BLOGS
Ciencia para llevar Ciencia para llevar

CURIOSIDADES CIENTÍFICAS PARA COMPARTIR

Archivo de la categoría ‘Biomedicina y Salud’

Gabriella Morreale, la investigadora del CSIC que introdujo la prueba del talón en España

Gabriella Morreale

Gabriella Morreale siguió trabajando en su laboratorio hasta pasados los 80 años.

Por María Jesús Obregón* y Mar Gulis

Un pequeño pinchazo en el talón a las pocas horas de nacer: quien haya nacido en España a partir de los primeros años 80 no se ha ‘librado’ de esta práctica médica hoy conocida como la prueba del talón. Gracias a ella es posible detectar de manera temprana algunas enfermedades congénitas que pueden generar serios problemas de salud y que, de otro modo, pasarían inadvertidas.

En nuestro país, debemos la introducción de esta prueba a Gabriella Morreale de Escobar, que falleció el pasado mes de diciembre. Nacida en Milán en 1930, hija de padre diplomático y madre bióloga, a los 11 años se afincó con su familia en Málaga. Estudió Química y realizó la tesis doctoral en la Universidad de Granada. Desde entonces su carrera científica estuvo estrechamente vinculada a la de su marido, el médico Francisco Escobar del Rey. Ambos realizaron una estancia postdoctoral en la Universidad de Leiden (Holanda) y se convirtieron en investigadores del Consejo Superior de Investigaciones Científicas (CSIC) en 1958. Más tarde contribuirían a la creación del Instituto de Investigaciones Biomédicas, centro mixto del CSIC y la Universidad Autónoma de Madrid (UAM), donde Morreale desarrolló su actividad hasta pasados los 80 años, mucho tiempo después de su edad de jubilación.

A lo largo de su vida, está investigadora realizó importantes contribuciones científicas que tuvieron un gran impacto sobre la salud pública en nuestro país. Entre otras cosas, luchó por la introducción de la sal yodada en España para la prevención del bocio, introdujo la mencionada prueba del talón y demostró la importancia de las hormonas tiroideas maternas en el desarrollo del cerebro del feto.

Morreale, junto a varias colaboradoras, en los años 60.

Ya durante su tesis doctoral, realizada bajo la dirección del químico Emilio Gutiérrez Ríos y como becaria del médico Emilio Ortiz de Landázuri, probó que en la Alpujarra granadina, al igual que en otras muchas regiones españolas, la carencia de yodo era la causante del bocio endémico, un aumento de la glándula tiroides que origina un bulto en el cuello y a veces hipotiroidismo y discapacidad intelectual. Morreale también demostró que este trastorno podía prevenirse dando sal yodada a la población, una campaña que resultó muy eficaz.

Estos estudios continuaron en Las Hurdes a partir de 1967 con resultados similares. Pese a ello, la administración de yodo añadido a la sal común no fue adoptada en España hasta 1983; y tampoco se ha logrado la yodación universal de la sal, como sí ocurre en otros países.

En 1976, Morreale inició un estudio piloto para la detección del hipotiroidismo congénito, una enfermedad que se caracteriza por la ausencia de tiroides y que puede derivar en casos de discapacidad intelectual y retardos en el crecimiento. A partir del análisis de la sangre del talón de los recién nacidos, estableció un programa que hacía posible el diagnóstico eficaz y precoz de la enfermedad, lo que a su vez permitía tratar a los afectados con hormona tiroidea y evitar así que desarrollaran los otros trastornos.

Prueba del talón

En España, la prueba del talón ha permitido prevenir unos 6.500 casos de discapacidad intelectual y cretinismo.

En pocos años, el programa fue adoptado por todas las comunidades autónomas, algo que ha permitido prevenir unos 6500 casos de discapacidad intelectual y cretinismo hasta la fecha. Por esta contribución, en 1983 Morreale y Escobar recibieron junto a su equipo el I Premio Reina Sofía de Prevención de la Subnormalidad (hoy conocido como Premio Reina Sofía de Prevención de la Discapacidad).

Otra de sus líneas de investigación fue la importancia de las hormonas tiroideas maternas para el desarrollo del feto y, sobre todo, del cerebro fetal. Morreale fue una pionera a nivel mundial al demostrar que las hormonas tiroideas maternas protegen el desarrollo fetal, una conclusión que llevó a promover el control médico de la función tiroidea (hipotiroxinemia) en las mujeres gestantes, especialmente en las áreas de deficiencia de yodo, así como a la vigilancia de los niños prematuros.

Cuando se repasa la trayectoria de científicos y científicas es habitual destacar imágenes de la última etapa de su vida: normalmente, fotografías de una persona ya entrada en años a la que no le faltan reconocimiento ni galardones. Este también podría ser el caso de Gabriella Morreale, merecedora de innumerables premios, entre los que además del mencionado Premio Reina Sofía destacan el Premio Nacional de Medicina, el Severo Ochoa y el Jaime I.

Mañana, martes 24 de abril, el CSIC y la UAM han organizado un acto de homenaje a su figura, en el que se hablará de sus importantes aportaciones científicas, pero también de su infancia y juventud, de la pasión por el conocimiento que transmitió a las varias generaciones de investigadores e investigadoras a las que formó, así como su carácter afable y de su penetrante inteligencia, siempre acompañada de una gran sencillez.

 

* María Jesús Obregón ha sido investigadora del CSIC y discípula de Gabriella Morreale en el Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM).

¿Sabías que el primer “viaje” bajo los efectos del LSD se realizó en bicicleta?

Por José Antonio López Sáez y Mar Gulis (CSIC)*

Corría el año 1938 cuando el prestigioso químico suizo Albert Hofmann (1906-2008), en su búsqueda de aplicaciones medicinales de los alcaloides ergolínicos procedentes del hongo cornezuelo del centeno, consiguió sintetizar un nuevo derivado del ácido lisérgico. Como este nuevo compuesto ocupaba el puesto 25 de la serie de dietilamidas del ácido lisérgico que hasta entonces este eminente investigador había sintetizado en su laboratorio, lo llamó LSD-25.

El consumo de LSD produce notables alteraciones en la percepción visual y auditiva como cambios en el color, forma y brillo de objetos. // Mark Bray. Flickr (modificada)

El consumo de LSD produce notables alteraciones en la percepción visual y auditiva.  / Mark Bray. Flickr (modificada)

En principio, este nuevo alcaloide semisintético pretendía obtener pro­piedades estimulantes de la respiración y la circulación sanguínea. Sin em­bargo, tras numerosos ensayos clínicos acabó siendo desechado por los laboratorios Sandoz, donde trabajaba Hofmann. El LSD fue encerrado en un cajón y pasó a mejor vida, pero el químico no desistió en su empeño: en 1943 decidió sin­tetizar de nuevo el compuesto, a la vez que sintetizaba otro, el LA-111, que resultó ser la ergina, y su isómero isoergina.

Mientras realizaba su trabajo de laboratorio en Basilea (Suiza), sin dar­se cuenta sus dedos se impregnaron de estas tres ergolinas (LSD, ergina e isoergina). De repente comenzó a sentirse extraño, inquieto y mareado, según describió en su propio diario. Dejó el trabajo y se marchó a casa. Allí, tumbado y con los ojos cerrados, comenzaron las alucinaciones: luces deslumbrantes, colores caleidoscópi­cos, imágenes fantásticas… Había descubierto, sin quererlo, el poder alucinógeno de los alcaloides del ergot, aunque a partir de productos sintéticos.

Como buen científico, para estar realmente seguro de lo que había descubierto, unos días después, concretamente el 19 de abril de 1943, decidió hacer un experimento consigo mismo. Ingirió una dosis (que pensaba que era una dosis baja) de 0,25 miligramos (250 microgramos), pero como él mismo narraba más tarde, “resultó que era cinco veces la dosis debida. La dosis normal es 0,05 miligramos, y yo, para mi primer viaje, había tomado cinco veces más”.

Estando en el laboratorio, después de la ingesta, comenzó a sentirse mal. Al parecer se quedó casi sin habla y a duras penas consiguió pedir a su ayudante que le acompañara a casa. Según se cuenta, los vehículos motorizados estaban prohibidos a causa de las restricciones impuestas por la II Guerra Mundial. Así, aquel camino en bicicleta se convertiría en uno de los episodios psicodélicos más emblemáticos de la contracultura de los años 60. “Fue una experiencia terrible, un mal viaje. Todo cambió, y tuve la sensación de que había abandonado mi cuerpo, estaba en el espacio y podía ver mi cuerpo allí, y pensé: tal vez te has vuelto loco, o a lo mejor ya estás muerto. Fue realmente terrible, porque seguía consciente de mi situación y de la realidad cotidiana al mismo tiempo”.

El consumo de LSD produce notables alteraciones en la percepción visual y auditiva como cambios en el color, forma y brillo de objetos. También son frecuentes las sinestesias entre sentidos, es decir, ver un sonido u oír un color. A menudo provoca taquicardias, náu­seas, vómitos y disminución del apetito, incluso temblores y cierta descoordinación motora. Los efectos psicológicos pueden llegar a provocar cambios de ánimo brutales, incapacidad de comunicación, manías o depresio­nes profundas, así como psicosis persistente, cuyos efectos pueden ser devastadores en algunas perso­nas, incapaces de sentir la realidad de su vivir cotidiano y de pensar racionalmente.

El Dr. Albert Hofmann en 2006, con 100 años. // Stepan vía Wikipedia

El Dr. Albert Hofmann en 2006, con 100 años. / Stepan vía Wikipedia.

Prosigue Hofmann el relato de su autoexperimento: “Después de cinco o seis horas volví de nuevo a la normalidad, y entonces realmente me lo pasé muy bien. Disfruté con la sensación de haber vuelto a nacer. Volver de un mundo muy extraño y encontrarme con el mundo cotidiano y familiar. (…) Todas esas cosas que uno no valora en estado normal me parecían bellísimas, me di cuenta de lo bonito que es nuestro mundo, y estaba realmente feliz. Y así fue como descubrí la LSD”.

El LSD es una sustancia líquida, inodora e incolora. Su presentación usual es impregnada en pequeñas planchas de papel secante, que se dividen en cuadraditos o monodosis —conocidos como tripis, ácidos, micropuntos, bichos, secantes, ajos…— que se consumen por vía oral. Los efectos de esta droga psicodélica forman parte del llamado viaje o trip, de ahí que popularmente se la haya co­nocido como “tripi”.

La fecha de aquel viaje en bicicleta, que reveló a Hofmann el descubrimiento de una sustancia psicotrópica de enorme potencia a dosis muy bajas (recordemos que el químico veía el potencial del fármaco como herramienta médica y psiquiátrica, no para uso lúdico), sirvió para que años más tarde, en 1985, se celebrara por primera vez en Illinois (EEUU) el 19 de abril como Día Internacional de la Bicicleta.

Hofmann falleció en su casa de Basilea en 2008 a la increíble edad de 102 años. Un año antes, Lorenzo Veracini, Nandini Nambiar y Marco Avoletta recreaban en el cortometraje de animación A Bicycle Trip lo que pudo ser la experiencia de Hofmann en aquel emblemático viaje:

Aunque el LSD está incluido en la Lista I de los tratados y convenios sobre estupefacientes, es decir, es considerado una sustancia prohibida, la Administración para el Control de Drogas de los Estados Unidos ha aceptado su uso terapéuti­co. En la actualidad se siguen realizando estudios sobre esta sustancia en pacientes con determinadas problemáticas psíquicas, especialmente en aquellos que no han obtenido resultados beneficiosos con tratamientos tradicionales.

 

* José Antonio López Sáez es investigador del Instituto de Historia del CSIC en Madrid y autor del libro Los alucinógenos, disponible en la Editorial CSIC y Los Libros de la Catarata.

¿Puede un robot diagnosticar una enfermedad mejor que un médico?

Por Ramón López de Mántaras y Pedro Meseguer (CSIC)*

La respuesta es ‘sí’. Pero, como casi todas las respuestas, hay que matizarla.

Históricamente, uno de los ámbitos de aplicación de la inteligencia artificial (IA) ha sido la medicina. En la actualidad la técnica de IA que está dando los resultados más espectaculares en el ámbito del diagnóstico basado en la imagen es el llamado aprendizaje profundo, que consiste en aprender a reconocer patrones de manera muy eficiente. Con esta técnica, recientemente científicos de la Universidad de Carnegie Mellón (EE UU), en colaboración con cuatro hospitales de Chicago, han desarrollado un sistema capaz de predecir infartos con cuatro horas de antelación en enfermos ingresados en UCIs, lo que mejora en más de tres horas los tiempos de predicción de los cardiólogos. Otro ejemplo exitoso de aplicación del aprendizaje profundo es el análisis combinado de imágenes médicas de rayos rayos X, MRI y ultrasonidos desarrollado por un grupo de la Universidad de Queensland (Australia), el cual puede diagnosticar el cáncer de mama mejor que los médicos.

diagnostico por ordenadorEste tipo de sistemas se entrenan a partir de enormes cantidades de datos. Así, el software capaz de predecir infartos fue entrenado con datos de 133.000 pacientes, que incluían 72 parámetros presentes en la historia clínica de estas personas (signos vitales, edad, glucemia, recuentos de plaquetas, etc.).

Cuando no se dispone de suficientes datos o el problema médico que se quiere resolver no se basa en el reconocimiento de patrones, sino más bien en razonamiento lógico basado en el procesamiento de conocimientos médicos, entonces es posible recurrir a otra técnica de IA menos novedosa pero también muy útil. Se trata de los denominados sistemas expertos, que utilizan el conocimiento acumulado sobre los síntomas de una enfermedad, el historial médico y los resultados de análisis médicos para llegar a conclusiones sobre el estado de un paciente, es decir, para diagnosticar. Cuanto mayor sea su capacidad para combinar sus conocimientos con las observaciones reales, más exacto será su diagnóstico.

El primer sistema experto médico fue HEURISTIC DENDRAL, desarrollado a partir de los años 70 en la Universidad de Stanford, en el ámbito de la química orgánica. Poco después, en la misma universidad se desarrolló MYCIN, orientado a las enfermedades infecciosas. Una parte del sistema describía posibles síntomas y otra expresaba una posible causa de los mismos. Además de incorporar conocimientos que permitían diagnosticar el agente causante de la infección, MYCIN también contenía información acerca del tratamiento adecuado, por lo que resultaba útil para la toma de decisiones por parte de los médicos.

Hoy ya hay multitud de sistemas en este campo que se usan regularmente en hospitales y centros médicos de todo el mundo. Por ejemplo, ATHENA, que ayuda a los médicos a tratar a pacientes con problemas de hipertensión. Este sistema procesa los datos clínicos de cada paciente y, a partir de su base de conocimientos sobre hipertensión, genera recomendaciones para mejorar la atención clínica personalizada.

Una de las aplicaciones más potentes a nivel mundial es el sistema GIDEON, que ayuda a diagnosticar 337 enfermedades infecciosas específicas en 224 países. Su base de datos cubre 1.147 taxones microbianos y 306 agentes antibacterianos y vacunas. La información que maneja es actualizada semanalmente e incluye más de 20.000 imágenes, gráficos, mapas infografías, etc. Todo ello le permite llegar a un 94% de diagnósticos correctos, y de ahí que sea uno de los sistemas más usados en el ámbito de la medicina. GIDEON es útil tanto para el diagnóstico y tratamiento de las enfermedades infecciosas, como para mejorar su conocimiento, identificar microorganismos patógenos y detectar brotes epidémicos. Básicamente lo que hace GIDEON es mejorar la exactitud del diagnóstico y ampliar la base de conocimientos de la persona experta. Ahora bien, como todo sistema, presenta algunas limitaciones. Por ejemplo, no es capaz de diagnosticar simultáneamente enfermedades concurrentes. Además, los signos y síntomas que se introducen para realizar una consulta se relacionan únicamente con las enfermedades transmisibles registradas en el sistema, por lo que quedan excluidas muchas otras.

En cualquier caso, es importante recalcar que los sistemas basados en IA, a pesar de ser capaces de proporcionar diagnósticos rápidos y certeros, nunca superarán el sentido común y el buen juicio de una persona, ni tampoco el efecto placebo resultante del trato humano y la empatía que caracteriza a un buen profesional de la medicina en la relación con sus pacientes. Otro punto fuerte de los expertos humanos respecto a la inteligencia artificial es la capacidad de aplicar el conocimiento existente cuando, por ejemplo, los datos son incompletos o la información sobre el estado de un paciente no se corresponde bien con los casos usuales.

Sin embargo, para un médico la capacidad de recordar datos organizados puede ser un factor limitante, igual que la de correlacionar los casos observados con el patrón de datos existente. Por ello el uso de sistemas de IA es una excelente ayuda. De hecho, los sistemas de IA en medicina no deberían diseñarse con el objetivo de sustituir al médico u otro personal sanitario, sino como sistemas de ayuda y complemento de su labor.

 

* Ramón López de Mántaras y Pedro Meseguer son investigadores del CSIC en el Instituto de Investigación en Inteligencia Artificial del CSIC y autores del libro de divulgación Inteligencia Artificial (CSIC-Catarata).

¿Manchas difíciles? La solución está en las enzimas

Por Francisco J. Plou (CSIC)*

Ana Yacobi / Flickr

Ana Yacobi / Flickr

En la actualidad, de cada 100 gramos de cualquier detergente, entre uno y dos corresponden a enzimas, es decir, a catalizadores biológicos utilizados para acelerar las reacciones químicas. El auge del uso de las enzimas en productos para la limpieza de ropa y vajillas es tan grande que en Dinamarca, el principal productor de estas proteínas, hay un detergente que contiene hasta nueve enzimas distintas. ¿De verdad merece la pena añadir enzimas a los detergentes o se trata de una cuestión de marketing?

Antes de responder a esta pregunta, conviene saber que el empleo de enzimas en productos de limpieza es relativamente nuevo en la historia de la humanidad y que no ha estado exento de polémicas.

En 1913 el científico alemán Otto Röhm (1876-1939) patentó el uso de extractos de páncreas de animales muertos en el prelavado de prendas de vestir. Sin embargo, no fue hasta la década de 1960 cuando en los detergentes para la ropa se empezaron a introducir masivamente enzimas, cuya producción se realiza generalmente a partir de cultivos de bacterias, levaduras y hongos. Esto sucedió de forma paralela a la implantación de las lavadoras, que requerían productos cada vez más eficientes capaces de eliminar las manchas a temperaturas bajas o moderadas.

Esta innovación fue velozmente popularizada en Europa pero no en Estados Unidos, donde creció el temor de que las enzimas pudieran causar reacciones alérgicas. Los ánimos se apaciguaron en 1971, cuando la Academia Nacional de Ciencias de este país dictaminó que el empleo de enzimas en detergentes representaba un avance tecnológico sin riesgo alguno para la salud.

De hecho, en 1975 se produjo otro logro biotecnológico que impulsó definitivamente este mercado, al conseguir encapsular las enzimas en pequeñísimos gránulos recubiertos por un material inerte que se dispersaba en contacto con el agua de lavado, liberándolas poco a poco. Esta liberación a través del agua de lavado no supone ningún problema ecológico, pues su naturaleza proteica las convierte en biodegradables.

Daniel Lobo / Flickr

Daniel Lobo / Flickr

Pero entonces, ¿las enzimas son realmente útiles en los detergentes? La respuesta es “sí”. Una de sus principales ventajas es el tratamiento de manchas difíciles que de otra manera sería difícil quitar. Así, los detergentes actuales suelen incorporar al menos cuatro tipos de enzimas, la mayoría especializados en un tipo distinto de mancha:

  1. Lipasas, que sirven para eliminar las manchas que contienen sustancias lipídicas, como las procedentes de grasas y aceites alimenticios, cosméticos, pintalabios o sudor. Las lipasas, además, permiten reducir casi un 25% la cantidad de agentes surfactantes o tensioactivos presentes en el detergente.
  2. Proteasas (las primeras enzimas empleadas en detergentes), que se utilizan para degradar las manchas que tienen una base de proteína, por ejemplo las de sangre, huevo o leche.
  3. Amilasas, que eliminan los depósitos de almidón, muy abundantes en patatas, salsas, pasta o arroz, por ejemplo.
  4. Celulasas, que se añaden para un mejor cuidado de las fibras celulósicas de las prendas de algodón, proporcionando una mayor suavidad a las telas y restaurando los colores.

Algunas compañías, en aras de obtener una eficiencia todavía mayor en el lavado, añaden otros dos tipos de enzimas:

  1. Mananasas, que degradan las manchas que contienen mananos, muy difíciles de eliminar. Los mananos, también llamados gomas, se emplean como espesantes en alimentos como helados y salsas, y también están presentes en lociones corporales o pasta de dientes.
  2. Pectinasas, para eliminar los residuos de la pectina de las frutas, por ejemplo en mermeladas, zumos o yogures.

Además, las enzimas generan una serie de beneficios medioambientales. El más destacado es la posibilidad de emplear programas de lavado más cortos y a temperatura ambiente, lo que supone un notable ahorro energético y de agua. De hecho, la mayor parte de la energía consumida en un lavado se utiliza para calentar el agua.

Pero también las enzimas permiten reducir, e incluso suprimir, la incorporación a los detergentes de algunas sustancias químicas que contaminan las aguas de lavado, fundamentalmente los fosfatos, que tienen un efecto demoledor sobre los medios acuáticos y que, poco a poco, están siendo prohibidos en los productos de limpieza en todo el mundo.

Así pues, como vemos, el tambor de la lavadora es una especie de reactor químico en el que las enzimas tienen que hacer su trabajo durante el breve tiempo de lavado, sorteando todo tipo de dificultades derivadas de la presencia de tensioactivos, agentes blanqueantes y suavizantes, en un entorno alcalino de un pH entre 9 y 12. ¡Y lo consiguen!

 

* Francisco J. Plou es investigador científico en el Instituto de Catálisis y Petroleoquímica del CSIC y autor del libro ‘Las enzimas’, disponible en la Editorial CSIC Los Libros de la Catarata.

¿Qué es el albinismo? La falta de pigmentación no es la respuesta correcta

Por Lluís Montoliu, CSIC *

Vamos caminando por la calle y nos cruzamos con una chica joven, con el pelo y la piel muy blanca y que lleva gafas oscuras. Probablemente pensaremos que se trata de una persona albina que necesita las gafas para no deslumbrarse con el sol y debe cuidar su piel con cremas protectoras. La mayoría realizaríamos inconscientemente este rápido análisis y seguiríamos caminando, sin imaginar que esa persona albina en realidad padece una discapacidad visual severa tan relevante como para ser considerada ceguera legal; es decir, la que supone una agudeza visual inferior al 10% de la visión normal.

Niña europea con albinismo oculocutáneo / Ana Yturralde

En el albinismo, la falta de pigmentación, que es lo que todos percibimos, no es lo más relevante. Lo realmente discapacitante es el déficit visual asociado a esta condición genética, que no enfermedad, aunque se investigue y se trate como una de las más de 7.000 enfermedades raras. El albinismo está presente en 1 de cada 17.000 personas, lo que quiere decir que en nuestro país hay alrededor de 3.000 personas albinas. Se trata de un desorden congénito causado por mutaciones en alguno de los 20 genes (de los más de 20.000 que tenemos en el genoma humano) que hoy en día conocemos como asociados a esta condición genética.

Los 20 tipos de albinismo tienen como rasgo común una visión muy reducida, con variaciones según el tipo de albinismo y según cada persona. Ahora bien, no todas las personas con albinismo presentan esa evidente falta o ausencia de pigmentación. Durante muchos años se creyó que la falta de melanina (el pigmento que tenemos en nuestra piel, ojos y pelo) era la causa del albinismo. Hoy sabemos que la pérdida de pigmentación es una consecuencia del albinismo que solo aparece en algunos tipos, pero no en todos.

Albinismo y discapacidades visuales

Las personas con albinismo tienen diversas alteraciones visuales que son las causantes de su visión deficitaria. En primer lugar, su retina carece de fóvea. La fóvea es una diminuta región central de la retina en la que se acumulan la gran mayoría de nuestros fotorreceptores bastones; estos nos permiten percibir con nitidez formas y colores para definir objetos y personas cuando los miramos de frente. Las personas con albinismo solamente disponen en su zona central de una visión similar a la visión periférica, la que habitualmente usamos para “mirar con el rabillo del ojo”. Esta es una visión muy pobre, con poca definición, que nos permite responder frente a objetos que se mueven (nos apartamos instintivamente si percibimos que algo va a caer sobre nosotros o a nuestro lado), pero no nos sirve para apreciar los detalles. Podríamos imaginar que la retina de una persona con albinismo es como un sensor de una cámara fotográfica que tiene muchos menos píxeles, y por ello menor sensibilidad y resolución.

Las mutaciones genéticas que causan albinismo son recesivas. Esto quiere decir que una persona para ser albina debe heredar dos copias anómalas de sus padres, una del padre y otra de la madre. Suponiendo que sus padres sean portadores, esto es, que porten una copia intacta y otra anómala del gen, en cada embarazo tendrán una probabilidad del 25% de que el hijo o hija nazca con albinismo. La excepción es el albinismo ocular, denominado OA1 por sus siglas en inglés, cuyo gen afectado está en el cromosoma sexual X. Los varones, al tener solamente un cromosoma X (los varones son XY y las mujeres son XX), manifiestan directamente el albinismo si heredan una sola copia anómala.

Mediante modelos animales de los diversos tipos de albinismo se han podido investigar muchos aspectos de esta condición genética. Los resultados obtenidos en ratones han permitido descubrir que la administración de varios fármacos podría mejorar la visión de las personas con albinismo. Los ensayos clínicos en seres humanos determinarán pronto el alcance de estas investigaciones y, en su caso, su eventual traslado a la clínica.

Niño africano con albinismo oculocutáneo /Ana Yturralde

Perseguidos por su condición genética

En África, además de todo lo anterior, las personas con albinismo desgraciadamente pueden sufrir acoso, persecuciones, secuestros, mutilaciones y asesinatos. Creencias injustificables y brujerías presuponen la buena fortuna a los poseedores de partes del cuerpo de una persona con albinismo, ya sea una mano, un brazo, un pie, una nariz o una oreja, lo cual provoca continuos ataques y un mercado negro de fragmentos humanos que es necesario denunciar y combatir hasta conseguir erradicar estas barbaridades. Para ello, la ONU instituyó el 13 de junio de cada año como el  Día Internacional de Sensibilización sobre el Albinismo.

En España desde 2006 la asociación ALBA ayuda a personas con albinismo y se encarga de aportar a las parejas con recién nacidos albinos la información básica para entender qué les sucede a sus hijos e hijas.

Lluis Montoliu (@LluisMontoliu) es investigador del Centro Nacional de Biotecnología (CNB) del CSIC.

 

 

CRISPR: cómo las bacterias nos enseñan a editar los genes

Por Lluís Montoliu (CSIC)*

Frecuentemente pensamos en las bacterias como fuente de problemas. Efectivamente, son las causantes de enfermedades infecciosas tan graves como la tuberculosis, el cólera o la peste, pero también son las que nos proporcionan yogures y otros derivados lácteos. Además, las bacterias llevan miles de millones de años sobre la Tierra, muchísimos más que nosotros. Durante todo este tiempo han desarrollado un sistema de defensa muy eficaz que les permite zafarse de la infección por virus.

El sistema inmune de las bacterias fue descubierto por Francisco Juan Martínez Mojica, microbiólogo de la Universidad de Alicante, que lleva más de 25 años investigando sobre este tema. ¿Qué hace que este mecanismo de defensa sea tan especial? Pues, entre otras cosas, que se transmite genéticamente, de unas bacterias a sus hijas o descendientes. Por ejemplo, cuando nosotros nos vacunamos contra el virus del sarampión adquirimos unas defensas que evitan que desarrollemos esta enfermedad. Ahora bien, nuestros hijos no heredan esta defensa. Si queremos que ellos estén protegidos contra el sarampión, también tenemos que vacunarlos (algo sobre lo que nadie debería albergar hoy en día ninguna duda, por cierto). Las bacterias son más inteligentes que nosotros. Una vez aprenden a defenderse de un virus son capaces de transmitir esta defensa a sus hijas, y éstas a sus nietas, etc., perpetuando esta defensa. Este descubrimiento básico de Mojica, realizado en 2003, sirvió para que otros investigadores se dieran cuenta de que el mecanismo por el cual las bacterias se defienden de los virus también puede usarse, sorprendentemente, para editar los genes con una precisión nunca antes vista.

En 2012 varios científicos, entre ellos las investigadoras Jennifer Doudna y Emmanuelle Charpentier, describieron este sistema de edición basándose en los trabajos de Mojica. El sistema está formado por una proteína, denominada Cas, que actúa como una tijera molecular capaz de cortar el ADN de forma muy precisa dirigida por una guía, una pequeña molécula de ARN que le dice a la tijera Cas dónde tiene que cortar. Este sistema se denomina CRISPR (pronúnciese “crisper”), acrónimo en inglés que describe las características de estas secuencias genéticas que dirigen el corte de la tijera molecular. Éste fue el nombre, hoy en boca de investigadores de todo el mundo, acuñado también por Mojica en 2001.

El mecanismo por el cual las bacterias se defienden de los virus también puede usarse para editar los genes. / geneticliteracyproject.org

¿Qué podemos hacer con las herramientas CRISPR? Igual que cuando nos equivocamos al escribir un texto en el ordenador y podemos volver atrás y corregir, eliminar o sustituir la palabra o letras erróneas, con las herramientas CRISPR podemos editar los genes. Podemos añadir letras si faltan, eliminar letras si sobran, sustituirlas o corregirlas por otras. En definitiva, podemos modificar los genes a voluntad. Esto ha provocado una verdadera revolución en biología, biomedicina y biotecnología.

Ahora podemos desarrollar modelos celulares y animales más adecuados para el estudio de las enfermedades. Por ejemplo, tras diagnosticar a un paciente afectado por alguna de las miles de enfermedades raras de base genética que existen, y detectar el gen y la mutación causantes de esa enfermedad, podemos replicar exactamente esa misma mutación en ratones. A estos ratones que reproducen la misma alteración genética de un paciente los llamamos ‘ratones avatar’ para ilustrar la conexión existente entre ellos. Gracias a ellos podremos validar la seguridad y eficacia de nuevos tratamientos de una forma más efectiva, ya que son portadores del mismo error genético. Si somos capaces de introducir una mutación en ratones, también deberíamos poder usar las mismas herramientas CRISPR para revertir errores genéticos que afectan a los millones de personas con alguna enfermedad rara. No estamos todavía ahí, pero sí en el buen camino.

Ratones avatar modificados genéticamente con CRISPR. / Davide Seruggia

Los resultados preliminares de tratamientos genéticos basados en CRISPR probados en animales son muy esperanzadores, pero todavía no están listos para su aplicación efectiva en pacientes. ¿Por qué no podemos usar las herramientas CRISPR en el hospital? En primer lugar, la precisión que tienen las herramientas de edición genética CRISPR no es absoluta. En determinadas ocasiones pueden cortar en secuencias genéticas muy parecidas, causando alteraciones no deseadas en genes similares que no deberíamos modificar, y cuyos cambios pueden causar problemas mayores de los que queremos solucionar. Esta es una limitación que puede reducirse al mínimo si se diseñan cada vez mejores guías y se seleccionan tijeras moleculares con mayor precisión.

Pero lo más preocupante es la segunda de las limitaciones de las herramientas CRISPR. Toda la precisión que tienen para cortar el genoma en el gen y la secuencia correctas, no la tienen los mecanismos de reparación que entran en juego inmediatamente tras el corte, restaurando la continuidad del cromosoma. Estos sistemas de reparación, que tenemos en nuestras células, progresan de forma un tanto azarosa, añadiendo y quitando letras hasta conseguir enganchar los dos fragmentos del cromosoma cortado. Si bien es cierto que podemos inducir la reparación con secuencias genéticas molde que sirvan como patrón para la reparación, también sucede que no siempre las células usarán el molde y, por ello, al reparar el corte, generarán una nueva modificación genética no deseada. Tenemos que seguir investigando estos mecanismos de reparación, para poder controlarlos y hacerlos más precisos y seguros. Solamente entonces podremos recomendar, siempre con prudencia, el uso de las herramientas CRISPR en el tratamiento de enfermedades de base genética en personas.

Tras proponerlas como sistemas de edición genética en 2012, las herramientas CRISPR fueron usadas por vez primera en 2013. Hoy, apenas cuatro años más tarde, ya estamos pensando en maneras de optimizar su uso en terapias para enfermedades, para hacerlas más seguras y efectivas. Cuando estudiaba los microorganismos que habitan las salinas de Santa Pola, Mojica no podía imaginar el camino futuro que iban a tomar sus investigaciones de biología básica. Tratando de entender como esas bacterias se defendían de los virus que las acechaban, llegó hasta un hallazgo revolucionario. Ahí está la belleza y el poder de la ciencia. Un descubrimiento microbiológico, en apariencia menor, que pasa a ser la mayor revolución tecnológica en biología. Así pues, debemos de estar agradecidos a las bacterias, por mostrarnos nuevas formas de luchar contra las enfermedades. Y a Francisco Mojica, por haber descubierto este proceso de la naturaleza y habérnoslo contado, por haber descrito el sistema CRISPR que tantas aplicaciones biomédicas está produciendo.

Vídeo en el que la proteína Cas9 corta una molécula de ADN en tiempo real por microscopía de fuerza atómica. Imágenes de la Universidad de Tokio publicadas en este artículo.

 

* Lluís Montoliu es investigador del Centro Nacional de Biotecnología (CNB) del CSIC.

 

¿Te inspiran la fotografía y la ciencia? Participa en #FOTCIENCIA

Por Mar Gulis (CSIC)

¿Te gusta la fotografía? ¿La ciencia y la tecnología disparan tu creatividad? Pues estamos esperando tus propuestas. FOTCIENCIA es una iniciativa que celebra su 15ª edición y que seleccionará las mejores imágenes de ciencia del año para conformar un catálogo y una exposición itinerante. La muestra resultante recorrerá una veintena de museos y centros culturales de España en 2018. Las fotografías pueden presentarse hasta el próximo 14 de diciembre de 2017 a las 14:00 horas.

Las imágenes deben estar relacionadas con la investigación científica o sus aplicaciones, y pueden reflejar aspectos como el objeto de estudio de la investigación, las personas que la realizan, su instrumentación e instalaciones, los resultados del avance científico, etc. Para participar es necesario presentar las fotografías en formato digital a través de un formulario disponible en la página web www.fotciencia.es, junto con un texto que permita interpretarlas. El jurado valorará tanto la imagen –su calidad técnica, originalidad y valor estético– como la claridad de la explicación aportada por el autor o autora.

En esta iniciativa puede participar cualquier persona mayor de edad que presente fotografías propias que no hayan sido seleccionadas en procesos similares. Pero también hay una modalidad, ‘La ciencia en el aula’, dirigida al alumnado de centros educativos y de formación profesional, que pueden participar a través de sus profesores y profesoras.

 

Vídeo con las imágenes seleccionadas en la pasada edición de FOTCIENCIA (2016).

 

Las propuestas se pueden presentar a una de las siguientes modalidades:

  • Micro, cuando la dimensión real del objeto fotografiado sea menor o igual a 1 milímetro o la imagen haya sido obtenida mediante un instrumento de micrografía (óptica o electrónica) o técnicas de difracción.
  • General, cuando la dimensión real del objeto fotografiado sea mayor de 1 milímetro.

Además, los autores y autoras también pueden adscribir su imagen a otras modalidades específicas, como ‘Agricultura sostenible’ ‘Alimentación y nutrición’, que cuentan con el apoyo de dos centros del CSIC: el Instituto de Agricultura Sostenible (IAS) y el Instituto de Agroquímica y Tecnología de Alimentos (IATA).

Las dos mejores imágenes de la categoría General y las dos mejores imágenes de la categoría Micro, según los criterios mencionados anteriormente, serán remuneradas con una cantidad de 1.500€ cada una. En las demás modalidades, se seleccionará una foto que recibirá 600€.

La organización hará una selección adicional de fotografías para incluirlas en el catálogo y en la exposición itinerante, que se prestará gratuitamente a las entidades que la soliciten. Todas las fotos presentadas pasarán a formar parte de la galería de imágenes de la web de FOTCIENCIA.

FOTCIENCIA es una iniciativa organizada por el Consejo Superior de Investigaciones Científicas (CSIC) y la Fundación Española para la Ciencia y la Tecnología (FECYT), con la colaboración de la Fundación Jesús Serra.

Toda la información y normas de participación están disponibles en www.fotciencia.es

 

Semana de la Ciencia del CSIC: viajar al pasado, hacer catas científicas y más

Por Mar Gulis (CSIC)

Viajar al pasado a través de los restos orgánicos de un yacimiento navarro (Instituto de Ciencias de la Vid y el Vino), aprender sobre los caballitos de mar (Instituto de Investigaciones Marinas) o realizar catas catas de queso para conocer sus propiedades nutricionales (Instituto de Productos Lácteos de Asturias) son tres de las 331 actividades con las que el CSIC abre este año la Semana de la Ciencia. A través de los más de 81 centros de investigación participantes, esta iniciativa, organizada con apoyo de la Fundación Española para la Ciencia y la Tecnología (FECYT), ofrecerá propuestas para todos los públicos en torno a diversas áreas del conocimiento.

Muchas de las actividades de la Semana de la Ciencia del CSIC han sido diseñadas para que el público asuma un papel activo e interactúe con el personal investigador.

Las actividades, gratuitas y dirigidas al público general, se presentan en formatos clásicos, como exposiciones, rutas científicas o conferencias, y en otros más novedosos, como degustaciones, cafés científicos, concursos o los innumerables talleres diseñados para que el público interactúe con la ciencia. Así, ‘Convierte tu móvil en un microscopio’, organizada por el Instituto de Recursos Naturales y Agrobiología de Sevilla, el taller ‘Experimenta con partículas’, del Centro Nacional de Aceleradores, o ‘Iluminación estroboscópica’, una iniciativa del Laboratorio de Investigación en Fluidodinámica y Tecnologías de la Combustión, reflejan la vertiente práctica de la Semana de la Ciencia.

En esta edición, el CSIC estrena ‘Ciencia de Tomo y Lomo’, una aventura conjunta entre investigación y librerías en Madrid. Además, el consejo también ha incorporado la ciencia ciudadana a su programación, a través de iniciativas como ‘Plásticos 0 en la playa’, un taller del Instituto Mediterráneo de Estudios Avanzados. El objetivo en este caso es que la propia sociedad recabe datos valiosos para evaluar los efectos de los residuos marinos sobre los ecosistemas costeros.

El pasado 2 de noviembre arrancó la cita anual con la divulgación científica en muchas comunidades autónomas. En la mayoría de ellas, la Semana de la Ciencia se prolongará hasta finales de mes. ¡Consulta la programación y participa!

‘Nanobásculas’ para pesar virus y bacterias en la detección de enfermedades

Por Eduardo Gil Santos, Alberto Martín Pérez y Marina López Yubero  (CSIC)*

Cada virus y bacteria tiene una masa diferente. El simple hecho de poder pesarlos nos permitiría identificarlos y distinguirlos y, con ello, detectar de forma altamente precoz las enfermedades que provocan. Los recientes avances en nanotecnología han permitido la creación de unos nuevos dispositivos, los sensores nanomecánicos, que actúan como básculas a escala nanométrica, permitiendo detectar estos objetos con una precisión mucho mayor que los métodos convencionales de diagnóstico de estas enfermedades.

Cuerdas de ukelele

Los nanosensores vibran como las cuerdas de una guitarra para detectar virus y bacterias.

La detección de estas partículas mediante sensores nanomecánicos se obtiene estudiando los cambios en su vibración. Estos sensores vibran igual que las cuerdas de una guitarra: cuando pulsamos una cuerda de una guitarra, esta vibrará y las ondas se transmitirán por el aire, lo que percibiremos como sonido. Además, si unimos un objeto a la cuerda, esta pesará más y, en consecuencia, su movimiento será más lento, lo que dará lugar a un sonido más grave. Esta diferencia en el tono del sonido se puede relacionar directamente con la masa del objeto unido. De la misma manera, los sensores nanomecánicos vibrarán más lentamente cuando se une a ellos una partícula (virus o bacteria). Esto se comprueba fácilmente adhiriendo un pequeño imán a un diapasón. Sin embargo, en estos sensores las vibraciones no son perceptibles por el oído y se necesitan métodos ópticos muy avanzados (similares a los utilizados en la detección de ondas gravitacionales, pero a escala nanométrica) para detectar estos cambios en la vibración del sensor.

Bacteria en nanosensor

Imagen de microscopía electrónica de barrido de una bacteria E. coli sobre un sensor nanomecánico con forma de micropalanca. El peso de esta bacteria es de 300 femtogramos (0,0000000000003 gramos, diez mil millones de veces menos que una hormiga).

Estos dispositivos también permiten medir otra propiedad muy interesante de las partículas depositadas: la rigidez. Conocer la rigidez de las partículas biológicas (virus, bacterias o células) puede ser de gran utilidad, ya que, por una parte, la rigidez junto con la masa permite una identificación todavía más precisa de los distintos virus o bacterias. Asimismo, podría permitir diferenciar entre células cancerígenas y sanas, ya que se ha descubierto que aunque ambas tienen una masa similar (lo que no permite distinguirlas a través de su masa), muestran una rigidez distinta: las células cancerígenas son menos rígidas que las células sanas. Por último, medir la rigidez de los virus hace posible distinguir su estado de maduración y conocer su capacidad infecciosa.

El grupo de Bionanomecánica del Instituto de Micro y Nanotecnología del CSIC desarrolla este tipo de dispositivos desde hace más de diez años. En la actualidad, este grupo lidera una serie de proyectos financiados por la Unión Europea (ViruScan, LiquidMass, Nombis) que contribuirán a la implantación definitiva de estas tecnologías a nivel clínico. En tan solo cinco años, estos sensores se probarán en países empobrecidos con gran riesgo de epidemias para la detección de los virus que producen fiebres hemorrágicas.

Al mismo tiempo, el equipo trabaja en el desarrollo de nuevas tecnologías para la comprensión y detección precoz de muchas otras enfermedades (distintos tipos de cáncer, Alzhéimer, etc.). En un futuro no muy lejano, este tipo de sensores estarán implantados directamente en el interior de nuestro cuerpo, preparados para detectar cualquier infección en el mismo momento de contraerla, lo que permitirá actuar contra ella de manera mucho más eficaz.

 

* Eduardo Gil Santos, Alberto Martín Pérez y Marina López Yubero son personal investigador del CSIC en el grupo de Bionanomecánica del Instituto de Micro y Nanotecnología.

¿Influyen nuestras bacterias en la forma en que nos comportamos?

Por Mar Gulis (CSIC)

Imagina un villano que logra controlar la voluntad de la gente mediante la manipulación de su microbiota intestinal, es decir, el conjunto de microorganismos –en su mayoría bacterias– que habitan en nuestro intestino y nos ayudan a digerir los alimentos. Tore Midtvedt, del Instituto Karolinska de Estocolmo, sugirió en clave de humor que éste podría ser el argumento de una novela negra. Cuentan la anécdota Carmen Peláez y Teresa Requena, investigadoras del CSIC, en su libro La microbiota intestinal (CSIC-Catarata). Tal y como señalan en la obra, hoy existe un creciente interés en torno a ese fascinante eje cerebro-intestino-microbiota.

Una parte de la comunidad científica está investigando la relación bidireccional que se da entre la microbiota y el funcionamiento del cerebro o incluso nuestros comportamientos. Se trata de un campo sumamente interesante, pero también muy complejo. La pregunta que espera respuesta es “si podemos conceder a los microorganismos cierto papel como participantes en nuestra inconsciencia”, que a su vez imperceptiblemente puede dictar nuestra conducta, señalan Peláez y Requena.

Las investigadoras recogen en el libro algunos ejemplos de esta tesis. John Cryan y Timothy Dinan, de la Universidad de Cork (Irlanda), sostienen que “las bacterias influyen en nuestro comportamiento alimentario”. Desde esta perspectiva, “la microbiota lanzaría alguna señal al cerebro para informarle de que le aporte tal o cual tipo de nutrientes, que son los que habitualmente ingerimos y a los que se ha adaptado su metabolismo”. Es más, el que nos apetezcan determinados alimentos se debe a la ‘expectativa de recompensa’ (el placer anticipado que nos aporta la elección), algo que depende de los niveles de dopamina en el cerebro. Y precisamente “algunas bacterias como H. pylori modulan la producción de dopamina y, por tanto, los niveles de recompensa. ¿Estaría esta bacteria del estómago diciéndonos qué es lo que nos apetece comer?”, se preguntan las investigadoras.

Helicobacter Pylori es una de las bacterias que habitan en nuestro estómago KGH / Wikipedia

Pero las relaciones entre el cerebro y la microbiota pueden ser más sofisticadas. Algunos autores consideran que esos millones de microorganismos serían capaces de manipular otros comportamientos. Por ejemplo, “influir en nuestro estado de ánimo a través de la serotonina, conocida como hormona de la felicidad, o tener el papel contrario y producir malestar o incluso dolor”. Peláez y Requena aluden a estudios recientes que han vinculado el estrés de los recién nacidos que sufren de cólicos con un desequilibrio intestinal producido por una pérdida de diversidad bacteriana.

Y aún más sorprendente es la siguiente hipótesis que plantean: la posibilidad de que las bacterias puedan manipular los comportamientos sociales, es decir, “nuestras preferencias para relacionarnos incluso sexualmente o para vivir en grupos sociales”. Las investigadoras se refieren a la mosca del vinagre, un insecto que, a la hora de aparearse, parece estar influido por la bacteria Lactobacillus plantarum, ubicada en su tracto intestinal. “Aparentemente esta bacteria produce metabolitos a partir de la fermentación del almidón que ingiere la mosca y que inducen la producción de feromonas, influyendo así en sus preferencias sexuales de apareamiento al solo elegir moscas que también ingieren almidón. Podríamos decir que la bacteria ayuda a la mosca a buscar pareja y, además, una pareja con sus mismos gustos alimentarios”.

Ahora bien, ¿se pueden extrapolar estas teorías a los seres humanos? Según algunos expertos, sí. Concretamente, las investigadoras citan a Michael Lombardo, de la Universidad Grand Valley (EE UU). Este autor defiende que la evolución de los seres vivos invertebrados y vertebrados hacia el comportamiento gregario y social “no ha respondido solo a la necesidad común de defensa, optimización de recursos alimentarios o crianza de la prole. Podría existir también otro factor más sutil como la necesidad de transmisión interindividual de una microbiota beneficiosa que aporta múltiples beneficios”.

Peláez y Requena coinciden en que, teniendo en cuenta los beneficios nutricionales y protectores que la microbiota intestinal nos aporta y la facilidad de transmisión vertical y horizontal en el ámbito familiar y social, estas teorías también pueden ser válidas para la especie humana. No obstante, advierten, “aún hay que profundizar en los mecanismos concretos por los que la microbiota afecta a la salud humana y a nuestro comportamiento”.