Ciencia para llevar Ciencia para llevar

CURIOSIDADES CIENTÍFICAS PARA COMPARTIR

Entradas etiquetadas como ‘Marte’

La misión InSight, con un instrumento español a bordo, llega a Marte este lunes

Por Juan Ángel Vaquerizo (CSIC-INTA)*

Después de un vertiginoso viaje de apenas seis meses y medio, el próximo lunes 26 de noviembre se producirá la llegada a Marte de la misión InSight de la NASA. En España estamos de enhorabuena porque a bordo de esta nave viaja el instrumento TWINS, un conjunto de sensores medioambientales desarrollado por el Centro de Astrobiología (CSIC-INTA).

InSight en Marte

Interpretación artística de la misión InSight con todos sus instrumentos desplegados en la superficie de Marte. Bajo el módulo principal a la izquierda, el insturmento SEIS; a la derecha, HP3. TWINS son las dos pequeñas estructuras que sobresalen en forma de L invertida a cada lado de la plataforma superior. /NASA-JPL Caltech

InSight (Interior exploration using Seismic Investigations, Geodesy and Heat Transport; Exploración interior mediante investigaciones sísmicas, geodesia y transporte de calor) será la novena misión de la NASA que aterrice en la superficie del planeta rojo. Está basada en el diseño de la nave y el módulo de aterrizaje de la misión Phoenix, que llegó con éxito a Marte en 2008.

En esta ocasión, se trata de un explorador que estudiará a lo largo de un año marciano (dos años terrestres) la estructura y los procesos geofísicos interiores de Marte, lo que ayudará a entender cómo se formaron los planetas rocosos del Sistema Solar (Mercurio, Venus, la Tierra y Marte) hace más de 4.000 millones de años. El lugar elegido para el aterrizaje es una extensión lisa y plana del hemisferio norte marciano y cercana al ecuador denominada Elysium Planitia; un lugar relativamente seguro para aterrizar y suficientemente brillante para alimentar los paneles solares que proveen de energía a la misión.

Marte es el candidato ideal para este estudio. Es lo bastante grande como para haber sufrido la mayor parte de los procesos iniciales que dieron forma a los planetas rocosos, pero es también lo suficientemente pequeño como para haber conservado las huellas de esos procesos geofísicos hasta la actualidad; al contrario que la Tierra, que las ha perdido debido a la tectónica de placas y los movimientos de fluidos en el manto. Esas huellas están presentes en el grosor de la corteza y la estratificación global, el tamaño y la densidad del núcleo, así como en la estratificación y densidad del manto. El ritmo al que el calor escapa de su interior proporciona, además, una valiosa información sobre la energía que controla los procesos geológicos.

Formación de un planeta rocoso

A medida que se forma un planeta rocoso, el material que lo compone se une en un proceso conocido como ‘acreción’. Su tamaño y temperatura aumentan y se incrementa la presión en su núcleo. La energía de este proceso inicial hace que los elementos del planeta se calienten y se fundan. Al fundirse, se forman capas y se separan. Los elementos más pesados se hunden en la parte inferior, los más ligeros flotan en la parte superior. Este material luego se separa en capas a medida que se enfría, lo que se conoce como ‘diferenciación’. Un planeta completamente formado emerge lentamente, con una corteza como capa superior, el manto en el medio y un núcleo de hierro sólido. /NASA-JPL Caltech

Un instrumento español a bordo

La instrumentación científica de la misión está compuesta por cuatro instrumentos. El primero es el SEIS (Experimento sísmico para la estructura interior), un sismógrafo de la Agencia Espacial Francesa que registrará las ondas sísmicas que viajan a través de la estructura interior del planeta. Su estudio permitirá averiguar la causa que las ha originado, probablemente un terremoto marciano o el impacto de un meteorito.

El segundo es el HP3 (Conjunto de sensores para el estudio del flujo de calor y propiedades físicas), una sonda-taladro de la Agencia Espacial Alemana que perforará hasta los cinco metros de profundidad e irá midiendo, a diferentes niveles, la cantidad de calor que fluye desde el interior del planeta. Sus observaciones arrojarán luz sobre si la Tierra y Marte están hechos de la misma materia.

Además, está el instrumento RISE (Experimento para el estudio de la rotación y la estructura interior) del Laboratorio de Propulsión a Chorro de la NASA, que proporcionará información sobre el núcleo tomando medidas del bamboleo del eje rotación del planeta.

Y, por último, lleva a bordo el instrumento TWINS (Sensores de viento y temperatura para la misión InSight) proporcionado por el Centro de Astrobiología, adscrito al Consejo Superior de Investigaciones Científicas (CSIC) y el Instituto Nacional de Técnica Aeroespacial (INTA). TWINS cuenta con dos sensores para caracterizar la dirección y velocidad del viento y dos sensores de temperatura del aire capaces de obtener una medida por segundo de ambas variables.

Montaje InSight

Montaje y prueba de los equipos en Denver. /NASA-JPL Caltech-Lockheed Martin

Las tareas que debe desempeñar TWINS son muy importantes para los objetivos de InSight. Durante la fase inicial de la misión, los primeros 40-60 soles (días marcianos), TWINS caracterizará el entorno térmico y los patrones de viento de la zona de aterrizaje para que el equipo científico a cargo de SEIS y HP3 pueda establecer las mejores condiciones para realizar el despliegue de los instrumentos en la superficie marciana.

Una vez desplegados los instrumentos principales en la superficie, TWINS se encargará de monitorizar los vientos, con el objetivo de descartar falsos positivos en los eventos sísmicos detectados por el instrumento SEIS.

Por último, los datos medioambientales obtenidos por TWINS se compararán y correlacionarán con los datos ambientales registrados por REMS, la otra estación medioambiental española en Marte, a bordo del rover Curiosity de la NASA en el cráter Gale. Esto contribuirá a caracterizar en mayor detalle los procesos atmosféricos en Marte y mejorar los modelos ambientales existentes a diferentes escalas: procesos eólicos, mareas atmosféricas diurnas, variaciones estacionales, circulación en la meso-escala, vientos catabáticos/anabáticos y remolinos (dust devils).

En este enlace de NASA TV se podrá seguir en directo el aterrizaje, a partir de las 20:00 horas del lunes 26 de noviembre de 2018.

 

* Juan Ángel Vaquerizo es el responsable de la Unidad de Cultura Científica del Centro de Astrobiología (CSIC-INTA). 

¿Qué peligros entraña para el cuerpo humano un viaje a Marte?

Por Juan Ángel Vaquerizo (CSIC)*

Cada vez resulta más evidente que en un futuro no muy lejano el ser humano acometerá definitivamente la conquista del espacio y la exploración de otros planetas y lunas. Las agencias espaciales de todo el mundo llevan décadas desarrollando programas de exploración robótica del Sistema Solar y, desde hace ya unos años, están planificando el siguiente paso en la conquista del espacio: los viajes humanos de exploración planetaria.

De todos los posibles objetivos, el planeta Marte es el favorito. Su cercanía y la posibilidad de vida presente o pasada en el planeta rojo lo convierten en un destino irresistible para la ciencia, e incluso ya se empieza a pensar en Marte como en un segundo hogar para la raza humana, llegado el momento. 

Pero llevar seres humanos a Marte o a cualquier otro destino del Sistema Solar entraña sus riesgos, derivados de los efectos que el espacio tiene sobre el cuerpo humano. Nuestra fisiología está adaptada a las condiciones de la Tierra, de modo que cualquier cambio tiene sus consecuencias a nivel anatómico. La diferencia fundamental es la situación de microgravedad que se sufre durante los viajes espaciales.

¿Qué entendemos por microgravedad? El término es un poco extraño. ¿Nos referimos a que la gravedad es muy pequeña, de ahí lo de ‘micro’? ¿Tiene algo que ver con lo que se denomina ingravidez, que sería, literalmente, ausencia de gravedad? Pues bien, el término microgravedad se usa para describir la situación en la que están los astronautas en una nave espacial que orbita alrededor de la Tierra. No se trata de una situación de ausencia de gravedad, pues los astronautas están orbitando y, por lo tanto, siguen siendo atraídos por el planeta, así que debemos desterrar el término ingravidez. Es una situación de caída libre “controlada”: los astronautas se desplazan a gran velocidad en su órbita alrededor de la Tierra (en concreto a unos 28.000 km/h), lo que hace que caigan continuamente, sin llegar a tocar tierra. El efecto es el de una caída libre continua de la nave espacial y de todo lo que contiene en su interior, astronautas incluidos. Por este motivo todo parece flotar dentro de la nave, y por eso deben tomarse medidas para que los objetos estén “sujetos” en todo momento.

Un viaje interplanetario es muy similar en sus efectos sobre el cuerpo humano a una estancia prolongada en microgravedad en una estación espacial orbital como la ISS (Estación Espacial Internacional, de sus siglas en inglés). La experiencia obtenida desde los años 70 del siglo pasado a partir de las numerosas estancias de astronautas en las sucesivas estaciones espaciales orbitales, ha permitido estudiar que le sucede al cuerpo humano.

Así pues, si alguien está pensando en embarcarse hacia Marte ¿cuáles son los riesgos físicos a los que se expone?

NASA/NSBRI

Mareos y vómitos

El oído interno y los órganos del equilibrio funcionan como un acelerómetro que indican al cuerpo si la persona está en movimiento o en reposo, si está de pie o tumbada. Pero en el espacio, sin una fuerza que “tire hacia abajo”, ese mecanismo no funciona. Esto provoca que cuatro de cada cinco astronautas sufran mareos en las primeras 24-48 horas en microgravedad, normalmente acompañados de pérdida de apetito y vómitos.

El líquido se sube a la cabeza

A través del cuerpo se mueve una gran cantidad de fluidos. En la Tierra, esos líquidos tienden a acumularse en las piernas y los pies, pero en microgravedad los fluidos comienzan a distribuirse de manera uniforme por todo el cuerpo, desplazándose desde la parte inferior hacia la parte superior. El resultado de esta redistribución de los fluidos es que la cara tiende a hincharse y las piernas adelgazan. Pero no se trata simplemente de un cambio en el aspecto. La acumulación de fluidos en la cabeza puede ocasionar un aumento en la presión intracraneal y en la del nervio óptico, y por tanto afectar a la agudeza visual. También nos hace menos sedientos, embota el sentido del gusto y causa una sensación de “nariz tapada” similar a las que producen las alergias. Generalmente cuando los astronautas regresan a la Tierra, los fluidos se redistribuyen de nuevo y estos problemas tienden a mejorar.

Atrofia muscular y pérdida de masa ósea

En microgravedad, los huesos y los músculos ya no tienen que soportar el peso del cuerpo, por lo que se debilitan. Sin peso, el cuerpo empieza a sufrir atrofia muscular y pérdida de densidad ósea. En microgravedad, los músculos que trabajan para mantenernos erguidos pueden llegar a perder hasta un 20% de su masa, y la masa muscular total puede reducirse hasta un 5% semanal. Según los datos, un astronauta puede perder, en un mes en el espacio, la misma cantidad de masa ósea (alrededor de un 1%) que una persona que sufre osteoporosis a lo largo de un año. Esta pérdida provoca un aumento del nivel de calcio en la sangre, lo que, a su vez y junto con la propensión a la deshidratación, conduce a un mayor riesgo de desarrollar cálculos renales. Para evitar todo esto, los astronautas consumen vitamina D y realizan dos horas al día de actividad física intensa, lo que, además de contrarrestar la pérdida ósea y la atrofia muscular, les ayuda “a tener los pies en la tierra”.

El corazón se hace pequeño

Los astronautas también experimentan pérdida de volumen de sangre, debilitamiento en el sistema inmunitario y falta de condición física cardiovascular, ya que flotan sin esfuerzo alguno y el corazón bombea la sangre con mucha mayor facilidad, lo que hace que se debilite y disminuya su tamaño.

Radiación diez veces mayor

Además, no se puede olvidar el efecto de la radiación en el cuerpo humano. En la Tierra el campo magnético funciona como una protección natural contra la radiación de alta energía. La ISS cuenta con una protección artificial diseñada para proteger a los astronautas de la radiación. Aun así, los astronautas siguen estando expuestos a un nivel de radiación diez veces mayor del que estarían en tierra. Los sistemas de protección limitan los riesgos, pero un hipotético viaje a Marte expondría a los astronautas tanto a la radiación de alta energía como a los rayos cósmicos dañinos. Sin una protección adecuada, aumentaría el riesgo de cáncer, podrían sufrir enfermedades por efecto de la radiación, se alterarían las funciones cognitivas y motoras, e incluso la exposición reiterada a la radiación podría llegar a provocar cataratas y enfermedades cardíacas y circulatorias.

Hay que trabajar después de flotar

Por último, habría que tener en cuenta el hecho del aterrizaje en el suelo marciano después de experimentar microgravedad durante un largo periodo de tiempo. La tripulación de una hipotética misión a Marte tendría que ser capaz de comenzar a trabajar justo después del aterrizaje. A pesar de que Marte tiene sólo un tercio de la gravedad terrestre, los astronautas tendrían que realizar un ajuste a la nueva situación después haber estado flotando durante varios meses. Por ejemplo, en microgravedad se pierde la referencia de lo que pesan las cosas, de modo que hay que estar atento cuando uno está de nuevo en la superficie de un planeta, porque los objetos “vuelven a pesar”.

En definitiva, a pesar de que nuestros cuerpos no fueron hechos para vivir en el espacio, el conocimiento adquirido hasta el momento nos muestra que el cuerpo humano es capaz de adaptarse a situaciones diversas y adversas, lo que nos permitirá sin duda superar esta última frontera, necesaria para acometer la conquista del espacio.

El rumbo está marcado: Marte nos espera. Y lo mejor de todo es que ya hemos iniciado el camino: el primer ser humano que pisará la superficie marciana ya ha nacido y puede estar leyendo estas líneas.

 

Juan Ángel Vaquerizo es el responsable de la Unidad de Cultura Científica del Centro de Astrobiología (CSIC-INTA). Este centro colabora con la misión marciana InSight de NASA, en la que viaja a bordo el instrumento TWINS desarrollado en el CAB. El lanzamiento a Marte de la misión se realizará el próximo sábado, 5 de mayo, y se podrá seguir en directo a través de NASA TV a partir de las 13:05 horas, hora peninsular española.

 

Biominería: el poder de las ‘bacterias comepiedras’

AutorPor Felipe Gómez Gómez (CSIC-INTA)*

Montones de mineral apilados y humeantes. Casi desde el inicio de la minería esta ha sido una imagen habitual a pie de mina. Los mineros han regado y siguen regando con agua ácida el material extraído de la tierra, porque saben que de esta forma se obtiene un mayor rendimiento al procesarlo. Históricamente se ha hecho así porque funciona, pero pocas veces ha trascendido la explicación científica.

Bacilo

Acidithioabacillus ferrooxidans fue la primera bacteria aislada de un ambiente ácido en una mina española y capaz de oxidar elementos metálicos.

Corta Atalaya

Mina a de Corta Atalaya en Río Tinto (Huelva). / Wikipedia.

Lo cierto es que, de modo consciente o no, se está practicando la biominería. Al regar el mineral, se potencia el crecimiento de bacterias que favorecen la extracción de metales como cobre, cobalto, níquel o cinc. El aumento de la actividad bacteriana hace que suba la temperatura y, con ella, la evaporación de agua. Por eso vemos vapor emanar de los montones.

De hecho, sabemos que gran parte del cobre que se extrae al disolver el mineral en un líquido, proceso conocido como lixiviación, se obtiene gracias a la intervención de microorganismos que normalmente se encuentran de forma natural en los minerales. Por esta razón sería más preciso hablar ‘biolixiviación’.

Hoy en día se están desarrollando investigaciones para entender mejor estos procesos y optimizar sus rendimientos. Pero no queremos quedarnos en este punto: también tratamos de identificar microorganismos que de forma específica incrementan la extracción de ciertos metales.

¿Cómo trabajan las bacterias mineras?

Las bacterias logran hacer solubles los minerales porque se alimentan de ellos; motivo por el que son conocidas como ‘comedoras de piedras’ o ‘quimiolitótrofas’. Para ganar energía oxidan los minerales: les extraen electrones, los almacenan en una especie de pila y producen con ello una diferencia de potencial que utilizan para sus procesos metabólicos. En estos procesos de oxidación transforman la materia en CO2 como producto de desecho.

La primera bacteria identificada capaz de lixiviar fue aislada en 1947 al investigar el deterioro de los equipos metálicos en una mina española, en río Tinto. La gran capacidad de oxidación de sus aguas hacía que el material metálico, como carretillas, trenes y demás medios de carga, tuvieran una degradación muy acelerada, fuera de lo habitual. Por aquel entonces la razón se achacó a las aguas ácidas, pero aun así los responsables de la mina decidieron que el fenómeno fuera estudiado por un equipo de microbiólogos. Como resultado de su trabajo se aisló el microorganismo Acidithiobacilus ferrooxidans, que, traducido del griego, es acido porque crece a pH bajo (ácido), thio porque es capaz de oxidar azufre, bacillus porque tiene forma de bastón (es, por tanto, un bacilo) y ferrooxidans porque además es capaz de oxidar hierro.

Existen otras bacterias biolixiviadoras con nombres similares en alusión a los elementos que son capaces de oxidar y por tanto de liberar (lixiviar) al medio líquido donde están creciendo.

Atractivo marciano

Marte

El hecho de que las bacterias litotrofas no se alimenten de materia orgánica las hace candidatas a habitar Marte.

Las ‘bacterias comepiedras’ se están poniendo de moda porque, al ser capaces de alimentarse exclusivamente de material inorgánico, son candidatas potenciales a habitar lugares exóticos, extremos e incluso otros cuerpos planetarios distintos a la Tierra. Algunos de estos minerales se han identificado en la superficie marciana, así que si confirmamos la presencia de agua en el planeta rojo la ecuación nos permite concluir que en Marte podrían llegar a habitar bacterias de este tipo. Además, pensando en el aprovechamiento económico, se podrían utilizar para extraer minerales (hacer biominería) en la superficie de nuestro planeta vecino.

 

* Felipe Gómez Gómez es investigador en el Centro de Astrobiología (CSIC-INTA).

La primera misión tripulada a Marte se prepara en Río Tinto

cristina delgado blogPor Cristina Delgado González (CAB)*

Quizá sea The Martian, la película de Ridley Scott, la que ha puesto más en boga, si cabía, el planeta rojo. Pero nadie negará que Marte se escucha en todas partes. Sea como fuere, una futura misión tripulada al planeta vecino está dejando de ser un proyecto ficticio, y Río Tinto, en Huelva, vuelve a ser un análogo marciano donde hacer ensayos para preparar dicha misión.

El proyecto europeo MOONWALK tiene como principal objetivo desarrollar y mejorar las técnicas para que un humano y un robot realicen actividades extravehiculares (EVA) en cooperación. Para ello, se desarrollarán dos campañas: una en Río Tinto y otra bajo el mar en la costa de Marsella, que simula las condiciones de baja gravedad de la superficie lunar. La primera de estas campañas se llevará a cabo durante las dos últimas semanas de abril, en lo que el responsable del Centro de Astrobiología (CAB-CSIC) en MOONWALK, Víctor Parro, considera “la gran maqueta de Marte”.

Paisaje análogo a Marte en Río Tinto, Huelva./Luis Cuesta

Paisaje análogo a Marte en Río Tinto, Huelva / Luis Cuesta

La zona de Río Tinto cuenta con túneles abandonados de la minería similares a los tubos de lava que hay en Marte, lugares donde la hipotética vida marciana estaría protegida de los daños que supone la superficie, como la radiación. Pero explorar este tipo de terrenos puede resultar difícil para un astronauta, que a diferencia de lo que se muestra en la película protagonizada por Matt Damon, lleva un traje muy pesado. Esto implica una serie de limitaciones a la hora de, por ejemplo, subir una cuesta. Sin embargo, un robot pequeño como el que se ha diseñando para MOONWALK sí podría realizar este movimiento. Según el equipo del CAB que trabaja en este proyecto internacional, ésta es una buena oportunidad para consolidar Río Tinto como un lugar de referencia para simulaciones con astronautas y/o robots en el continente europeo.

No solo el paisaje de este enclave onubense es muy marciano: su suelo es también rico en sulfatos y minerales de hierro y azufre. Por ello se aprovechará la campaña para probar otra instrumentación, como el RLS (Raman Laser Spectrometer) que irá en el rover (el vehículo motorizado que se desplaza por la superficie del planeta) de la misión ExoMars 2018 de la ESA, o el instrumento para la detección e identificación de microorganismos y compuestos bioquímicos SOLID (Signs Of LIfe Detector).

Estas campañas ponen a prueba los avances en instrumentación y ciencia. En el caso concreto de MOONWALK, ayudan a identificar los factores que afectan a la comunicación entre astronauta y robot y a optimizar su relación. De esta forma, una misión tripulada a Marte podría traspasar las salas de cine, y Río Tinto es parada obligatoria en ese camino.

*Cristina Delgado González pertenece a la Unidad de Cultura Científica del Centro de Astrobiología (CSIC-INTA).

El cometa Siding Spring se acerca a Marte tras un viaje de un millón de años

Por F. Javier Martín-Torres y Juan Francisco Buenestado*

Cualquier cazador de cometas estaría encantado de encontrarse sobre la superficie de Marte este 19 de octubre. Ese día el cometa Siding Spring, también conocido como C/2013 A1, se cruzará con la órbita marciana después de haber estado alrededor de un millón de años recorriendo el espacio desde la nube de Oort, su más probable lugar de procedencia. En el momento de máximo acercamiento pasará a una distancia de sólo 132.000 km del planeta, aproximadamente un tercio de la que separa a la Tierra de la Luna. ¿Os imagináis la expectación y la alarma que se generaría si un cometa pasara entre nosotros y nuestro satélite?

Siding Spring fue localizado por Robert H. McNaught desde el observatorio de Nueva Gales del Sur que le da nombre. El hallazgo tuvo lugar el 3 de febrero de 2013 y desde entonces ha sido observado entre otros por el telescopio espacial Hubble. El propósito de estas observaciones es determinar con la mayor precisión posible, teniendo en cuenta que el comportamiento de los cometas es en cierta medida impredecible, su trayectoria y características. Así se ha calculado, además de la fecha exacta de paso, que su núcleo mide apenas unos 700 metros, y que su coma (la cola de gas y partículas que el viento solar arranca del núcleo según se acerca al Sol) tiene una anchura de 19.300 km.

Por supuesto nadie podrá estar contemplando el acontecimiento desde Marte, pero habrá toda una flota de orbitadores que podrán recabar abundantes datos y obtener espectaculares imágenes del cometa. A los tres que ya están en servicio (Mars Odissey, Mars Reconnaisance Orbiter y Mars Express), se sumaron el pasado septiembre el Mars Atmosphere and Volatile Evolution (MAVEN) y el Mars Orbiter Mission, de la agencia espacial de la India. Precisamente son estos satélites los que más preocupación suscitan en relación con el acontecimiento, porque, debido al tamaño del coma, se verán inmersos en las partículas de polvo cometario y esto podría dañarlos. En las cuatro horas que aproximadamente durará el tránsito a través del coma, se prevé que habrá media hora de especial intensidad. En ese momento crítico sería recomendable disponer todos los orbitadores al socaire de la ‘tormenta’ en la cara de Marte opuesta a la de incidencia, para evitar el peligro de que sus instrumentos resulten dañados o inhabilitados.

trayectoria

Recreación de la trayectoria del cometa Siding Spring tal y como será captada por el rover Curiosity en los próximos días / NASA

El rover Curiosity de la NASA no corre peligro al abrigo de la tenue atmósfera marciana, en la que las partículas del coma se quemarán produciendo algo parecido a una impresionante lluvia de meteoritos que el robot podrá captar con sus cámaras como testigo excepcional desde la superficie de Marte (ver figura de arriba). Parte del equipo científico del Curiosity, entre ellos miembros del Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), lleva meses preparando una campaña de observación del Siding Spring en la que participarán los instrumentos ChemCam, MastCam y la estación meteorológica española REMS. Si esta campaña de observación es exitosa, servirá para estudiar la composición del cometa y su impacto en la atmósfera de Marte, si lo hubiera.

 

*F. Javier Martín-Torres y Juan Francisco Buenestado son investigadores en el Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR).

¿Qué tiempo hace hoy en Marte?

JF Buenestado J Martín-TorresPor Javier Martín-Torres y Juan Francisco Buenestado (CSIC-UGR)*

Actualmente es posible contestar a esta pregunta cada mañana a través de REMS (Rover Environmental Monitoring Station), una estación meteorológica de diseño español que viaja a bordo del Curiosity. Este vehículo robótico recorre desde agosto de 2012 la superficie de Marte realizando diversos experimentos con el objetivo último de determinar si el planeta es habitable o lo fue algún día. De paso, sus investigaciones proporcionarán un mejor conocimiento de la historia, la dinámica, la geología y la meteorología y el clima de nuestro vecino.

Autorretrato del Curiosity

Autorretrato de Curiosity realizado a partir de diversas imágenes tomadas con la cámara de su brazo extensible. En total está equipado con 17 cámaras para diferentes usos científicos.

En estos dos últimos aspectos son en los que REMS juega un papel destacado. Cada hora, durante al menos cinco minutos, sus seis sensores miden, de forma autónoma y simultánea, la temperatura del aire y del suelo, la presión atmosférica, la velocidad y dirección del viento, la humedad relativa del aire y la radiación ultravioleta. Esta forma de medir es nueva con respecto a otros instrumentos meteorológicos enviados anteriormente a Marte y permite interrelacionar los diferentes parámetros así como obtener una perspectiva coherente de la evolución de su clima. Gracias a ello podemos conocer cómo se comporta la atmósfera de Marte durante un día, una estación o un año marciano, que dura 687 días terrestres.

Los análisis del Curiosity se ciñen a la zona en la que aterrizó: el cráter Gale, una gigantesca hondonada cercana al ecuador del planeta que se creó hace millones de años tras el impacto de un meteorito. A lo largo de su itinerario, el vehículo ha desvelado algunas peculiaridades meteorológicas de la zona, que, pese a situarse en la región más cálida de Marte, tiene un clima extremadamente frío, con temperaturas que rara vez superan los 0oC y que sufren oscilaciones diarias de hasta 80oC.

REMS ‘sólo’ es una estación meteorológica situada en un punto concreto de la superficie de todo un planeta, pero –a diferencia de otras estaciones anteriores– viaja a través de un terreno de enorme variabilidad topográfica. Esta peculiaridad ha permitido conocer mejor fenómenos como el intercambio entre el suelo y la atmósfera de la escasa cantidad de agua que hay en Marte, una cuestión especialmente importante a la hora de determinar la habitabilidad del planeta.

Brazo Curiosity

‘Brazo’ en el que se sitúan algunos sensores meteorológios del Curiosity.

Para conocer no sólo la meteorología en el cráter Gale, sino la climatología de Marte a escalas más amplias, no basta con los datos del instrumento. Es necesario apoyarse en modelos climáticos desarrollados gracias a nuestro conocimiento de las atmósferas de Marte y la Tierra –al fin y al cabo, los principios físicos que rigen la dinámica del clima terrestre son universales–. A partir de los datos recabados por REMS se pueden deducir características climatológicas más generales, e incluso ayudar a perfilar detalles para un estudio más preciso de la atmósfera terrestre. De tareas como esta se encarga, entre otros equipos, el Grupo de Ciencias Planetarias y Habitabilidad del Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), con sede en Granada.

Hoy, 26 de junio de 2014, un año marciano después de su llegada a Marte, estaba previsto que el Curiosity concluyera su misión, pero afortunadamente, debido a su éxito científico y tecnológico, la Agencia Espacial Norteamericana (NASA) ha decidido extenderla indefinidamente. Mientras tanto, cualquiera que tenga curiosidad por conocer qué tiempo hace en este plante, puede solicitar información aquí.

 

* Javier Martín-Torres y Juan Francisco Buenestado son integrantes del Grupo de Ciencias Planetarias y Habitabilidad del Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR) y autores del libro La vida en el universo (CSIC-Catarata).