Archivo de la categoría ‘Biomedicina y Salud’

¿En qué se diferencian los probióticos de los prebióticos?

Por Carmen Peláez, Teresa Requena y Mar Gulis (CSIC)*

Con frecuencia nos encontramos en el mercado productos que contienen probióticos o prebióticos, o bien una combinación de ambos. Su creciente comercialización en alimentos y en productos farmacéuticos y de parafarma­cia hace que estos compuestos nos parezcan muy saludables, pero lo cierto es que muchas veces no sabemos distinguirlos ni cuáles son sus propiedades. En este texto vamos a explicar en qué consisten, en qué se diferencian y qué beneficios pueden tener los probióticos y los prebióticos para nuestra microbiota intestinal y, por tanto, para nuestro organismo.

El colon: uno de los ecosistemas más densamente poblados de la Tierra

Si bien la microbiota se aloja en diferentes partes del cuerpo (en la piel, la boca, la cavidad genitourinaria…), el tracto intestinal es la región que contiene la comunidad microbiana más numerosa, densa y diversa del cuerpo humano. En concreto, la microbiota intestinal está compuesta por billones de microorganismos, de los que una gran mayoría son bacterias.

El colon posee características fisiológicas y un constante aporte de nutrientes que lo convierten en un eficiente reactor biológico. Gracias a ello, este órgano forma uno de los ecosistemas más densamente poblados de la Tierra, en el que se desarrolla una microbiota que interviene en numerosas funciones fisiológicas del organismo.

Algunas enfermedades están asociadas con desequilibrios en la microbiota intestinal, que interviene en numerosas funciones de organismo.

Es fácil deducir que semejante cantidad y diversidad microbiana ejerce importantes funciones en nuestro cuerpo y que, por tanto, sus desequilibrios podrían causar diversos desajustes en nuestra salud. Algunas alteraciones de la microbiota intestinal, como la reducción de diversidad, la excesiva proliferación de patobiontes (patógenos oportunistas) o la reducción de la producción de ácidos grasos de cadena corta o de bac­terias con propiedades antiinflamatorias, están asociadas con algunas enfermedades, tanto infecciosas como no transmisibles. Aunque no se ha demos­trado que las alteraciones de la microbiota, conocidas como disbiosis, sean la causa de patologías, cada vez resulta más evidente la importancia de emplear estrategias que modulen la composición y/o la funcionalidad de la microbiota intestinal. Entre ellas, las estrategias más estudiadas son tres: la utilización de microorganismos probióticos, el consumo de compuestos prebióticos y los trasplantes fecales. En esta entrada del blog nos centraremos en las dos primeras.

Probióticos

Según una definición ampliamente aceptada por la co­munidad científica, los probióticos son microor­ganismos vivos que, cuando se administran en cantidades adecuadas, proporcionan un beneficio para la salud del or­ganismo. La diferencia con las bacterias mutualistas del tracto gastrointestinal (aquellas que en su relación con un organismo proporcionan un beneficio mutuo) es que son microorganismos que se han aislado y cultivado, y que existen evidencias científicas y clínicas sobre su capacidad para aportar un beneficio para la salud.

Se considera que este beneficio es gene­ral en algunas especies de bacterias que pertenecen a los géneros Bifidobacterium y Lactobacillus. Son especies con las que se han realizado numerosos ensayos clínicos que demuestran su potencial para mejorar ciertas condiciones intestinales y ejercer una modulación inmunológica. Los efectos saludables se han demostrado frente a la diarrea infecciosa, la asociada al tratamiento con antibióticos o el síndrome de intestino irritable, así como con la mejora del tránsito intestinal. Los mecanismos por los que los probióticos mejo­ran la salud gastrointestinal se relacionan con la produc­ción de compuestos antimicrobianos, vitaminas, nutrientes esenciales o mecanismos de defensa y competición frente a patógenos y la interacción con el sistema inmune.

Alimentos como el yogur o el queso cuentan con bacterias que favorecen una adecuada microbiota intestinal.

Alimentos como el yogur o el queso cuentan con bacterias que favorecen una adecuada microbiota intestinal.

Aunque la mayoría de los probióticos no se ins­talan permanentemente en el intestino, parece que ejercen un efecto saludable durante su tránsito. El beneficio está asociado a su funcionali­dad, que podría contribuir a restablecer un equilibrio micro­biológico intestinal saludable. Por otra parte, no exis­ten datos de efectos adversos por su consumo, aunque siempre es recomendable consultar antes con los profesionales sanitarios.

Hay especies de lactobacilos y bifidobacterias, en las que se incluyen muchos probióticos, que están presentes en alimentos como el yogur, el kéfir o el queso, así como en otro tipo de alimentos fermentados, como el chucrut, las aceitunas o el kimchi. Sin embargo, el creciente interés científico, clínico y comercial sobre los probióticos ha generado un esce­nario en el que proliferan multitud de productos que se denominan probióticos, pero todavía resulta difícil para consumidores y profesionales sa­nitarios separar la paja del grano.

No todos los productos etiquetados como probióticos responden a la definición y en algunos no existe ningún dato que identifique a las bacterias que contiene, la cantidad en que se encuentran y la evidencia que respalda el beneficio para la salud. Es fundamental conocer la composición de cada producto y contar con información fiable y contrastada de la acción de estos microorganismos sobre nuestra salud. También es importante conocer los mecanismos y las características que explican los beneficios de cada probiótico.

Prebióticos

A diferencia de los probióticos (microorganismos vivos), los prebióticos son componentes de los alimentos, no digestibles, que están presen­tes de forma natural o añadidos. Por decirlo de un modo muy sencillo, los prebióticos serían el “alimento” de las bacterias beneficiosas (probióticos). Por ello, también pueden contribuir a restablecer la diversidad bacte­riana y riqueza genética que se ve empobrecida en ciertas condiciones patológicas, como obesidad, enfermedades inflamatorias intestinales, etc.

Los prebióticos son sustratos utilizados selectivamente por microorganismos del hospedador que le confieren un efecto beneficioso para la salud. En el tracto intestinal, sirven como sustrato de crecimiento para la microbiota resi­dente en el intestino y, de este modo, promueven cambios de composición o metabólicos que se consideran beneficiosos. Se trata fun­damentalmente de carbohidratos que favorecen una po­blación microbiana intestinal sacarolítica, que a su vez aumenta la formación de ácidos grasos de cadena corta que proporcionan múltiples beneficios metabólicos. En algunos casos son suministrados con probióticos, denominándose simbiótico al conjunto.

Los alimentos ricos en fibra son los que nos aportan más componentes prebióticos.

Los alimentos ricos en fibra son los que nos aportan más componentes prebióticos.

Los alimentos que nos aportan más componentes prebióticos son los ricos en fibra, como las frutas, las verduras, las legumbres o los cereales integrales. Curiosamente, el primer prebiótico natural de consumo humano está constituido por los oligosacáridos que se ingieren con la leche materna. Estos compuestos favorecen el desarrollo de bacterias beneficiosas como las bifidobacterias, y a la vez aumentan la resistencia a la invasión por patógenos. Por ello, una línea de investigación y desarrollo comercial actual consiste en incluir, en la fórmula de leches maternizadas, oligosacáridos equivalentes a los presentes en leche humana (que prácticamente no existen en la leche de vaca).

¿Te ha quedado algo más claro qué son los probióticos y los prebióticos y en qué se diferencian? Conocer estos componentes beneficiosos para nuestra microbiota intestinal nos ayudará a valorar lo que ingerimos.

 

* Carmen Peláez y Teresa Requena son investigadoras del CSIC en el Instituto de Investigación en Ciencias de la Alimentación (CIAL) y autoras de La microbiota intestinal, de la colección de divulgación ¿Qué sabemos de?, disponible en la Editorial CSIC y Los Libros de la Catarata.

¿Cómo ha cambiado nuestra movilidad con la pandemia? Ayúdanos a estudiarlo

Por Frederic Bartumeus y John Palmer (CSIC)*

La eliminación de las restricciones impuestas para doblegar la primera ola de la epidemia de COVID-19 trajo consigo un aumento de la movilidad y de las interacciones sociales, pero no de una forma homogénea en el conjunto de la población. Esta es una de las primeras conclusiones de las dos encuestas sobre movilidad y distanciamiento social realizadas a la población en el marco del proyecto Distancia-COVID, en el que participamos investigadores e investigadoras de varios centros del Consejo Superior de Investigaciones Científicas (CSIC) y la Universidad Pompeu Fabra (UPF).

Nuestro objetivo es comprender mejor las dinámicas de contagio observadas durante las distintas fases de la pandemia y contribuir a plantear escenarios de mayor utilidad para gestionar la crisis generada por el SARS-CoV-2. Por eso acabamos de lanzar una tercera encuesta completamente anónima en la que te animamos a participar.

Movilidad COVID

Imagen de César Hernández (CSIC)

Cambios tras el estado de alarma

Gracias a las respuestas de 6.952 personas, hemos podido aproximarnos a la diversidad de los patrones de movilidad e interacción social de la población española entre el 14 de mayo y el 31 de agosto de 2020. Los resultados obtenidos nos indican que, si bien en este periodo la estructura de los hogares –el número de personas y las edades con los que se convive– no cambió, lo que sí lo hizo fue el número de contactos diarios fuera de casa.

Con la supresión del estado de alarma la población de más de 20 años pasó de una media de 3 contactos diarios durante el confinamiento a una media de 5. Sin embargo, este cambio no fue homogéneo ya que los contactos aumentaron principalmente en franjas de edad concretas: por un lado, crecieron los encuentros entre jóvenes de 20 a 29 años y, por otro, los contactos de mayores de 65 con personas de 30 a 49 años.

Las estimaciones denotan un cambio notable en el número medio de contactos en la franja de 20 a 29 años, pero la encuesta no nos informa de su contexto y puede haber múltiples causas que expliquen este aumento. En el caso del grupo de edad igual o mayor de 65 años el incremento podría corresponderse con personas mayores que se relacionan con los que generacionalmente podrían ser sus hijos adultos.

En relación a la movilidad, nuestro estudio muestra que durante el estado de alarma la mayoría de los movimientos de las personas encuestadas fuera de casa no superaban los 10 kilómetros de distancia. De hecho, el 40% informó de que sus desplazamientos diarios no iban más allá de un radio de acción de 1 km alrededor de su casa. Sin restricciones, los desplazamientos por encima de los 10 km se dispararon, al igual que lo hicieron el número de salidas semanales.

El destino de los viajes de los encuestados durante y tras el estado de alarma siguió dominado por los comercios, así como por escapadas a espacios públicos y viajes diarios a los lugares de trabajo. No obstante, será necesario realizar un modelo estadístico de los datos disponibles para poder hacer estimaciones más detalladas y fiables sobre la distancia y destino de los desplazamientos.

Iniciamos la tercera fase de encuestas

La primera encuesta se llevó a cabo dentro del período de estado de alarma, entre el 14 mayo y el 10 de junio de 2020. La segunda se completó ya fuera de este período, entre el 24 de julio y el 31 de agosto, cuando ya no existían la mayoría de las restricciones. Los datos obtenidos se han recogido en un informe, que también incluye unas primeras estimaciones de los parámetros de movilidad y distanciamiento social para el conjunto de la población española.

Para poder completar esta información necesitamos más datos y por ello vamos a realizar una tercera encuesta, en la que se puede participar de manera anónima a través de la página web del proyecto: https://distancia-covid.csic.es/encuesta/

Las preguntas del cuestionario se centran en las dinámicas de movilidad, el número de contactos mantenidos en los últimos días y las personas con las que se convive en un mismo hogar. Participar en la encuesta es contribuir de una forma importante a la lucha científica contra la COVID-19 en España.

 

* Frederic Bartumeus es investigador del CSIC en el Centro de Estudios Avanzados de Blanes (CEAB) y el Centro de Investigación Ecológica y Aplicaciones Forestales (CREAF). John Palmer es profesor de la Universidad Pompeu Fabra (UPF). En el proyecto  Distancia-COVID participan también el Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC), un centro mixto del CSIC y de la Universitat de les Illes Baleares, el Instituto de Física de Cantabria (IFCA-CSIC) y el Instituto de Economía, Geografía y Demografía (IEGD-CSIC).

¿Existen los virus ‘buenos’?

Por Mar Gulis (CSIC)

La respuesta es sí. Entre los 5.000 virus descritos por la comunidad científica, hay algunos devastadores para el ser humano como el SARS-CoV-2, causante de la pandemia que vivimos desde hace meses, pero también existen otros que pueden ser beneficiosos para nuestra salud. Los bacteriófagos (fagos) pertenecen a este segundo grupo y se perfilan como la solución contra las bacterias resistentes a los antibióticos, que cada año causan 33.000 muertes en la Unión Europea y 700.000 en todo el mundo.

Ejemplares de bacteriófago phiA72 de ‘Staphylococcus aureus’ aislados en el Instituto de Productos Lácteos de Asturias (IPLA-CSIC). / Pilar García

Como cualquier otro agente vírico, los fagos son parásitos intracelulares que necesitan infectar una célula, en este caso una bacteria, para multiplicarse en su interior, pero, a diferencia de otros virus, resultan totalmente inocuos para humanos, otros animales, plantas y el medioambiente (en este vídeo puedes ver cómo se comportan). Si los comparamos con los antibióticos disponibles –muchos incapaces de eliminar las infecciones provocadas por bacterias– tienen otras ventajas. “Son muy específicos, por lo que solo eliminan el patógeno de interés, mientras que los antibióticos suelen ser de amplio espectro; infectan por igual bacterias resistentes y bacterias sensibles a los antibióticos; y se pueden autorreplicar”, explican Lucía Fernández, Diana Gutiérrez, Ana Rodríguez y Pilar García, investigadoras del CSIC en el Instituto de Productos Lácteos de Asturias (IPLA) y autoras de Los bacteriófagos. Los virus que combaten infecciones (CSIC-Catarata). Además, añaden, “la infección de la bacteria por parte del fago produce más fagos, con lo que la capacidad antimicrobiana aumenta, al contrario de lo que sucede con los antibióticos, cuya dosis efectiva disminuye a lo largo del tiempo”.

Invisibilizados por los antibióticos

Los antibióticos y los bacteriófagos tienen historias paralelas. Ambos se descubrieron a principios del siglo XX, pero su devenir ha sido totalmente distinto. En 1917 el microbiólogo Félix d’Herelle observó cómo cultivos bacterianos que crecían en un medio líquido desaparecían de la noche a la mañana si se les añadía agua residual filtrada, lo que solo se podía interpretar como consecuencia de un virus filtrable, parásito de las bacterias. Félix d’Herelle llamó bacteriófagos (comedores de bacterias) a estos virus, y tanto él como otros microbiólogos llegaron a supervisar la comercialización de productos fágicos para uso clínico en los años 20. Incluso la compañía estadounidense Lilly puso en el mercado compuestos basados en bacteriófagos. Sin embargo, su potencial terapéutico quedó relegado en favor de los antibióticos.

Una década más tarde, en el año 1928, el doctor Alexander Fleming realizó uno de los descubrimientos más importantes del siglo: la penicilina. Algunos años después comenzó a producirse a gran escala y fue utilizada a nivel mundial para el tratamiento de infecciones humanas y animales. Más adelante, en los años cuarenta y cincuenta, tuvo lugar lo que se conoce como edad de oro de los antibióticos, durante la cual se llevó a cabo el descubrimiento de todos los antibióticos conocidos y utilizados hasta la fecha.

Este comienzo y desarrollo estelar tiene un final un tanto fatídico, debido a su pérdida de eficacia. “A pesar de la euforia inicial, poco tiempo después se comprobó que las bacterias pueden evolucionar y adquirir diversos mecanismos de resistencia a estos compuestos”, señalan las autoras. Este proceso de selección natural se ha visto incrementado por el uso abusivo de los antibióticos, de manera que la resistencia a antimicrobianos se ha convertido en un problema de nivel global. “Según estudios realizados por la OMS, se prevé que en el año 2050 las bacterias multirresistentes serán la principal causa de muerte de la población humana”, agregan.

Mientras tanto, ¿qué sucedió con los bacteriófagos? Las investigadoras explican en su libro un hecho poco conocido. “Independientemente del abandono del uso terapéutico de los bacteriófagos en Occidente, varios grupos de investigación de países de Europa del Este continuaron con esta línea de trabajo, debido sobre todo a la baja disponibilidad de antibióticos y a su alto precio”. De hecho, el uso hospitalario de los fagos se ha mantenido en Polonia, Rusia y antiguas repúblicas soviéticas como Georgia, donde se encuentra el Instituto Eliava, fundado en 1923 y considerado actualmente el centro de referencia mundial en la aplicación clínica de fagos.

Morfología de los bacteriófagos. A: representación esquemática de la morfología de un bacteriófago. B: microfotografías electrónicas de distintos bacteriófagos aislados en los laboratorios del IPLA-CSIC. / Diana Gutiérrez

Así, la terapia fágica no es un tratamiento nada novedoso, y ahora parece resurgir entre la comunidad científica occidental. Las científicas del IPLA así lo confirman: “entre los años 1987-2000 se obtuvieron resultados muy satisfactorios que demuestran la gran eficacia de los bacteriófagos en comparación con los antibióticos. A partir de ese momento, numerosos grupos de investigación han encaminado su trabajo hacia este campo, utilizando fagos de forma individual, como cócteles o en combinación con otros agentes antimicrobianos (antibióticos o desinfectantes) para la eliminación de las bacterias patógenas”.

En Occidente, el tratamiento de infecciones con fagos queda restringido a pacientes individuales, y solo con un uso compasivo, es decir, cuando no existen otras posibilidades para salvarles la vida o simplemente para aliviar su sufrimiento. No obstante, “a pesar de la falta de una regulación clara, se están llevando a cabo varios ensayos clínicos en diferentes países con resultados prometedores”, indican las biólogas.

Biocidas y desinfectantes

Además de la terapia fágica en humanos, estos virus presentan un amplio abanico de aplicaciones. En el ámbito de la veterinaria, la investigación se orienta al “uso de fagos como agentes profilácticos y terapéuticos en animales de granja, principalmente para tratar bacterias patógenas en pollos y cerdos”. Ya se aplican en algunos países como en EEUU como alternativa ‘amigable’ desde el punto de vista medioambiental a algunos de los productos fitosanitarios. Además, el hecho de que los fagos se aíslen de distintas fuentes naturales permite que sean registrados como biopesticidas y así ser utilizados en agricultura ecológica.

Bacteriófago phiIPLA-C1C de ‘Staphylococcus epidermidis’ aislado en el IPLA-CSIC. / Pilar García

El sector de la seguridad alimentaria también es prometedor para el empleo de los bacteriófagos, ya que “pueden servir como bioconservantes de alimentos, como desinfectantes de instalaciones industriales o incluso en el desarrollo de sistemas de identificación de contaminación bacteriana en los alimentos. De esta forma, se abarca cada etapa de elaboración del producto”, resumen las científicas del CSIC.

Una vez detectadas sus potencialidades, hay todo un campo de trabajo por delante para el aislamiento, la caracterización y la producción de fagos a gran escala. “En la actualidad se están diseñando métodos adecuados de producción y purificación para facilitar y abaratar su comercialización”, precisan las investigadoras.

Los requerimientos legales para la administración de productos fágicos también son otro paso imprescindible dentro del largo proceso que ha de recorrer todo compuesto antes de incorporarse al vademécum de medicamentos. En este ámbito hay diferencias notables entre los países donde existe una legislación específica para la terapia con fagos, como Polonia o Georgia, y otros países europeos donde solo se permite su uso compasivo. A este respecto, las investigadoras son optimistas: “en la práctica clínica existen aún esperanzas de que esta nueva estrategia de tratamiento de enfermedades infecciosas pueda llegar a tiempo para resolver la crisis actual. Algunos de los puntos clave que es preciso reforzar son el apoyo a la investigación básica y a los ensayos clínicos, así como una mayor interacción entre empresas biotecnológicas, farmacéuticas, centros de investigación y autoridades sanitarias”, concluyen.

 

Bacterias en nuestro cuerpo: ¿dónde se aloja la microbiota humana?

Por Carmen Peláez y Teresa Requena (CSIC)*

La inscripción “Conócete a ti mismo”, grabada en el frontispicio del templo griego de Apolo en Delfos, ya indicaba que el conocimiento de lo absoluto comienza por el conocimiento de uno o una misma. Si nos preguntamos ¿qué somos realmente?, y nos ceñimos exclusivamente al pragmático método científico de describir lo que podemos experimentar, podríamos empezar tratando de contestar a la siguiente cuestión: ¿de qué se compone nuestro cuerpo?

Teniendo en cuenta que nuestro organismo está formado tanto de células humanas (organizadas en tejidos, órganos y sistemas) como de células microbianas, podría decirse que ‘somos’ toda esa amalgama de células humanas más la microbiota. En ese ‘somos’ las células microbianas serían ‘los otros’, haciendo un paralelismo con la película de Alejandro Amenábar. Solo que en este caso esos otros, aunque no los vemos, también están vivos y forman parte de ‘nosotros’, pues convivimos en un mismo escenario que es nuestro cuerpo. Si queremos conocernos debemos considerar la presencia de esos otros y la influencia que ejercen en el contexto de nuestra inevitable convivencia. A la unidad que forman la microbiota y las células humanas, y que interactúa como una entidad ecológica y evolutiva, se la denomina holobionte humano.

Considerado como holobionte, el ser humano es un ecosistema formado por millones de microorganismos, entre los cuales se da una relación simbiótica. / Gerd Altmann - Pixabay

Considerado como holobionte, el ser humano es un ecosistema formado por billones de células humanas y de microorganismos, entre los cuales se da una relación simbiótica. / Gerd Altmann – Pixabay

Se ha llegado a afirmar que la microbiota humana puede alcanzar alrededor de 100 billones de bacterias, un número que podría superar en 10 veces al de nuestras propias células. No obstante, estas cantidades se están reconsiderando y las estimaciones más recientes indican que nuestro organismo está compuesto por 30 billones de células y que el número de células bacterianas, sin ser constante –ya que se evacúa cierta cantidad del intestino de manera regular–, sería similar. Es decir, los cálculos recientes estiman que tendríamos, más o menos, el mismo número de células humanas que de bacterias. En cualquier caso, lo que está claro es que la población de bacterias del holobionte humano es extraordinariamente numerosa.

Las bacterias de la microbiota que se reparten por nuestro cuerpo presentan una estructura filogenética muy particular que se asemeja a un gran árbol con pocas ramas principales que, a su vez, se dividen en numerosos brazos. Las ramas principales serían los órdenes o filos, que en el cuerpo humano están representados principalmente por 5 de los más de 100 que existen en la naturaleza: Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria y Verrucomicrobia. Veamos en qué partes del cuerpo se alojan estos diferentes tipos de bacterias.

Un recorrido por las partes del cuerpo donde se aloja la microbiota humana

La piel está recubierta de microorganismos, aunque de diferente modo según las zonas: en las partes más secas, como brazos y piernas, el número es bajo. Pero en los poros, los folículos pilosos, las axilas o los pliegues de la nariz y las orejas, donde hay más humedad y nutrientes, su número es mayor y su composición, diferente. Las manos se caracterizan por tener la microbiota más diversa y más variable. El filo que predomina en las diferentes regiones de la piel es Actinobacteria, como corinebacterias y cutibacterias, y también los filos Firmicutes y Bacteroidetes, representados por Staphylococcus epidermidis. Esta especie es la más abundante en la piel, participa en la regulación del pH y, entre otras cosas, compite con el patógeno Staphylococcus aureus e impide su asentamiento.

La cavidad oral, puerta de entrada al aparato digestivo, es una de las regiones del cuerpo con mayor abundancia y diversidad de microorganismos. La microbiota se reparte de manera diferente entre la saliva, la lengua, los dientes, las mejillas y las encías, y contribuye a mantener el equilibrio necesario para la salud oral. Si este equilibrio se rompe, la microbiota oral puede ser responsable de la caries dental y de infecciones como la periodontitis.

La cavidad genitourinaria femenina, particularmente la vagina, también está habitada por una microbiota abundante, que durante la etapa reproductiva está dominada por lactobacilos. Estas bacterias constituyen una barrera eficaz frente a la invasión por patógenos bacterianos y fúngicos. En la infancia y tras la menopausia, la microbiota de esta zona se asemeja más a la de la piel y la región anal.

La Escherichia coli es una de las muchas especies de bacterias que pueblan el tracto intestinal humano. / Gerd Altmann -Pixabay

La ‘Escherichia coli’ es una de las muchas especies de bacterias que pueblan el tracto intestinal humano. / Gerd Altmann – Pixabay

Pero es el tracto intestinal la región que contiene la comunidad microbiana más numerosa, densa y diversa del cuerpo humano. El colon posee características fisiológicas y un constante aporte de nutrientes que lo convierten en un eficiente reactor biológico donde puede desarrollarse una microbiota que interviene en numerosas funciones fisiológicas del organismo. Solo los Firmicutes y Bacteroidetes, dos de los cinco filos que comentábamos anteriormente, representan el 90% del ecosistema intestinal y son los mayoritarios en los seres humanos, aunque los géneros que los componen aparecen representados de forma diferente entre los individuos.

Se han identificado más de 1.000 especies distintas en la microbiota intestinal humana, aunque no todas están presentes en todos los individuos. Según Rob Knight, de la Universidad de Colorado, la probabilidad de que una bacteria intestinal procedente de un individuo sea de diferente especie que la obtenida de otro es superior al 90%, lo que indica una alta variabilidad interindividual. Por tanto, la diversidad bacteriana intestinal podría representar un carácter distintivo: una huella microbiana identificativa de cada individuo. Esta diversidad de especies dificulta que se pueda establecer un núcleo taxonómico universal compuesto por un conjunto consistente de especies presentes en la microbiota intestinal humana. También dificulta la descripción de lo que llamaríamos una microbiota normal o saludable. Aún más, la microbiota es muy diferente según la etapa de la vida en que nos encontremos. Sin embargo, sí hay evidencias de los beneficios para la salud que conlleva mantener una microbiota abundante y diversa. Nos adentraremos en ello en un próximo texto del blog.

 

* Carmen Peláez y Teresa Requena son investigadoras del CSIC en el Instituto de Investigación en Ciencias de la Alimentación (CIAL) y autoras de La microbiota intestinal, de la colección de divulgación ¿Qué sabemos de?, disponible en la Editorial CSIC y Los Libros de la Catarata.

Zeolitas en Etiopía: una solución ecológica contra la fluorosis

Por Mar Gulis (CSIC)

¿Te has preguntado alguna vez por qué aparecen manchas en los dientes? El tabaco o el vino tinto son algunas de las causas que te vendrán a la cabeza más rápidamente. Entre la multitud de motivos posibles que encontrarás, nos detendremos en uno que va más allá del esmalte dental: la fluorosis. Además de las manchas que produce en los dientes, esta enfermedad ósea causada por el consumo excesivo del ión fluoruro (conocido como flúor) en la dieta, sobre todo a través del agua, puede provocar osteoesclerosis, calcificación de los tendones y ligamentos, deformidades de los huesos, y otras afecciones.

Fuente de agua potabilizada

Fuente de agua potabilizada por la tecnología del CSIC en Etiopía. / César Hernández.

Según estima la Organización Mundial de la Salud (OMS), la fluorosis afecta a unos 300 millones de personas en el mundo. No en vano, la OMS considera que el flúor es una de las diez sustancias químicas que constituyen una preocupación para la salud pública, entre las que también figuran el amianto, el arsénico y el mercurio, entre otras.

A pesar de que el fluoruro tiene efectos beneficiosos para nuestra dentición como la reducción de las caries, la presencia de elevadas cantidades de este elemento en el agua puede convertirlo en un contaminante natural. Consumir agua con una concentración de fluoruro superior a 1,5 miligramos por litro (límite establecido por la OMS) puede provocar problemas de salud asociados a la fluorosis, como los antes citados, y es especialmente perjudicial para mujeres en estado de gestación y niños/as que están formando sus huesos.

La existencia de flúor en el agua tiene un origen geológico, es decir, se debe a que el agua está en contacto con rocas de acuíferos que tienen el ion fluoruro en su composición química. Estas rocas se hallan en terrenos volcánicos, por tanto, más de 25 países en todo el mundo están afectados por la contaminación de fluoruros en el agua, entre los que se encuentran España, China, India, Estados Unidos y Etiopía. En este último país, el 41% de sus fuentes de agua potable tienen una concentración de fluoruro superior a 1,5 mg/l y se calcula que aproximadamente el 15% de la población etíope está afectada por fluorosis.

Zeolitas naturales

Mineral de Estilbita, zeolita natural de Etiopia. / Defluoridation Ethiopia.

Filtros naturales para atrapar el fluoruro

Etiopía es uno de los países pertenecientes al valle del Rift, junto con Kenia, Uganda y Tanzania. En la zona del valle del Rift etíope, “donde se abra un pozo, va a haber contaminación por fluoruro y, por tanto, la enfermedad tiene elevados números”, asegura Isabel Díaz, investigadora del CSIC en el Instituto de Catálisis y Petroleoquímica (ICP). Díaz es además una de las inventoras de una tecnología que permite extraer el fluoruro del agua de una manera barata y sostenible.

Esta tecnología está basada en zeolitas naturales, un mineral abundante en Etiopía, así como en otros lugares del mundo, ya que también es de origen volcánico. “Su principal característica es que es un material muy poroso, lleno de cavidades de tamaño molecular”, explica la científica del CSIC. Gracias a esta estructura, las zeolitas tienen la capacidad de atrapar una amplia variedad de elementos, como sodio, potasio, calcio y magnesio, y son utilizadas como catalizadores y absorbentes en un gran número de procesos químicos industriales, sobre todo en la industria petroquímica.

Estructura zeolita

Estructura atómica de la Estilbita. En azul moléculas de agua, verde cationes calcio y morado cationes sodio. / Defluoridation Ethiopia.

Con la nueva tecnología desarrollada por el grupo del ICP —además de Isabel Díaz como investigadora principal, forman parte del equipo los científicos Joaquín Pérez Pariente y Luis Gómez Hortigüela—, junto con la Universidad de Adís Abeba, se modifica la zeolita para que absorba selectivamente el ion fluoruro. “De esta forma es posible abastecer a la población de agua potable”, afirma Díaz. Esta solución resulta primordial en el valle del Rift en Etiopía, dado que el agua de los pozos en la zona tiene una concentración de fluoruro de 2-3 mg/l, prácticamente el doble del límite que establece la OMS.

Planta potabilizadora

Planta potabilizadora con zeolitas en Etiopía. / César Hernández.

Aunque este tipo de métodos basados en absorbentes generan una gran cantidad de residuos tras su uso, una de las mayores ventajas de la zeolita es que luego puede usarse como fertilizante del suelo. En la actualidad, se han instalado dos plantas potabilizadoras con zeolitas en las localidades etíopes Dida y Obe, gracias al proyecto Defluoridation Ethiopia, del CSIC y la ONG Amigos de Silva. Esta acción supone un primer paso para que empiece a mermar la cifra de 14 millones de personas en riesgo de padecer fluorosis que, según los estudios, viven en el país africano.

 

Lecturas fresquitas para un verano de ciencia

Por Mar Gulis (CSIC)

Llegan las vacaciones de verano y en ‘Ciencia para llevar’ queremos invitarte a que hagas un hueco en tu maleta para la divulgación. La colección ¿Qué sabemos de? (CSIC-Catarata) te ofrece más de cien libros con los que podrás disfrutar de la ciencia durante estos días de descanso. Aquí te presentamos algunos de los más recientes.

Lecturas veraniegas

 

Mentiras de la física cuántica

El primero va de los falsos mitos que rodean a la física que estudia las partículas más diminutas, como los átomos o los electrones. En Verdades y mentiras de la física cuántica, Carlos Sabín, investigador del CSIC en el Instituto de Física Fundamental, desmonta creencias erróneas acerca de esta rama de la física y aclara que los gatos no están vivos y muertos a la vez, que no modificamos la realidad solo con observarla o que la información no puede viajar más rápido que la luz. En palabras del autor, el libro trae “malas noticias” para quienes creen que la física cuántica es “una manera de escapar a las leyes de la física y entrar en un mundo nuevo donde todo está permitido, todo es impredecible y la realidad puede modificarse a voluntad”. La buena noticia es que Sabín ofrece la explicación correcta a los fenómenos cuánticos más desconcertantes, y lo hace de forma clara y sencilla, sin renunciar al humor o la ironía.

Asimetrías en la materia, la vida y el universo

Aunque a priori parezca improbable, nuestras manos, un tornillo y la concha de un caracol tienen algo importante en común: todos ellos son objetos quirales. Esto quiere decir que su imagen especular no puede superponerse con la original, por mucho que la giremos. Por eso, en el espejo la mano derecha se convierte en la izquierda, un tornillo cambia la dirección de su rosca y la concha ‘da vueltas’ en sentido contrario. En el libro La quiralidad. El mundo al otro lado del espejo, el químico del CSIC en el Instituto de Catálisis y Petroleoquímica Luis Gómez-Hortigüela nos invita a emular a Alicia, el personaje de Lewis Carroll, y a embarcarnos en un viaje alucinante para descubrir las sorprendentes y variadas expresiones de esta propiedad, que está estrechamente relacionada con la asimetría. La quiralidad, por ejemplo, se manifiesta en el cuerpo humano, con un corazón que se encuentra desviado a la izquierda y un cerebro que compartimenta las funciones de forma asimétrica en sus dos hemisferios. Sin embargo, la relevancia fundamental de este fenómeno se expresa en objetos mucho más pequeños, como el ADN, con sus hélices retorciéndose invariablemente hacia la derecha, o las partículas elementales, entre las que ha prevalecido la materia sobre la antimateria, una asimetría que ha dado forma a nuestro universo.

Algas diatomeas, el otro pulmón de la Tierra

Las diatomeas, algas unicelulares capaces de producir más oxígeno que todos los bosques amazónicos, centroafricanos e indonesios juntos, son ‘el otro pulmón’ de la Tierra. El investigador del Instituto de Ciencias del Mar (CSIC) Pedro Cermeño explica, en Las diatomeas y los bosques invisibles del océano, la importancia de estos microorganismos para los ecosistemas marinos y el conjunto del planeta, y presenta algunas de sus posibles aplicaciones tecnológicas.

Con este libro podrás descubrir que en los océanos también hay bosques y desiertos, y que las diatomeas forman una parte esencial de los primeros, donde sirven de alimento para larvas, moluscos, crustáceos y peces. “Si pudiésemos acumular toda la biomasa que producen las diatomeas, en tan solo dos décadas tendríamos suficiente como para reemplazar todos los bosques tropicales del mundo”, ilustra el autor. Otra de sus cualidades es que incrementan la eficiencia de la bomba biológica, un proceso mediante el cual los ecosistemas marinos absorben dióxido de carbono (CO2) de la atmósfera y lo transfieren hacia las capas más profundas del océano, lo cual contribuye a paliar el efecto invernadero y a enfriar el clima del planeta. Si quieres saber más sobre las denominadas ‘joyas del mar’, no dejes de abrir las páginas de este libro.

Virus ‘buenos’ que combaten bacterias infecciosas

¿Existen los virus ‘buenos’? La respuesta es sí: algunos de ellos pueden usarse para luchar contra bacterias resistentes a los antibióticos, uno de los grandes retos de la biología y la medicina en la actualidad. En Los bacteriófagos. Los virus que combaten infecciones, cuatro investigadoras del CSIC en el Instituto de Productos Lácteos de Asturias (Lucía Fernández, Diana Gutiérrez, Ana Rodríguez y Pilar García) nos presentan a los virus que atacan a las bacterias. Como cualquier otro agente vírico, los bacteriófagos son parásitos que necesitan infectar una célula, en este caso una bacteria, para multiplicarse en su interior; pero, a diferencia de otros virus, resultan totalmente inocuos para los humanos, los animales, las plantas y el medioambiente. El libro presenta las bacterias patógenas que se esconden en el nanomundo y traza la historia de los antibióticos, que hasta ahora en Occidente han relegado a los bacteriófagos. También explica cómo la progresiva pérdida de eficacia de la penicilina y otros compuestos con el mismo efecto están abriendo la puerta al empleo de los bacteriófagos en múltiples campos: desde la terapia fágica para la salud humana y animal, hasta biocidas para la agricultura o productos desinfectantes.

Escritos por personal investigador del CSIC, los libros de la colección ¿Qué sabemos de? son ediciones de bolsillo, por lo que resultarán un práctico compañero de viaje. Pero, si lo prefieres, también podrás leerlos en formato electrónico. ¡Buenas vacaciones y buena lectura!

Barbara McClintock, la descubridora de los genes saltarines

Por Sònia Garcia (CSIC)*

A principios del siglo XX, antes del descubrimiento de la estructura del ADN, los genes no eran mucho más que entidades abstractas para la mayoría de la comunidad científica. En la Universidad de Cornell (Nueva York), una joven Barbara McClintock (1902-1992) empezaba a estudiar los genes del maíz. Aunque en aquella época aún no se permitía a las mujeres la especialización en Genética, McClintock, que se doctoró en Botánica en 1927, se convirtió en un miembro fundamental del grupo de trabajo en citogenética del maíz. La investigadora quería resolver lo que para ella era un misterio: el porqué de la diversidad de colores que se pueden encontrar en una sola mazorca de maíz, incluso dentro del mismo grano. ¿Cómo podía ser que, desarrollándose únicamente a partir del tejido de la planta maternal y por lo tanto compartiendo el mismo material genético, existiera tal variedad cromática en una mazorca?

Barbara McClintock en su laboratorio en 1947. / Smithsonian Institution Archives.

A través de la observación de los cromosomas de esta especie en el microscopio (para lo que ideó nuevos métodos de tinción), Barbara se dio cuenta de que determinados fragmentos de ADN poseían la habilidad de ‘saltar’ de un cromosoma a otro. Con este movimiento, denominado transposición, los genes responsables del color de los granos se activaban o desactivaban de una célula a otra. Estos procesos de transposición de los genes, que se dan al azar –es decir, afectando a unas semillas sí, a otras no y a otras parcialmente–, son los responsables del patrón multicolor de las mazorcas de algunas variedades de maíz.

Precursora de la revolución molecular

Con la investigación de McClintock, el mecanismo de transposición y los fundamentos de la regulación de la expresión génica se habían puesto sobre la mesa. Pero sus nuevas hipótesis chocaban con la concepción estática que se tenía de los genes en aquella época. La idea dominante era que estos se ubicaban en los cromosomas como si fueran las perlas de un collar, cada uno con una posición determinada e inalterable.

Granos de maíz de diferentes colores

Mazorcas de maíz en las que se observa el patrón de color ocasionado por los genes saltarines.

A pesar de la importancia de su descubrimiento, este fue acogido con escepticismo entre la comunidad científica, quizás porque su trabajo era conceptualmente complejo y demasiado rompedor. Ella misma interpretó hostilidad y perplejidad en las reacciones de sus colegas, pero siguió fiel a su línea de investigación. A finales de los años 70 y principios de los 80, la ‘revolución molecular’ reivindicaría las ideas de McClintock sobre los genes saltarines, denominados también transposones o elementos transponibles. Además, con posterioridad al planteamiento de su hipótesis sobre la transposición, otros investigadores demostraron su existencia en la mosca del vinagre (Drosophila melanogaster), en bacterias, levaduras o virus.

Incluso varios años después, en la década de los 90, se demostró que el carácter rugoso de los famosos guisantes de Mendel, con los que este sentó las bases de la genética, era causado por la inserción permanente de un transposón en el gen que codifica la enzima de ramificación del almidón, inactivándolo. Si esta enzima no está presente, los guisantes aumentan su contenido en azúcar. Esto promueve la acumulación de agua y su hinchamiento en una etapa temprana de su desarrollo, lo que, con la posterior deshidratación, acaba dándoles un aspecto rugoso. Al secuenciar este gen en las semillas rugosas se vio que era algo más largo que el de las semillas lisas. El fragmento adicional tenía una estructura similar a los elementos detectados en el maíz.

Guisantes

Guisantes verdes o amarillos, lisos o rugosos, como los que utilizó Mendel en sus experimentos. / Rafael Navajas.

Los elementos transponibles, claves para la evolución

Los elementos transponibles constituyen el componente más abundante de la mayoría de los genomas eucariotas. En el caso del maíz llegan al 80% y en el ser humano se estima que hasta un 45% estaría formado por este tipo de elementos. En muchas ocasiones estos genes saltarines están en realidad ya fijados en el genoma y han perdido la capacidad de moverse. Actualmente se conoce una enorme diversidad de elementos transponibles, y cada vez se comprenden mejor sus efectos.

Aunque normalmente las mutaciones aleatorias que inducen son inocuas, en algunos casos pueden generar beneficios para el organismo, mientras que en otros pueden ser perjudiciales. Existe el fenómeno de la ‘domesticación’ de elementos transponibles, en el que el genoma huésped aprovecha ciertas inserciones en su favor: por ejemplo, la presencia del transposón Alu en el gen de la enzima convertidora de la angiotensina (ECA) tiene un rol preventivo del infarto de miocardio al inactivar esta enzima, que aumentaría la presión arterial y estimularía la aparición de trombos plaquetarios. No obstante, los elementos transponibles también pueden alterar negativamente la expresión de ciertos genes y dar lugar a enfermedades como leucemias, esclerosis múltiple, lupus, psoriasis, esquizofrenia o autismo, entre otras. Se considera que más de 50 enfermedades genéticas estarían relacionadas con este tipo de secuencias, y probablemente este número irá en aumento conforme avance la investigación. Por otro lado, y aunque algunas de  las mutaciones al azar provocadas por los elementos transponibles puedan ser letales o deletéreas, han contribuido indudablemente a la evolución de las especies a lo largo de millones de años y son probablemente uno de sus principales motores.

Los trabajos de Barbara McClintock con el maíz, hace ya más de 60 años, han permitido comprender las bases de muchas enfermedades, lo que puede redundar en posibles tratamientos. Este es un excelente ejemplo de la necesidad de proteger la ciencia básica. Igual que la investigación en virus de pangolines o murciélagos, que hasta hace poco tiempo podía considerarse irrelevante para la sociedad, puede desembocar en un tratamiento efectivo de la COVID19.

Premio Nobel

Barbara McClintock, en la ceremonia de entrega de su Premio Nobel (1983). / Cold Spring Harbor Laboratory.

McClintock fue una investigadora prolífica e incansable y, aunque inicialmente sus ideas fueron cuestionadas, tuvo numerosos reconocimientos durante su trayectoria. Fue la primera mujer en convertirse en presidenta de la Sociedad de Genética de America (1944), obtuvo cuantiosas becas de la National Science Foundation y de la Rockefeller Foundation (1957), recibió la National Science Medal, entregada por el presidente de los EEUU (1971), y la MacArthur Foundation Grant, una prestigiosa y vitalicia beca de investigación. En 1983 logró el Premio Nobel en Fisiología y Medicina por su trabajo sobre los elementos transponibles, lo que la convirtió en la primera persona en obtener el galardón en solitario en esta categoría. Trabajó en su laboratorio de Cold Spring Harbor (Nueva York) hasta poco antes de morir, el 2 de septiembre de 1992, a los 90 años.

* Sònia Garcia es investigadora del Institut Botànic de Barcelona (CSIC, Ajuntament de Barcelona).

La ‘huella olfativa’: ¿es posible identificar a una persona por su olor?

Por Laura López Mascaraque (CSIC) *

Hace cien años, Alexander Graham Bell (1847-1922) planteaba lo siguiente: “Es obvio que existen muchos tipos diferentes de olores (…), pero hasta que no puedas medir sus semejanzas y diferencias, no existirá la ciencia del olor. Si eres ambicioso para encontrar un tipo de ciencia, mide el olor”. También decía el científico británico: “Los olores cada vez van siendo más importantes en el mundo de la experimentación científica y en la medicina, y, tan cierto como que el Sol nos alumbra, es que la necesidad de un mayor conocimiento de los olores alumbrará nuevos descubrimientos”.

A día de hoy la ciencia continúa investigando el olfato y sus posibles aplicaciones. De momento sabemos, al menos, que detectar y clasificar los distintos tipos de olores puede ser extremadamente útil. El olfato artificial, también llamado nariz electrónica, es un dispositivo que pretende emular al sistema olfativo humano a fin de identificar, comparar y cuantificar olores.

Los primeros prototipos se diseñaron en los años sesenta, aunque el concepto de nariz electrónica surge en la década de los ochenta, definido como un conjunto de sensores capaces de generar señales en respuesta a compuestos volátiles y dar, a través de una adecuada técnica de múltiples análisis de componentes, la posibilidad de discriminación, el reconocimiento y la clasificación de los olores. El objetivo de la nariz artificial es poder medir de forma objetiva (cuantitativa) el olor. Se asemeja a la nariz humana en todas y cada una de sus partes y está formada por un conjunto de sensores que registran determinadas señales como resultados numéricos, y que un software específico interpreta como olores a través de algoritmos.

Los sensores de olores –equivalentes a los receptores olfativos situados en los cilios de las neuronas sensoriales olfativas del epitelio olfativo– están compuestos por materiales inorgánicos (óxido de metal), materiales orgánicos (polímeros conductores) o materiales biológicos (proteínas/enzimas). El uso simultáneo de estos sensores dentro de una nariz electrónica favorece la respuesta a distintas condiciones.

Comentábamos en otro texto en este mismo blog cómo se puede utilizar el olfato, y en particular el artificial, en el área de la medicina (mediante el análisis de aliento, sudor u orina), para el diagnóstico de enfermedades, sobre todo infecciones del tracto respiratorio. De hecho, en la actualidad se está estudiando la posibilidad de desarrollar y aplicar narices electrónicas para detectar la presencia o no del SARS-CoV-2 en el aliento de una persona, y ayudar así en el diagnóstico de la Covid-19. Pero lo cierto es que su desarrollo podrá tener otras muchas aplicaciones: seguridad (detección de explosivos y drogas, clasificación de humos, descubrimiento de agentes biológicos y químicos), medioambiente (medición de contaminantes en agua, localización de dióxido de carbono y otros contaminantes urbanos o de hongos en bibliotecas), industria farmacéutica (mal olor de medicamentos, control en áreas de almacenamiento) y agroalimentación (detección de adulteración de aceites, maduración de frutas, curación de embutidos y quesos).

De la ‘huella olorosa’ a la odorología criminalística

Las nuevas generaciones de sensores también pueden servir para detectar ese olor corporal personal conocido como huella aromática u olfativa. Esta podría llegar a identificar a una persona como ocurre con la huella digital. Helen Keller (1880-1968) esbozó la idea de que cada persona emite un olor personal, como una huella olfativa única e individual. Para ella, que se quedó sordociega a los 19 meses de edad a causa de una enfermedad, esta huella tenía un valor incalculable y le aportaba datos como el oficio de cada una de las personas con las que tenía relación. Y no se trata del perfume, sino que cada uno de nosotros tenemos un olor particular, un patrón aromático, compuesto por secreciones de la piel, flora bacteriana y olores procedentes de medicamentos, alimentos, cosméticos o perfumes. Este patrón podría emplearse, en el futuro, para la identificación personal e incluso en investigación criminalística para la localización de delincuentes.

 

Ilustración de Lluis Fortes

Ilustración de Lluis Fortes

La odorología criminalística es una técnica forense que utiliza determinados medios y procedimientos para comparar el olor de un sospechoso con las muestras de olor recogidas en el lugar del crimen. De hecho, en algunos países se permite usar como prueba válida la huella del olor. Así mismo, científicos israelíes están desarrollando una nariz electrónica que pueda detectar la huella aromática de seres humanos a nivel individual como si se tratase de una huella digital. Este olor particular está determinado genéticamente y permanece estable a pesar de las variaciones en el ambiente y la dieta. Por tanto, el olor proporciona un rastro reconocible de cada individuo que puede detectarse por la nariz, por un animal entrenado o utilizando instrumentos químicos más sofisticados.

Las narices electrónicas están todavía lejos de imitar el funcionamiento del olfato humano, pero para algunas aplicaciones este último tiene algunos inconvenientes, como la subjetividad en la percepción olfativa, la exposición a gases dañinos para el organismo o la fatiga y el deterioro que implica la exposición constante a estas pruebas. Por tanto, las narices electrónicas resultan un mecanismo rápido y confiable para monitorizar de forma continua y en tiempo real olores específicos.

* Laura López Mascaraque es investigadora del Instituto Cajal del CSIC y autora, junto con José Ramón Alonso, de la Universidad de Salamanca, del libro El olfato de la colección ¿Qué sabemos de? (CSIC -Catarata).

 

 

¿Es posible “oler” una enfermedad?

Por Laura López Mascaraque (CSIC)*

Aunque el olfato es el más desconocido de los sentidos, es bien sabido que los olores pueden provocar reacciones emocionales, físicas y mentales. Así, algunos olores desagradables y penetrantes, denominados hedores, se han asociado históricamente tanto a la muerte como a la transmisión de enfermedades.

Antes de que se comenzaran a perfeccionar los medios de investigación médica a partir del siglo XVIII, el análisis del olor y color de la orina era el recurso más empleado en el diagnóstico. Desde la Edad Media existían ruedas de orina, divididas en 20 colores posibles, con categorías olfativas que marcaban analogías entre estos caracteres y la dolencia. Los pacientes llevaban la orina en frascos de cristal transparente y los médicos, además de observarla, basaban su diagnóstico también en su sabor. En 1764, el inglés Thomas Willis describió como muy dulce, similar a la miel, la orina de una persona diabética, por lo que a esta enfermedad se la denominó Diabetes mellitus, e incluso durante un tiempo se la llamó enfermedad de Willis.

Rueda de orina medieval que se utilizaba para la realización de uroscopias

Rueda de orina medieval que se utilizaba para la realización de uroscopias.

Hay otras anécdotas curiosas, como la “enfermedad del jarabe del arce”, una patología rara de origen metabólico así llamada por el olor dulzón de la orina de los pacientes, similar al de este alimento. En otros casos, la orina puede oler a pescado si se padece trimetilaminuria (o síndrome de olor a pescado), mientras que el olor a levadura o el olor a amoniaco se debe a la presencia de determinadas bacterias.

El cirujano francés Landré-Beauvais (1772-1840) recomendaba a los médicos memorizar los diferentes olores que exhalaban los cuerpos, tanto sanos como enfermos, a fin de crear una tabla olfativa de las enfermedades para elaborar un primer diagnóstico. En concreto, él y sus seguidores entendían que la halitosis es uno de los signos del empacho e intentaban descubrir determinadas enfermedades por las alteraciones del aliento. Pensaban que algunas patologías tenían un determinado olor, es decir, hacían emanar del cuerpo del paciente compuestos orgánicos volátiles específicos. No les faltaba razón, y aunque hoy día el uso del olfato en la práctica médica ha desaparecido, sabemos que el patrón aromático que desprende una persona enferma es distinto al de una sana:

  • Un aliento con olor afrutado se manifiesta a medida que el organismo elimina el exceso de acetona a través de la respiración, lo que puede ocurrir en caso de diabetes.
  • Un aliento que huele a pescado crudo se produce por un trastorno del hígado (insuficiencia hepática).
  • Un aliento con olor a vinagre es desprendido por algunos pacientes con esquizofrenia.
  • El olor similar al amoniaco (parecido a la orina) suele ser signo de insuficiencia renal o infección en la vejiga.

El análisis moderno del aliento empezó en la década de 1970, cuando el doble premio Nobel de Química (1954) y de la Paz (1962) Linus Pauling detectó por cromatografía de gases más de doscientos compuestos orgánicos volátiles, aunque en la actualidad sabemos que por nuestra boca podemos exhalar más de tres mil compuestos. Entre las pruebas de aliento más conocidas actualmente destacan la que se realiza para detectar la presencia de la bacteria Helicobacter pylori, responsable de úlceras e inflamación del estómago y de la gastritis; las pruebas de alcoholemia que identifican la presencia de etanol y acetaldehído; y las que detectan óxido nítrico como predictivo del asma infantil.

Del olfato canino a las narices electrónicas

Existen indicios de que perros bien entrenados pueden detectar tumores cancerígenos a partir del aliento y las heces. Distintos laboratorios intentan descubrir algún elemento común de los diferentes tumores y, dado que estos animales poseen una enorme capacidad de discriminación odorífera, incluso con olores extremadamente parecidos en su composición química, están siendo entrenados para que, oliendo la orina de los pacientes, puedan indicar o predecir la existencia de cáncer de próstata, pulmón y piel. Una vez se conozcan los tipos de compuestos segregados por las células tumorales que identifican los perros, se podrán desarrollar narices electrónicas para complementar la práctica clínica.

Las narices electrónicas utilizan sensores químicos de vapores (gases) para analizar algunos compuestos orgánicos volátiles que se exhalan en el aliento. Esperamos que, en un futuro próximo, esta identificación electrónica de los olores permita establecer biomarcadores que contribuyan al diagnóstico precoz de diferentes tipos de asma, diabetes, cáncer o enfermedades tropicales como hidatidosis, leishmaniasis y dengue.

De hecho, en la actualidad, se está estudiando la posibilidad de desarrollar narices electrónicas para ayudar en el diagnóstico de la enfermedad Covid-19 a través del aliento de una persona, a fin de detectar la presencia o no del SARS-CoV-2. El paso previo imprescindible será identificar los compuestos orgánicos volátiles propios de esta enfermedad. También, varios estudios a nivel internacional han reportado una asociación directa de la pérdida abrupta del olfato y/o gusto (anosmia/ageusia) como un síntoma temprano común de esta enfermedad. Por ello, varias asociaciones médicas, y en distintos países, han apuntado que la anosmia podría ser un buen marcador de presencia en casos asintomáticos. Además, parece que este síntoma también podría indicar que la infección por SARS-CoV-2 no será tan severa.

 

Laura López Mascaraque es investigadora del Instituto Cajal del CSIC y autora, junto con José Ramón Alonso, de la Universidad de Salamanca, del libro El olfato de la colección ¿Qué sabemos de? (CSIC-Catarata).

‘Top models’ de la ciencia: descubre a los seres vivos más utilizados en el laboratorio

Por Mar Gulis (CSIC)

Entre probetas, microscopios o tubos de ensayo, camuflados o a la vista, podrías encontrarlos en cualquier parte de un laboratorio. Hablamos de una bacteria del intestino humano, de la mosca de la fruta y del ratón; tres especies en principio poco llamativas, o incluso molestas. Sin embargo, la ciencia utiliza estos ‘bichitos’ como modelos de los seres vivos desde hace años. Gracias a ellos, se han hecho importantes descubrimientos sobre los mecanismos de la vida o diseñado tratamientos contra el cáncer. Te invitamos a conocer desde tu casa a estos ‘top model’ de la investigación, que forman parte de la exposición virtual del CSIC Seres modélicos. Entre la naturaleza y el laboratorio.

1. La bacteria que se volvió famosa por cambiar la biología

Aunque a simple vista sea inapreciable, la bacteria Escherichia coli es la más conocida en los laboratorios. Inicialmente se llamó Bacterium coli por ser la bacteria común del colón. Comenzó a estudiarse por las infecciones que causaba, pero a mediados del siglo XX se convirtió en modelo biológico gracias a su estructura sencilla, rápido crecimiento y los medios empleados para su cultivo, que aumentaron las posibilidades experimentales. Su utilización permitió hallar algunos de los principios básicos de la vida, pero E. coli alcanzó el estrellato con el descubrimiento de la técnica de ‘corta y pega’ del ADN, en la cual se usan enzimas para quitar e insertar segmentos de código genético y que supuso el inicio de la ingeniería genética. Hoy en día se emplea en la selección de genes concretos, estudiados posteriormente en otros organismos más complejos.

Micrografía electrónica de Escherichia coli a 10.000 aumentos.

Esta bacteria sabe mucho de los seres humanos. El genoma de E. coli, compuesto por cerca de 4.300 genes, contiene una séptima parte de nuestros genes. Además, habita en el intestino humano, donde forma parte junto a cientos de especies de la mibrobiota intestinal –también conocida como flora intestinal–, que cumple un papel fundamental en la digestión y en la defensa frente a patógenos.

E. coli es un instrumento más del laboratorio. El interés de su investigación reside todavía en las infecciones, ya que cada vez existe una mayor resistencia a los antibióticos, pero también en los mecanismos que se ponen en marcha al dividirse la célula, y cuyo mejor conocimiento permitiría diseñar, con ayuda de técnicas genómicas, fármacos con menor resistencia.

2. ¿Cómo conseguir la apariencia de una mosca?

Imagina lo molesto que resulta el zumbido de una mosca al merodear por nuestras cabezas. A partir de ahora puede que cambies de opinión cuando descubras que las moscas del vinagre o de la fruta (Drosophila melanogaster) son usadas como modelo en biología animal. Es habitual verlas en cualquier lugar, pero son más abundantes en terrenos agrícolas, cuando hace buen tiempo y, desde hace más de un siglo (esta especie se estudió por primera vez en 1901), también en los laboratorios. Saber de la mosca significa saber del ser humano porque ha sido clave en investigaciones sobre enfermedades neurodegenerativas, tumores y metástasis.

Visión dorsal y lateral de un macho y una hembra de Drosophila melanogaster. / Benjamin Prud’homme. Institut de Biologie du Développement de Marseille-Luminy. Parc Scientifique de Luminy.

Uno de los objetivos de su estudio es conocer cómo este pequeño insecto consigue su apariencia. La secuenciación de los genomas ha permitido determinar que la mayoría de genes de la mosca de la fruta son homólogos a los humanos. Por tanto, investigando los genes de esta mosca, que es un modelo de experimentación mucho más simple, se puede tener una idea de la acción de los genes en los humanos.

Sin duda su filón para la genética es más que evidente, y no solo porque el genoma de la mosca del vinagre alberga alrededor de 13.600 genes, un tercio de los que contiene el genoma humano. Además, a partir de cruces entre más de 100 tipos de moscas, el investigador Thomas H. Morgan (1866-1945) estableció que los caracteres se encuentran en los cromosomas y se heredan de generación en generación. Con ello dio lugar a la teoría cromosómica de la herencia, que le hizo merecedor del Nobel de Medicina en 1933.

3. ¡Roedores en el laboratorio!

Llaman la atención por su par de dientes incisivos y por su minúsculo tamaño. Los encontrarás en bosques, en tu ciudad y, cómo no, en un laboratorio. Así son los ratones, o Mus musculus si atendemos a su nombre científico. Utilizados como objeto de experimentación, desde hace más de un siglo son piezas clave en el estudio de la diabetes, el cáncer o los trastornos neurológicos; incluso los misterios del cerebro se exploran antes en los ratones que en el ser humano. Entre la comunidad científica hay quien los llama ‘seres humanos de bolsillo’.

En el año 2002 se dio a conocer la secuencia de su genoma, la primera de un mamífero: con cerca de 30.000 genes, aproximadamente los mismos que nuestra especie, el 99% de estos tiene su homólogo humano. Además, en ellos se reproducen enfermedades humanas como la obesidad o el párkinson, se realizan pruebas de toxicidad y se ensayan terapias futuras con células madre o nuevos materiales. Estos experimentos se han podido llevar a cabo a partir de ratones transgénicos y knock outs, es decir, aquellos producidos con un gen inactivado en todas sus células. En todos los casos, se han utilizado solo ratones machos para evitar que las hormonas sexuales afecten a los resultados.

Foto publicitaria del Jackson Laboratory. De izquierda a derecha, George Woolley, Liane Brauch, C.C. Little, desconocido y W.L. Russell. Década de 1940. / Cortesía del Jackson Laboratory.

Cuando las voces en contra de la experimentación animal comenzaron a alzarse, la defensa de los ratones no formó parte de las primeras reivindicaciones. La regulación llegó al mundo de los roedores con normativas y protocolos a nivel europeo. En ellas se establece que se debe reemplazar al ratón por otro sistema cuando sea posible y reducir el número de individuos en la investigación, para evitar así el sufrimiento animal.

E. coli, la mosca del vinagre y el ratón son solo algunos de las especies más comunes utilizadas como modelo. La muestra Seres modélicos. Entre la naturaleza y el laboratorio, cuyos contenidos puedes consultar online y descargar en alta calidad desde casa, se ocupa también de organismos como la levadura de la cerveza, un gusano minúsculo del suelo, una hierba normal y corriente y un pez de acuario. Elaborada originalmente por la Delegación del CSIC en Cataluña y ampliada en el marco del proyecto de divulgación Ciudad Ciencia, la exposición se complementa con entrevistas a especialistas en cada uno de estos seres modelo.