flor a otra. Así comenzó la polinización.

Se ha estimado que este gesto, en apariencia insignificante, representa la nada desdeñable cifra del 9,5% del valor de la producción agrícola dedicada al consumo humano, lo que a nivel europeo supone un total de 5.000 millones de euros al año. Atendiendo a estos datos, no cabe duda de que el servicio ecológico que ofrecen los polinizadores posee una enorme repercusión ambiental, social y económica en nuestro planeta.

La biodiversidad de los insectos que actúan como potenciales polinizadores es muy elevada. El 20% de estos organismos, unas 200.000 especies, visitan las flores. Hay familias de insectos polinizadores importantes entre los coleópteros (escarabajos), dípteros (moscas) y lepidópteros (mariposas) entre otros órdenes, pero los polinizadores por excelencia son los himenópteros: las abejas y abejorros de la superfamilia Apoidea. Son especies en las que el polen se adhiere a sus característicos pelos corporales. Además, pueden disponer de adaptaciones para facilitar su transporte, como las corbículas o cestillos de las patas traseras. En el campo agrícola, las especies que destacan por su importancia son la abeja común Apis mellifera L., los abejorros del género Bombus sp. y otras abejas menos conocidas que son las llamadas abejas solitarias.

Apis mellifera (Familia Apidae) / Alberto Fereres

Apis mellifera (Familia Apidae) / Alberto Fereres

La abeja común produce miel, jalea real, propóleo, cera, y poliniza un amplio espectro de flora silvestre. Es vital para algunos cultivos como los frutales, ya que asegura la polinización cuando otros insectos están ausentes. Su ‘transferencia de polen’ garantiza una tasa elevada de cuajado de frutos, mayor resistencia a las heladas y mejor calidad en los mismos. Esta especie de abeja común, natural de Europa, Asia y África, incluye 26 subespecies agrupadas en cuatro linajes.

Por su parte, los Bombus o abejorros han supuesto una enorme revolución para el sector de la horticultura, especialmente bajo invernadero. A partir de 1987 se empezaron a usar en la polinización de tomate y otras hortícolas. En la actualidad se emplean en más de 40 países. Se conocen más de 240 especies de abejorros a nivel mundial, y la mitad de ellas viven en la región Paleártica (Europa y Norte de Asia). La especie que más se cría para su uso en agricultura es el Bombus terrestris L., ampliamente distribuida por casi toda la zona Paleártica. En España tenemos una especie endémica de las Islas Canarias, B. canariensis Pérez.

A pesar de su papel imprescindible, la población de polinizadores está en declive en todo el mundo. Entre los factores que han contribuido a esta situación, destacan las técnicas agrícolas de producción intensiva que han conducido a la desaparición de hábitats, lo que ha modificado notablemente la estructura del paisaje y ha llevado a la eliminación de recursos alimenticios y refugios esenciales para este importante grupo de artrópodos beneficiosos.

Para intentar compensar esta disminución, las investigaciones en este ámbito apuestan por el uso de márgenes florales, es decir, plantar setos y vegetación entre las parcelas de cultivo que permitan el incremento de los insectos polinizadores y otros artrópodos, a la vez que consiguen preservar y mejorar la biodiversidad en las zonas agrarias. Además de favorecer la polinización, los márgenes florales suavizan el rigor de los elementos climáticos protegiendo los cultivos contra las heladas y la insolación; mantienen la humedad y funcionan como cortavientos; protegen contra la erosión y también aportan valor paisajístico y cultural.

Entre otras iniciativas, desde el Instituto de Ciencias Agrarias del CSIC hemos desarrollado un protocolo para el establecimiento de márgenes y lindes de especies herbáceas con flores que atraen estos insectos beneficiosos y que están bien adaptados a los suelos y condiciones de cultivo de la zona Centro de la Península Ibérica.

 

* Alberto Fereres Castiel es investigador del Instituto de Ciencias Agrarias del CSIC. Junto a investigadores/as de la Universidad Politécnica de Madrid y la empresa Syngenta ha trabajado en el proyecto ‘Operación polinizador’.

Camarero… ¡una de insectos!

Por Mar Gulis

Puesto de venta de insectos fritos en un mercado tailandés / Wikipedia

Puesto de insectos fritos en un mercado tailandés / Wikipedia

Las termitas asadas, los saltamontes fritos o las tortillas de ciempiés son platos cotidianos en algunas zonas de Asia, África y Latinoamérica. Crudos, secos, pulverizados, horneados, salteados o cocidos, los insectos forman parte de la dieta de al menos 2.000 millones de personas, según cifras de la FAO. Entre ellos son los escarabajos, las orugas, las abejas, las avispas y las hormigas los más probados por el paladar humano. Sin embargo, la práctica de comer insectos –la entomofagia– sigue generando rechazo en las sociedades occidentales, que miran con recelo cualquier menú que incluya estos animalitos. Consumidos sobre todo en países tropicales, pero también en China, Japón y México, en estas latitudes hay especialidades que se consideran auténticos manjares.

El rechazo a la entomofagia en Occidente podría deberse a que, con el desarrollo de la agricultura sedentaria, nuestros antepasados empezaron a percibir los insectos como una amenaza para las cosechas. Investigaciones de la FAO señalan que algunos gusanos se relacionaban con la descomposición de la carne, antes de que existieran métodos de conservación, y que actualmente es habitual que en Europa y Norteamérica los mosquitos, larvas y termitas se asocien con la muerte del ganado y la suciedad.

Se trataría por tanto de una cuestión cultural. Hoy, Día Mundial de la Alimentación, viene a cuento recordar que quizá ese rechazo tenga los días contados, dada la elevada demanda de proteínas a nivel planetario. Para satisfacerla, los insectos podrían, poco a poco, incorporarse a nuestra dieta. Con una población que ya supera los 7.000 millones de habitantes, y que seguramente alcance los 9.000 en 2050, garantizar a tantas personas el suministro de alimentos ricos en proteína no es tarea sencilla.

Canapés elaborados con insectos / TEDxMadrid

Canapés elaborados con insectos / TEDxMadrid

En este contexto, las más de 1.900 especies de insectos que ya se utilizan como alimento pueden adquirir cada vez más relevancia. Tal y como explica Rosina López, del Instituto de Investigación en Ciencias de la Alimentación del CSIC, su valor nutritivo, si bien varía mucho entre especies, es elevado por su contenido en proteínas (entre un 13 y un 77% de su peso seco) y también en lípidos (incluyendo ácidos grasos monoinsaturados y poliinsaturados omega 3), vitaminas, fibra y minerales. Por ejemplo, 100 gramos de orugas secas contienen unos 53 gr de proteínas, un 15% de grasas y alrededor del 17% de carbohidratos, aportando unas 430 kilocalorías.

Pero además de sus propiedades nutricionales, la producción de insectos para la alimentación conlleva ventajas medioambientales: requieren menos terreno y agua que el ganado bovino y porcino y emiten menos gases de efecto invernadero. También crecen rápido, se reproducen con facilidad y son muy eficientes en la conversión de alimentos. Los grillos, por ejemplo, “solo necesitan 2 kg de alimento para ganar 1 kg de peso”, explica López en su libro Las proteínas de los alimentos (CSIC-Catarata).

Otro punto a su favor es que son muy versátiles. Pueden consumirse enteros o molidos, en forma de polvo o pasta, o incorporarse a otros alimentos. Esta última opción fue la que inspiró a Gabi Lewis y Greg Sewitz, dos estudiantes de la Universidad Brown (EEUU) que crearon la empresa Exo y se lanzaron a fabricar unas barritas que combinan harina de grillo con cacao, dátiles, almendras y coco. Son altas en proteína, bajas en azúcar y contienen ácidos grasos omega 3, hierro y calcio. Por ahora, parece que este ingenioso invento va ganando adeptos en EEUU, pero para que la entomofagia arraigue en Occidente queda todavía camino por recorrer.

La aprensión del consumidor sigue siendo el principal obstáculo, pero “si no existe una cultura de la entomofagia, debe crearse”, señala la FAO. López coincide: “Es necesario que todos los sectores interesados lleven a cabo una campaña informativa para que se llegue a vencer la repulsión que producen los insectos”.

Para los que se animen, os sugerimos probar el arroz con grillos y los saltamontes Gumbo.

¿Por qué los insectos constituyen casi el 90% de las especies conocidas?

Por Mar Gulis

Con un millón de especies descritas, los insectos representan cerca del 90% de las especies animales actualmente conocidas, y eso sin contar que la mayoría de ellos están aún por descubrirse -muchos científicos creen que podría haber más de 10 millones de especies-.

Además de ser el grupo animal con mayor diversidad, los insectos también son el grupo que ha alcanzado un mayor éxito expansivo. Por eso, ocupan toda clase de hábitats… desde tórridos desiertos a gélidos ambientes como la Antártida, desde las cumbres de las montañas más altas a las simas más profundas de la Tierra.

¿Qué es lo que ha hecho que estos animales alcancen este tremendo éxito en la historia evolutiva de nuestro planeta? El investigador del CSIC Xabier Bellés apunta una característica común que comparten el 90% de las especies conocidas de insectos: la metamorfosis.

Cabeza de larva

Cabeza de una larva en el último estadio larval, de una especie indeterminada de insecto. Las antenas simulan ojos y la zona clipeal una nariz dándole el curioso aspecto de un rostro vagamente familiar. / José Luis Nieves Aldrey (FOTCIENCIA)

En concreto, ente el 45% y el 60% de las especies de insectos realizan la denominada metamorfosis ‘holometábola’, que es el tipo más completo y complejo de metamorfosis, y también el que nos suelen contar en el colegio. Los ejemplares de estas especies experimentan una transformación radical de forma y estructura: primero crecen progresivamente a través de mudas hasta convertirse en larvas y luego se encierran en una crisálida o capullo (fase pupal) para transformarse en adultos con alas voladoras y genitales completos. A este grupo pertenecen los coleópteros, los himenópteros, los lepidópteros y los dípteros, o en ejemplos que nos resultan más familiares: escarabajos, abejas, mariposas, moscas

En su libro La metamorfosis de los insectos (CSIC-Catarata) Bellés explica que este tipo de metamorfosis tan completa permite que ejemplares de una misma especie y de diferente edad puedan convivir sin competir por los recursos, lo que constituye una innovación clave para que los insectos hayan podido llegar tan lejos. ¿Renovarse o morir?