Archivo de la categoría ‘Biomedicina y Salud’

El difícil camino de la pérdida de audición

Por Isabel Varela-Nieto* (CSIC-CIBERER) y Mar Gulis

 

En junio de 1789, Francisco de Goya es designado pintor de cámara por Carlos IV y, tres años más tarde, enferma gravemente en Sevilla. El cuadro clínico es complejo. A sus 46 años, Goya sufre vértigos, acúfenos (ruido en los oídos) e hipoacusia; además de dolores abdominales, alteraciones de la visión, alucinaciones y delirios. Como consecuencia de todo ello, desarrolla una depresión. Su aspecto general se deteriora profundamente y adelgaza de forma llamativa. En 1793 retoma su trabajo. Anda con dificultad, presenta problemas de equilibrio y de visión de los que termina recuperándose en parte, pero, en cambio, quedará sordo de por vida.

La sordera de Goya es profunda. Esto le obliga a abandonar la enseñanza en la Real Academia de Bellas Artes y le crea graves problemas de comunicación y relación que le llevarán a iniciar una etapa de mayor introversión y aislamiento. Sin embargo, aprenderá a leer los labios y el lenguaje de signos, y seguirá pintando y creando obras maestras hasta el final de su vida. Aislado del mundo del sonido, muere en Burdeos en 1828, con 82 años de edad.

Grabado de Francisco de Goya sobre lengua de signos / ¿Qué sabemos de la sordera? (CSIC/Catarata)

Otro caso fue el de Ludwig van Beethoven, que perdió audición muy joven. Entre 1794 y 1796, mediada la veintena, presentó las primeras manifestaciones de su sordera, pero ocultó estos síntomas e inició un largo periplo de médicos y tratamientos diversos. Con 30 y 40 años los zumbidos de oído y la hipoacusia se acentuaron, y durante los últimos ocho años de su vida la sordera fue total.

Ya no podía tocar ningún instrumento. Y, si lo hacía, era de forma automática, sin la expresión y brillantez de su etapa inicial. Dejó de ser capaz de mantener una conversación, se aisló de sus amigos y admiradores, y la constatación de su enfermedad le sumió en la más profunda de las depresiones. Sin embargo, fue una época de composiciones magistrales, en las que en ningún momento se advierte la presencia de hipoacusia en la composición.

A lo largo de la historia muchos personajes relevantes de ámbitos diversos han padecido diferentes grados de pérdida de audición: Alexander Graham Bell, que inventó el teléfono; Thomas Alva Edison, que contribuyó a la difusión de la luz eléctrica; el emperador de Roma Claudio I; la actriz ganadora de un Óscar Marlee Matlin; o Pete Towsend, guitarrista de The Who.

Precisamente este artista advertía a los jóvenes del peligro de sordera que puede suponer el abuso del ‘iPod’ si no bajan el volumen de la música que escuchan. Y es que los músicos son especialmente vulnerables a la pérdida de capacidad auditiva. Phil Collins ha perdido un 60% de la audición, mientras que la rapera estadounidense Foxy Brown perdió su capacidad auditiva por completo en los dos oídos a la vez, y decidió someterse a una operación que a día de hoy le permite oír, pero de manera muy limitada. Por su parte, el famoso vocalista de AC/DC, Brian Johnson, padece de sordera parcial. En 2016, le diagnosticaron problemas auditivos que cuatro años después acabaron con su carrera como cantante en el grupo.

Un tipo de discapacidad

Ejemplos como este ponen de manifiesto el impacto que la sordera tiene en la vida de las personas que la padecen. La pérdida de audición se considera incapacitante cuando es superior a 35 decibelios (dB en el oído que oye mejor). Se calcula que más del 5% de la población mundial, unos 466 millones de personas, sufre una pérdida de audición incapacitante, y se estima que en 2.050 esa cifra superará los 900 millones, una de cada diez personas.

Inmunohistoquímica del órgano receptor auditivo del ratón / SEBBM, Raquel Martínez Vega (Instituto de Investigaciones Biomédicas «Sols- Morreale», CSIC-UAM)

La hipoacusia, que es como se denomina la pérdida de la audición, limita la capacidad de comunicación y la autonomía, y reduce las oportunidades de ser un miembro activo en la sociedad. Los efectos secundarios de esta carencia sensorial pueden incluir cambios en la percepción y en la personalidad, especialmente introversión y aislamiento social.

Cuando la sordera aparece en la edad adulta

La prevalencia de la pérdida de audición aumenta con la edad: entre los mayores de 60 años, más del 25% padece una pérdida de audición incapacitante. A diferencia de las personas con sordera desde los primeros años de vida, quienes sufren pérdida de audición total o parcial una vez adquirido el lenguaje, con frecuencia, suelen rechazar su condición y no reconocen su problema. Además, muchas personas sienten su pérdida auditiva como una amenaza a su integridad física y emocional, lo cual puede llevar a que se aíslen y eviten salir.

Por ello, la sordera tiene implicaciones psicosociales en varios ámbitos: el familiar, donde todos sus miembros tienen que adaptarse a la nueva situación; en el laboral, puesto que la sordera puede impedir o dificultar el acceso a determinados puestos de trabajo; y en el ámbito social, en el que tiende a producirse una reducción del círculo de amistades. De hecho, en personas ancianas la sordera se considera una de las principales causas de aislamiento.

Dibujo científico de Santiago Ramón y Cajal: corte del ganglio espiral y órgano de Corti (N.º 3663)/ Legado Cajal (Museo Nacional de Ciencias Naturales, CSIC)

La sordera en el Día Mundial de la Audición

La Organización Mundial de la Salud (OMS) señala que el 80% de las necesidades de cuidado del oído y la audición siguen estando desatendidas. El organismo internacional estima también que la pérdida de audición no tratada tiene aparejada un coste económico elevado para el paciente y para el sistema de salud, estimado en casi un billón de dólares cada año.

Por eso, el Día Mundial de la Audición, que se celebra el 3 de marzo, hace hincapié este año en promover un cambio de mentalidad respecto al cuidado del oído y la audición que ayude a mejorar el acceso a la atención sanitaria de las personas con sordera y reducir el coste de la pérdida de audición no tratada. En palabras de Tedros Adhanom Ghebreyesus, director general de la OMS, “la pérdida de audición ha sido calificada a menudo de ‘discapacidad invisible’, no solo porque no se acompaña de síntomas ostensibles, sino también porque durante mucho tiempo las comunidades la han estigmatizado y los responsables políticos la han ignorado».

 

* Isabel Varela-Nieto es autora, junto con Luis Lassaletta Atienza, del libro ¿Qué sabemos de la sordera? (CSIC-Catarata).

Bacterias y aminoácidos: ¿para qué esforzarse cuando lo tienes todo a tu alcance?

Por Comunicación CEAB-CSIC*

Muchas personas que se dedican a la salud insisten en que debemos comer de forma equilibrada. Uno de los motivos para hacerlo es que los seres humanos dependemos de la alimentación para obtener muchas de las sustancias imprescindibles para el buen funcionamiento de nuestro organismo. Es el caso de los nueve aminoácidos esenciales: aminoácidos que nuestro organismo no puede sintetizar por sí mismo. Estos componentes básicos de las proteínas, una especie de “ladrillos” que las construyen, son clave para, entre otros, el mantenimiento de los músculos, la función cognitiva o la regulación del estado de ánimo.

En el mundo microbiano esto es un poco distinto. Hay bacterias que, como en nuestro caso, dependen de lo que comen para obtener los aminoácidos esenciales, las llamadas ‘auxótrofas’. Y otras, en cambio, son autosuficientes, es decir, pueden producírselos todos por sí mismas. Son las denominadas ‘protótrofas’.

Modelo 3D de diversas bacterias rodeadas de aminoácidos. / CEAB-CSIC

Modelo 3D de diversas bacterias rodeadas de aminoácidos. / CEAB-CSIC

¿Cuáles son la más comunes? ¿Qué microorganismos siguen la estrategia ‘protótrofa’ y cuáles optan por la ‘auxótrofa’? ¿Dónde viven unos y otros? ¿Influye el ambiente en el que viven la ‘elección’ de una u otra estrategia?

Estas son algunas de las preguntas que se formuló un equipo formado por personal investigador del Centro de Estudios Avanzados de Blanes (CEAB-CSIC) y de las universidades de Colorado, Aalborg y el Lawrence Berkeley Lab. Sus integrantes analizaron con supercomputación más de 26.000 genomas de bacterias y el ADN ambiental de entornos naturales tan diversos como lagos, océanos, plantas de tratamiento de agua, microbiota humana e incluso alimentos como la masa madre o el queso. Los resultados de su estudio se han publicado recientemente en la revista científica Nature Communications.

Representación 3D que muestra comunidades bacterianas en combinación con ADN. / CEAB-CSIC

Representación 3D que muestra comunidades bacterianas en combinación con ADN. / CEAB-CSIC

Nuestro intestino: un “buffet libre”, ideal para las bacterias auxótrofas

La investigación desvela el gran peso del entorno en la evolución y la adaptación genética de las bacterias. En aquellos ambientes en los que siempre hay nutrientes disponibles, en estos ‘buffets libres’ abiertos las 24 horas, triunfan las auxótrofas.

Josep Ramoneda y Emilio O. Casamayor, investigadores del CEAB-CSIC, lo explican así: “¿Por qué tendrían que esforzarse para fabricar los aminoácidos si siempre los tienen disponibles en su entorno? En estos ambientes la estrategia de autoproducírselos deja de ser una ventaja. Renunciar a ella, en cambio, sale muy a cuenta: significa gastar mucha menos energía y eso ayuda a prosperar, a proliferar en estos ambientes”.

Alimentos como los productos lácteos o nuestro intestino son ejemplos claros de estos ambientes, ricos en aminoácidos, en los que triunfan los microbios auxótrofos, los que han aligerado su carga genética perdiendo, entre otros, los genes implicados en la autoproducción de aminoácidos. Su estrategia evolutiva de racionalización del genoma les da una clara ventaja en estos entornos.

En el lado opuesto están los ambientes con pocos nutrientes disponibles. Aquí, por la dificultad y/o temporalidad de acceso a los aminoácidos esenciales, ganan las bacterias protótrofas, las que tienen genes que les permiten fabricarse por sí mismas lo que necesitan para funcionar. Es el caso del 80% de los microorganismos, que encuentran en la autosuficiencia una ventaja para poder sobrevivir en ambientes donde la disponibilidad de alimento es muy baja.

La investigación se ha realizado con herramientas de supercomputación. Biology Computational Lab CEAB-CSIC

La investigación se ha realizado con herramientas de supercomputación. Biology Computational Lab CEAB-CSIC

El trabajo apunta además un ejemplo radical: un género de bacterias que tienen genomas muy, muy pequeños y que nos parasitan. Se trata de los micoplasmas, que obtienen los aminoácidos de nuestras células y que están implicados en numerosas enfermedades como, por ejemplo, la neumonía.

La mejor comprensión de las condiciones idóneas de vida para los microbios que aporta esta investigación es de gran interés para diferentes campos, como el de la salud. Un conocimiento profundo de las bacterias y de las conexiones con el ambiente en el que viven puede ayudar a desarrollar nuevos fármacos para combatir aquellas que son patógenas.

* Equipo de comunicación del Centro de Estudios Avanzados de Blanes (CEAB-CSIC). Este post está basado en el artículo: Ramoneda, J., Jensen, T.B.N., Price, M.N. et al. Taxonomic and environmental distribution of bacterial amino acid auxotrophies. Nat Commun 14, 7608 (2023).

Las dos caras del ozono: ¿cuándo es beneficioso y cuándo perjudicial?

Por Pedro Trechera Ruiz * y Mar Gulis (CSIC)

El ozono es un gas incoloro formado por tres átomos de oxígeno (O3). Tiene un gran poder oxidante, por lo que resulta útil para desinfectar superficies o espacios interiores. Pero, ¿qué ocurre cuando los seres humanos respiramos este oxidante? ¿Y qué les sucede a las plantas?

En la troposfera, el ozono (O3) es un gas que se forma a partir de la reacción entre otros contaminantes y la radiación solar. / Pixabay

En la troposfera, el ozono (O3) es un gas que se forma a partir de la reacción entre otros contaminantes y la radiación solar. / Pixabay

Ozono ‘bueno’ y ozono ‘malo’

En la estratosfera (la capa de la atmósfera situada entre los 10 y los 50 km de altura), el ozono es esencial, ya que absorbe la radiación ultravioleta del sol, la que comúnmente entendemos como dañina. Gracias a esta capa estratosférica de ozono, la vida, tal como la conocemos, pudo evolucionar fuera de los océanos. Sin esta capa, la superficie terrestre sería arrasada por la radiación solar. Es lo que se conoce como ‘ozono bueno’.

El ‘ozono malo’ es el que se encuentra en la troposfera, la capa que va desde la superficie hasta los 10 km de altura. En este caso, el ozono se forma a partir de otros gases contaminantes, principalmente óxidos de nitrógeno y compuestos orgánicos volátiles, que provienen en gran parte de actividades humanas como el tráfico y las emisiones industriales. La radiación ultravioleta hace que estos gases sufran reacciones con el oxígeno, que dan lugar al ozono.

Estas reacciones tienen un cierto impacto positivo, ya que eliminan estos gases contaminantes. Sin embargo, generan el ozono troposférico, que tiene un impacto negativo sobre la salud humana y de los ecosistemas.

Según la Agencia Europea de Medio Ambiente, la exposición a O3 puede causar problemas de salud, como tos, dificultad para respirar o daños pulmonares por oxidación. Además, el ozono hace que los pulmones sean más susceptibles a las infecciones respiratorias, puede agravar enfermedades pulmonares, aumentar la frecuencia de los ataques de asma y aumentar el riesgo de muerte prematura por enfermedades cardíacas o pulmonares. El último informe de Calidad del Aire en Europa 2022 de la Agencia Europea de Medio Ambiente estima que, en 2020, los niveles de contaminación por O3 causaron 29.000 muertes prematuras en la Unión Europea.

El ozono en España

La velocidad y el grado de formación de ozono se ven muy incrementados con el aumento de la radiación solar y las emisiones de sus agentes precursores. Por ello sus niveles son más elevados en el sur de Europa y en primavera y verano.

Durante los últimos años, gracias a las políticas ambientales, se ha reducido la concentración de los contaminantes atmosféricos precursores del ozono. Sin embargo, esto no se ha traducido en una reducción proporcional del ozono, debido a la complejidad de su generación (su relación con los precursores no es lineal) y el transporte atmosférico de este compuesto a través de largas distancias.

Promedio anual del máximo diario concentración de ozono en las estaciones de calidad del aire españolas entre 2017 y 2020. Adaptación de los mapas del Plan de Ozono / Bases Científicas para un Plan Nacional de Ozono, MITECO

Promedio anual del máximo diario de concentración de ozono en las estaciones de calidad del aire españolas entre 2017 y 2020. Adaptación de los mapas del Plan de Ozono / Bases Científicas para un Plan Nacional de Ozono, MITECO

En 2021, el 10% de la población europea estuvo expuesta a niveles de ozono superiores al valor objetivo de protección a la salud establecido por la legislación europea (120 µg/m3). Sin embargo, si tenemos en cuenta el valor guía recomendado por la Organización Mundial de la Salud (OMS), que es de 100 µg/m3, más restrictivo que el de la norma europea, entonces el 94% de la población europea respira niveles de ozono superiores a los considerados como seguros.

En España, el 45% de las estaciones de calidad del aire superan el nivel crítico de exposición a la población, y eso que solo el 39% de estas estaciones están situadas en zonas urbanas y suburbanas. No obstante, en 2020 y 2021 por primera vez no se superaron los valores objetivos del ozono en la costa mediterránea. Probablemente esto se debe a condiciones meteorológicas favorables y a la disminución drástica de los contaminantes precursores asociada a la pandemia, que supuso una reducción del tráfico automovilístico y aeroportuario y la ausencia de cruceros.

¿Cómo afecta el ozono a la vegetación?

Además de la salud humana, el ozono troposférico puede dañar a los cultivos, los bosques y la vegetación en general.

Este gas es absorbido por las plantas a través de los estomas, que son unos pequeños poros de las hojas donde se produce el intercambio gaseoso. La planta los abre para absorber el dióxido de carbono (CO2) que necesita para hacer la fotosíntesis, pero también absorbe otras moléculas como el ozono.

Una vez que el ozono está dentro de la planta, se producen una serie de reacciones que oxidan las propias células vegetales, lo que altera su funcionamiento. Para evitar estos efectos negativos, las plantas tienen sistemas de protección celular antioxidantes. Sin embargo, cuando los niveles de ozono superan la capacidad de protección de las células vegetales, se produce una disminución de su crecimiento y productividad, y una aceleración del envejecimiento celular.

En última instancia, esto aumenta la sensibilidad de la planta hacia otros condicionantes como las sequías, las altas temperaturas o las plagas. Incluso es posible que los daños producidos por el ozono puedan llegar a observarse visualmente como pigmentaciones características en hojas de tonos amarronados o rojizos.

Diferentes hojas afectadas por el ozono. Pigmentaciones amarronadas o rojizas en hojas de judía (a) y tomate (c) y necrosis más avanzada en hojas de sandía (b). / CIEMAT-MARM

Diferentes hojas afectadas por el ozono. Pigmentaciones amarronadas o rojizas en hojas de judía (a) y tomate (c) y necrosis más avanzada en hojas de sandía (b). / CIEMAT-MARM

Además, los cultivos pueden sufrir una reducción de la producción y/o la calidad de la cosecha, al igual que adquirir mayor sensibilidad frente al ataque de patógenos. En la Península Ibérica, las cosechas que más se ven alteradas son las que se encuentran en el área mediterránea, debido a las altas concentraciones de ozono y su alta producción agrícola.

Los elevados y prolongados niveles de ozono pueden llegar a disminuir significativamente las cosechas. Cuando sucede un aumento de 60 a 120 µg m-3 de ozono, esa disminución es de un 20-30% en guisantes, judías verdes, boniatos, naranjas, cebollas, nabos y ciruelas; de un 10-19% en lechugas, ciruelas, trigo, cebada, soja, alfalfa, sandía, tomates, oliva y maíz; y entre de un 5-9% en arroz, patatas y uvas. Se estima que las pérdidas económicas globales en 2030 provocadas por el ozono oscilarán entre 15 y 30 mil millones de euros al año.

Plantas como biosensores de la contaminación por ozono

En este contexto de contaminación, el proyecto europeo WatchPlant está desarrollando una nueva tecnología para monitorizar diversas condiciones atmosféricas, como el exceso de ozono. Se trata de un sistema bio-híbrido inteligente basado en sensores que se integrarán con las plantas para detectar las condiciones ambientales adversas a partir de la respuesta temprana de las propias plantas. Capaces de transmitir datos en directo, estos sensores permitirán la monitorización ambiental in situ, sobre todo en áreas urbanas, para establecer una relación entre la contaminación y la salud humana.

Biosensores instalados en plantas de tomate. / WatchPlant

Biosensores instalados en plantas de tomate. / WatchPlant

Resultados preliminares del proyecto muestran que sí hay una relación entre la respuesta fisiológica de plantas como el almendro, el olivo, el limonero o el naranjo y la contaminación atmosférica. Ahora el objetivo es producir un sensor bio-híbrido que mida parámetros de la savia de estas plantas que reflejen los niveles de contaminantes como el ozono (O3). Los datos recabados podrán ser utilizados como complemento a las redes de monitoreo de calidad del aire y por la propia ciudadanía.

Más información sobre WatchPlant: https://watchplantproject.eu/ Twitter: @WatchplantP

 

* Pedro Trechera Ruiz es investigador postdoctoral del Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA) del CSIC.

Una efeméride por día: descubre el Calendario científico escolar 2024

Por Mar Gulis (CSIC)

¿Te imaginas el mundo sin neveras, lavadoras, bolígrafos o, lo que es peor aún, sin café? Que hoy vivamos con estas cosas ha sido posible gracias al avance de la ciencia y del conocimiento, y concretamente a que el 16 de mayo de 1884 el inventor y empresario Angelo Moriondo patentara la primera máquina moderna de café expreso; el 11 de noviembre de 1930 Albert Einstein y Leó Szilárd obtuvieran la patente US1781541 por su invento: un refrigerador; y el 29 de septiembre de 1899 naciera el inventor László Bíró, que dio lugar a numerosos utensilios, como una máquina de lavar la ropa, un perfumero y el bolígrafo.

Portada del Calendario científico escolar 2024

El Calendario científico escolar es utilizado anualmente por más de 800.000 personas.

Un total de 366 efemérides como estas las encontrarás en el Calendario científico escolar 2024, año bisiesto, que ofrece conmemoraciones científicas diarias y que ya está disponible para su descarga gratuita en 11 idiomas diferentes. El nuevo calendario viene cargado de aniversarios tan relevantes como el del 29 de febrero, Día Europeo de las Enfermedades Raras, celebrado por primera vez en 2008, con el objetivo de concienciar sobre las enfermedades que, por su carácter excepcional, son invisibles para gran parte de la población. O como la del 1 de noviembre de 1755, fecha grabada en la historia portuguesa, cuando tuvo lugar el Gran Terremoto de Lisboa. La búsqueda de una explicación científica del mismo reunió un importante equipo de especialistas y sentó las bases de la sismología moderna.

La iniciativa de crear un calendario de efemérides científicas parte del Instituto de Ganadería de Montaña (CSIC-Universidad de León), y recibió el pasado año el I Premio CSIC de Divulgación Científica y Ciencia Ciudadana en la categoría de Obra Unitaria, por su “originalidad, participación colaborativa, impacto en la sociedad, accesibilidad, sostenibilidad, variedad de formatos, y su capacidad de conjugar la historia de la ciencia con la actualidad investigadora”. Con este impulso, el proyecto ha desarrollado el calendario por quinto año consecutivo, ha lanzado una nueva web y ha dado un vuelco lúdico a la guía didáctica, incorporando actividades de gamificación, como el juego de la oca.

La oca de la ciencia del Calendario científico escolar 2024

La quinta edición de esta iniciativa se acompaña de una guía didáctica con actividades lúdicas, como el juego de la oca.

Además, el calendario 2024 mantiene el recurso de las efemérides en lectura fácil para alumnado con problemas en la competencia lectoescritora y el formato accesible para personas con discapacidad visual.

En esta ocasión, el calendario dedica los espacios a pie de mes a publicaciones periódicas. Entre las 12 seleccionadas se encuentran el Diario del Jardín Botánico, las revistas IAA Información y actualidad astronómica y NaturalMente, y el Boletín CC2, al que debes suscribirte si quieres estar al tanto de las novedades en cultura científica del CSIC.

Viajes en el tiempo

El Calendario científico escolar 2024 nos lleva atrás en el tiempo hasta el año 1076, concretamente al 31 de marzo, cuando nació el alfaquí Abu Bakr Ibn al-Arabi, quien escribió numerosas obras con las que difundió los conocimientos jurídicos de oriente en su tiempo. Pero también nos traslada al futuro próximo, al 28 de julio de 2024, Día Mundial de la Hepatitis, que busca sensibilizar sobre las hepatitis víricas, que inflaman el hígado y causan enfermedades hepáticas graves y cáncer de hígado.

Y entre medias, nos encontramos con los hermanos Lumière en la París de 1895 presentando al público su invento llamado cinematógrafo; con Marie y Pierre Curie en su laboratorio el 21 de diciembre de 1898 descubriendo un nuevo elemento químico: el radio; con el astrónomo Edwin Hubble anunciando la existencia de otras galaxias distintas a la Vía Láctea en 1924; o incluso con nosotros y nosotras mismas en 2001 abriendo por primera vez Wikipedia.

¿A qué esperas para descubrir el resto de efemérides científicas del calendario 2024? También puedes seguirlas diariamente a través de la cuenta de X @CalCientifico.

Descubre las 10 mejores imágenes científicas de 2023 con FOTCIENCIA20

Por Mar Gulis (CSIC)

El corte transversal de una cáscara de huevo, la eclosión de un gecko terrestre malgache fotografiada con un smartphone o un ovillo de gusanos parásitos anisakis son algunas de las imágenes más destacadas del año en la iniciativa FOTCIENCIA, que cumple con esta su 20ª edición recopilando fotografías científicas gracias a la participación ciudadana.

Esta iniciativa del Consejo Superior de Investigaciones Científicas (CSIC) y la Fundación Española para la Ciencia y la Tecnología (FECYT) ha dado a conocer las mejores fotografías del año 2023. El pelo del estambre de una flor (Erodium moschatum), la simetría del brócoli o tres muestras de epidermis de flor de caléndula captadas por estudiantes de secundaria son otros de los fenómenos retratados en las imágenes seleccionadas de entre más de 475 fotografías. Un comité multidisciplinar formado por 13 profesionales de la ciencia, la microscopía, las artes visuales o la divulgación científica, entre otras especialidades, ha sido el encargado de seleccionar estas imágenes que han sido galardonadas por su belleza, impacto y capacidad para reflejar y describir hechos científicos.

De izquierda a derecha: “Cubismo plutónico”, “Polinización y la agricultura”, “Un ovillo de gusanos parásitos Anisakis extraídos de pescado fresco”, “La sal de la muerte (celular)”, “Biomineralización”, “Un triángulo imposible”, “Biosensores”, “Eclosión en laboratorio”, “Recordando a Cajal para tratar la neurodegeneración” y “Revelación simétrica del brócoli”.

De izquierda a derecha: “Cubismo plutónico”, “Polinización y la agricultura”, “Un ovillo de gusanos parásitos Anisakis extraídos de pescado fresco”, “La sal de la muerte (celular)”, “Biomineralización”, “Un triángulo imposible”, “Biosensores”, “Eclosión en laboratorio”, “Recordando a Cajal para tratar la neurodegeneración” y “Revelación simétrica del brócoli”.

Estas 10 mejores imágenes, que puedes ver en el vídeo de más abajo, junto con una selección más amplia de fotografías, conformarán un catálogo y una exposición itinerante, disponible para su préstamo gratuito, que recorrerá museos, centros de investigación, universidades y espacios culturales de todo el país durante el próximo año.

En esta vigésima edición, a las modalidades de participación habituales –Micro, General, Alimentación y nutrición, Agricultura sostenible y La ciencia en el aula– se han sumado las modalidades especiales Año Cajal, Física de partículas y Sinergias (Arte, Ciencia, Tecnología y Sociedad, ACTS). La difícil captura nanométrica de un radical libre captado al microscopio de efecto túnel y la observación al microscopio de una roca ígnea plutónica de La Cabrera (Madrid) han sido las fotografías galardonadas por primera vez en estas dos últimas modalidades, respectivamente.

La modalidad Sinergias (Arte, Ciencia, Tecnología y Sociedad, ACTS) pretende mostrar trabajos conjuntos del ámbito científico y artístico con el objetivo de ampliar nuevos horizontes inter y transdisciplinarios entre las ciencias y las artes. Este año, una madre geóloga y su hijo estudiante de bellas artes han mostrado en una fotografía esta conexión con una imagen que resulta de un proceso de investigación donde ambos comparten microscopio en busca de colores e imágenes inspiradoras para futuros bocetos en otros soportes.

Como en la anterior edición, FOTCIENCIA contempla la modalidad especial Año Cajal para recoger imágenes que tengan que ver con las neurociencias, sumándose así a la celebración del Año Cajal, impulsado a nivel nacional. La inmunofluorescencia de una sección de cerebelo con dos células de Purkinje, que recuerda a los dibujos de Ramón y Cajal, quien ya describió su estructura, ha sido la imagen seleccionada en esta modalidad.

FOTCIENCIA es una iniciativa del CSIC y la FECYT que invita a que cualquier persona, se dedique o no a la investigación, plasme su visión de la ciencia y la tecnología a través de fotografías. Además, FOTCIENCIA20 cuenta con la colaboración de Fundación Jesús Serra, de GCO (Grupo Catalana Occidente) y, por primera vez, de Leica.

Más información, en este enlace.

Imágenes seleccionadas:

  • Modalidad General:
  1. Polinización y la agricultura / Eduardo Cires Rodríguez
  2. Eclosión en laboratorio / Fernando García Moreno
  • Modalidad Micro:
  1. Biosensores / Concepción Hernández Castillo, Lola Molina Fernández, Isabel María Sánchez Almazo
  2. Biomineralización / María Jesús Redrejo Rodríguez, Eberhardt Josué Friedrich Kernahan
  • Modalidad Año Cajal:
  1. Recordando a Cajal para tratar la neurodegeneración / Pablo González Téllez de Meneses
  • Modalidad Alimentación y nutrición:
  1. Un ovillo de gusanos parásitos Anisakis extraídos de pescado fresco / José Ramos Vivas
  • Modalidad Agricultura sostenible:
  1. Revelación simétrica del brócoli /Samuel Valdebenito Pérez, María Villarroel, Patricia Peñaloza
  • Modalidad La ciencia en el aula:
  1. La sal de la muerte (celular) / Hala Lach Hab El Keneksi, Rebeca Jiménez Uvidia, Chaimae El Idrissi Loukili
  • Modalidad Física de partículas:
  1. Un triángulo imposible / Alejandro Berdonces Layunta, Dimas García de Oteyza
  • Modalidad Sinergias (ACTS):
  1. Cubismo plutónico / Bruno Fernández Delvene, Graciela Delvene Ibarrola

El redescubrimiento de las zanahorias moradas

Por Laura Sáez Escudero, Gracia Patricia Blanch Manzano, María Luisa Ruiz del Castillo (CSIC)* y Mar Gulis

Los primeros cultivos de zanahoria datan del año 3.000 a. C. en la zona que hoy ocupa Afganistán. Sin embargo, la variedad más popular en la actualidad, la zanahoria naranja, no apareció hasta el siglo XVII, cuando agricultores holandeses cruzaron de forma deliberada varias zanahorias cultivadas y silvestres para que el color de esta hortaliza coincidiese con el de la casa real holandesa de Orange.

Hasta entonces la variedad dominante había sido la zanahoria morada. Las primeras zanahorias cultivadas eran de un color morado oscuro, casi negro. A medida que los comerciantes árabes fueron llevando su semilla por África y Oriente Próximo, surgieron nuevas variedades blancas, amarillas y rojizas, pero el dominio de la zanahoria naranja tardaría aún varios siglos en llegar.

Sin embargo, el consumo de zanahoria morada está volviendo a adquirir cierta popularidad. Esto se explica por su sabor, similar al de las zanahorias naranjas pero un poco más dulce y con cierto toque picante, y por sus propiedades nutricionales. Al igual que las zanahorias naranjas, las moradas contienen carotenoides, compuestos antioxidantes y precursores de la vitamina A que son responsables del color naranja y amarillo de estas hortalizas. Pero la zanahoria morada, además, contiene antocianinas, unos polifenoles responsables del color rojo, violeta o azul que hace atractivos a muchos vegetales y que tienen también efectos antioxidantes. Hasta el momento, se han descubierto hasta 500 antocianinas diferentes en las plantas.

Tanto a los carotenoides como a las antocianinas se les ha atribuido una acción preventiva frente a ciertos tipos de cáncer, enfermedades cardiovasculares y patologías relacionadas con la edad. Ambos compuestos forman parte de los denominados fitonutrientes: moléculas defensivas que las plantas generan en respuesta al estrés ambiental y que nos aportan sus propiedades protectoras cuando las ingerimos. Se trata de sustancias bioactivas que no nos proporcionan calorías pero que pueden tener muchos efectos positivos para el organismo humano.

Zanahorias hervidas, horneadas o liofilizadas

En el Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN) del CSIC hemos estudiado cómo diferentes formas de cocinar la zanahoria morada afectan al contenido de sus compuestos bioactivos (carotenoides y polifenoles, como las antocianinas) y a su capacidad antioxidante.

En concreto, hemos considerado el hervido, la cocción al vapor, el horneado durante diferentes tiempos y la deshidratación mediante liofilización (un proceso que da lugar a zanahoria en polvo, que se emplea como colorante natural). Si comparamos el hervido y la cocción al vapor, ambos procedimientos provocan un aumento de carotenoides, pero en el hervido se observó una disminución drástica de antocianinas por arrastre de estos compuestos al agua de cocción. La liofilización dio lugar a un aumento de antocianinas, pero provocó la pérdida de los carotenoides. El horneado fue el método de cocinado que dio lugar a resultados más equilibrados, ya que no se observó aumento de ninguno de los pigmentos bioactivos estudiados, pero tampoco pérdida.

También es interesante resaltar la correlación directa entre la presencia de antocianinas y la actividad antioxidante de la muestra. Las antocianinas son los antioxidantes que contribuyen en mayor medida a las propiedades biológicas de esta variedad de zanahoria

En conclusión, la zanahoria morada es un alimento muy interesante por sus propiedades promotoras de la salud. Sin embargo, seleccionar su forma de consumo es vital si queremos aprovechar estas propiedades. Aunque cada tipo de cocinado presenta ventajas e inconvenientes, en general, la cocción a vapor y el horneado ofrecen un producto más equilibrado y completo.

 

* Laura Sáez Escudero, María Gracia Blanch Manzano y María Luisa Ruiz del Castillo forman parte del grupo de investigación ENANTIOMET en el Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN) del CSIC.

 

 

 

¿Está el útero materno libre de microbios?

Por Alejandro Fernández Llorente* y Mar Gulis

Aunque muchos microorganismos nos hacen enfermar, la gran mayoría no son perjudiciales para los seres humanos y algunos incluso son beneficiosos y necesarios para nuestra salud. Por eso hay bacterias, virus y hongos que nos acompañan a lo largo de toda la vida: forman lo que conocemos como el microbioma humano.

Con ellos mantenemos una estrecha relación mutuamente ventajosa: nuestro cuerpo les proporciona alojamiento, alimento y protección y, a cambio, estos microorganismos se encargan de realizar importantes funciones para nuestro bienestar. Pero, ¿cuándo se alían con nuestro organismo y comienzan a influir en nuestra salud? 

embrión

Imagen de archivo de un embrión. / NATURE – Archivo

Colonización del microbioma

Al nacer nos exponemos a un ambiente lleno de microorganismos. Una gran parte de ellos proceden de la madre si el parto fue natural. Se trata de los principales colonizadores de nuestro cuerpo y ocupan la mayoría de las superficies, tanto externas como internas.

Durante la infancia, tienen un papel esencial en nuestra salud. Por ejemplo, controlan el desarrollo del sistema inmunitario y el de otros órganos, impiden que se asienten otros microorganismos perjudiciales y producen vitaminas y otros compuestos necesarios.

Entonces, ¿comenzamos a interactuar con el mundo microbiológico cuando nacemos? Aunque desde hace tiempo no había duda de que así era, en los últimos años la respuesta a esta pregunta ha dejado de ser tan clara. Recientemente se ha cuestionado si el útero, que nos mantiene alrededor de nueve meses de media antes de nacer, está libre de bacterias o incluso de virus. 

¿Hallazgo revolucionario o contaminación de muestras?

El feto es muy vulnerable a las infecciones, así que el útero debe mantener un ambiente interno sin amenazas de microorganismos invasores. Aun así, para algunos investigadores esto no significa que el interior del útero deba ser estéril necesariamente, a diferencia de lo que se ha asumido hasta la actualidad.

Existen estudios que han detectado ADN de bacterias, hongos y virus en la placenta y el líquido amniótico, dos componentes del útero en estrecho contacto con el feto. Algunas investigaciones han llegado incluso a detectar microorganismos en su intestino. Esto podría sugerir que el feto convive, al menos en algunas de las fases de su desarrollo, con microorganismos que le ayudarían a conformar su sistema inmune antes de que se exponga al mundo exterior, un entorno agresivo al que se tendrá que enfrentar sin la protección inmunitaria de la madre.

Sin embargo, hay estudios que ponen en duda de la fiabilidad de los resultados anteriores, ya que no se puede descartar que lo detectado sencillamente una contaminación de las muestras. Con las técnicas actuales, al intentar detectar poblaciones muy pobres de microorganismos, como las que podría haber en el feto, es complicado demostrar que aquello que se está observando pertenece de verdad al interior del útero materno.

Cuestiones abiertas

No obstante, aunque aún no se pueda probar con claridad la existencia de un microbioma en el feto, algunos patógenos sí logran acceder a él durante ciertas infecciones. De modo que deben de existir mecanismos que eviten la barrera inmunitaria que constituye el útero. Y, si existen, ¿podrían ser utilizadas también por otros microorganismos que sean inofensivos?

Por otra parte, no es de extrañar que algunos microorganismos merodeen por el interior de nuestro cuerpo. En fluidos como la sangre y el líquido cefalorraquídeo, que antiguamente se consideraban estériles cuando no había una infección, se ha llegado a detectar una gran diversidad de virus. Por ello, si se han podido encontrar microorganismos en nuestro interior estando sanos, ¿por qué sería extraño pensar que también los hay durante la gestación?

 

* Alejandro Fernández Llorente es técnico del Centro de Biología Molecular Severo Ochoa (CBMSO, CSIC-UAM).

¿Cómo influye el estilo de vida en el sistema inmunitario?

Por Ascensión Marcos, Esther Nova, Sonia Gómez-Martínez, Ligia Esperanza Díaz* y Mar Gulis (CSIC)

La respuesta inmune comienza en el útero materno. Desde ese momento se sucede una carrera a lo largo de toda la vida para conseguir un sistema inmune óptimo. Es decir, que nuestro organismo tenga la capacidad de luchar contra cualquier agente extraño que suponga una agresión sin que esta respuesta resulte dañina para nuestros tejidos y células. La mayoría sabemos que para conseguir esto se precisa una dieta y una nutrición adecuadas. Pero, ¿hasta que punto nuestro estilo de vida puede influir en el sistema inmunitario? En este texto trataremos de arrojar algo de luz sobre el tema.

Los factores que influyen en el buen funcionamiento de nuestro sistema de defensa se pueden clasificar en no modificables, que son intrínsecos al individuo, como la edad o la genética, y los modificables, que son los que dependen de nuestros hábitos y condiciones de vida.

Entre los modificables, la nutrición es clave. Omitir alguna de las tres comidas más importantes del día, comer demasiado deprisa, de pie, hacerlo en situaciones de cansancio o aburrimiento, no mantener una correcta hidratación o prescindir de alimentos ricos en fibra, ácidos grasos omega-3, polifenoles o incluso, probióticos, puede tener consecuencias graves sobre nuestro sistema inmune y, por tanto, sobre nuestra salud. Pero, además, existe evidencia científica sobre el efecto que algunos hábitos como el ejercicio, el sedentarismo, las horas de sueño, el estrés o el tabaco tienen sobre nuestras defensas.

Ejercicio regular y con intensidad moderada

La Organización Mundial de la Salud (OMS) considera que la actividad física es una de las principales estrategias en la prevención de algunas patologías y tiene un beneficio sobre el sistema inmunitario. Por el contrario, el organismo internacional señala que la inactividad y el sedentarismo tienen un efecto negativo sobre el sistema inmune y la salud.

Por eso plantea unas recomendaciones sobre la realización de actividad física en los distintos grupos de edad. Las personas adultas de 18 a 64 años, por ejemplo, deberían realizar actividades físicas aeróbicas moderadas (caminar rápido o montar en bici, nadar o bailar) entre 150 y 300 minutos a la semana.

Sin embargo, el ejercicio es una conducta compleja que debe ser valorada desde varias dimensiones: tipo o modo, intensidad, duración y frecuencia. Las recomendaciones deben ajustarse a las circunstancias de cada persona y son importantes tanto la regularidad como el tiempo dedicado.

Se ha demostrado que la realización de actividad física y ejercicio se asocia a cambios en la microbiota intestinal y también que la respuesta del sistema inmunitario al ejercicio es dual: es decir, tiene unos efectos beneficiosos si se practica de manera regular y con una intensidad moderada, pero puede tener efectos negativos si se realiza de manera aguda y con gran intensidad.

Ojo con el estrés, las alteraciones del sueño o el tabaco 

Otro factor importante es el estrés. Este genera cortisol, una molécula que deprime el sistema inmunitario y hace a una persona mucho más vulnerable a padecer una infección o un proceso de inflamación. Además, las situaciones de estrés provocan alteraciones en el sueño, que es otro aspecto que ha demostrado tener importantes propiedades restauradoras y reguladoras en muchos sistemas del cuerpo, incluido el inmunitario.

El efecto que puede generar el sueño sobre el organismo depende no solo de las horas dedicadas a dormir, sino también de su calidad y de la regulación de los ciclos circadianos. La disfunción del sueño se asocia a un posible desequilibrio de la flora intestinal que, a su vez, se relaciona con alteraciones en la permeabilidad de la membrana del intestino y en la funcionalidad del sistema inmunitario, así como a un mayor riesgo de estados inflamatorios.

Al igual que con el ejercicio físico, también existen recomendaciones sobre las horas de sueño adecuadas para cada grupo de edad respaldadas por organismos como la OMS y analizados en detalle por varios estudios. Para mayores de 18 años se recomiendan de 7 a 8 horas de sueño, pero llega a ser de entre 14 y 17 para bebés de 0 a 3 meses.

Otro factor del estilo de vida modificable que se debe tener en cuenta es el consumo de tabaco, el cual, además de asociarse a enfermedades del tracto respiratorio, se ha relacionado con ciertas dolencias gastrointestinales y diversos tipos de cáncer. Su consumo, ya sea activo (fumar) como pasivo (Inhalar del humo ambiente), produce alteraciones de la respuesta inmune, ya sea celular o humoral, incluso en los grupos de edad más jóvenes. De nuevo, una conducta modificable, como es el consumo de tabaco, se relaciona con una disminución en la diversidad microbiana intestinal, lo que puede alterar su equilibrio y aumentar la abundancia de bacterias proinflamatorias.

La Inmunonutrición, que estudia cómo los alimentos y el estilo de vida inciden en las defensas de nuestro organismo, es una ciencia relativamente joven que se ha desarrollado durante los últimos 40 años y que actualmente se encuentra en pleno apogeo. Se requiere mucha más investigación en esta área interdisciplinar, pero podemos concluir que no solo es importante tener unos adecuados hábitos alimenticios, sino vigilar otros aspectos como la actividad física, el estrés, tener un sueño reparador y relajado y no consumir tóxicos, como el tabaco. Un estilo de vida saludable es sinónimo de una microbiota saludable y, por ende, de un buen sistema de defensas, lo que reduce el riesgo de desarrollar infecciones, alergias o procesos inflamatorios.

* Ascensión Marcos, Esther Nova, Sonia Gómez-Martínez y Ligia Esperanza Díaz pertenecen al Grupo de Inmunonutrición del Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN) del CSIC y son autoras del  libro Inmunonutrición, perteneciente a la colección ¿Qué sabemos de? (CSIC-Catarata).

Nueve libros del CSIC para disfrutar de la ciencia, la historia o el arte

Por Mar Gulis

¿Sabías que el físico Erwin Schrödinger, el creador de la famosa paradoja del gato, fue también poeta? ¿O que en el Tierra hay ocho millones de especies sin contar a las bacterias? ¿Habías oído hablar de los juicios sumarísimos a los que fueron sometidas las personas represaliadas por el franquismo? Estos son solo algunos de los temas que abordan los nuevos libros publicados por el Consejo Superior de Investigaciones Científicas (CSIC) en 2023.

En este post te presentamos las novedades de Editorial CSIC escritas para un público amplio o no necesariamente especializado: libros en los que podrás descubrir aspectos poco conocidos de la historia de la ciencia, como la contribución de las mujeres a la ilustración botánica; explorar los últimos avances científicos en los ámbitos de la nutrición o la búsqueda de vida extraterrestre; o acercarte a un pasado no tan distante, como el de las expediciones militares españolas en Asia a finales del siglo XVIII.

Caseta del CSIC en la Feria del Libro de Madrid / Álvaro Minguito

En todos los casos se trata de libros escritos por especialistas y revisados por pares que podrás encontrar en librerías, el portal de edición electrónica del CSIC o en la caseta de Editorial CSIC en la Feria del Libro de Madrid. Varios de ellos, los marcados con asterisco, también se presentarán el martes 30 de mayo, a las 19:00, en el Pabellón Europa de la Feria. ¡No te los pierdas!

Historias de ciencia, arte y literatura

Ellas ilustran botánica*. Sorteando infinidad de dificultades, las mujeres han estudiado y difundido la flora a lo largo de la historia. Este libro da cuenta de ello reproduciendo más de 50 de obras botánicas de gran valor realizadas por mujeres entre el siglo XVII y la actualidad. Dibujos, grabados, pinturas y fotografías se entremezclan con ensayos y biografías que revelan “cómo se han ido trazando los caminos de la igualdad” en el ámbito de la ilustración botánica. Toya Legido, profesora de Bellas Artes en la Universidad Complutense de Madrid, coordina esta cuidada monografía, en la que historia, sociología y cultura ayudan a desentrañar las relaciones entre ciencia, arte y género.

Fragmento de ‘Los bosques más antiguos?, ilustración incluida en ‘Ellas ilustran botánica’. / © Aina Bestard

Schrödinger, poetaConocido por ser uno de los padres de la física cuántica y el creador de la paradoja más célebre de su disciplina, Erwin Schrödinger tuvo una vida apasionante en la que también cultivó la filosofía y la poesía. En Erwin Schrödinger y el salto espacios-tiempo de Galileo Galilei, la poeta Clara Janés presenta el pensamiento y la obra del Schrödinger humanista. Las relaciones del científico con intelectuales como Ortega y Gasset o Xavier Zubiri o su fascinación con España son otros de los temas tratados por la autora. La obra se ha publicado conjuntamente con ‘Gedichte’ [poemas] y Fragmento de un diálogo inédito de Galileo, una selección de poemas y textos literarios, algunos inéditos, escritos por Schrödinger.

Santiago Ramón y Cajal. Hasta donde quieras llegar. Cajal fue muchas otras cosas además de pionero de las neurociencias y Premio Nobel de Medicina. Esta breve biografía dirigida al público juvenil recorre su trayectoria científica y cuenta aspectos de su vida personal menos conocidos. Los historiadores Elisa Garrido Moreno y Miguel Ángel Puig-Samper reseñan que el prestigioso científico español fue también un niño travieso que trepaba a los árboles, un adolescente rebelde al que le gustaba la pintura o un joven que trabajaba con tesón su musculatura. Publicado por primera vez en 2021, el libro ha sido reeditado este año en acceso abierto con motivo de la celebración del Año Cajal.

Autorretrato de Ramón y Cajal realizado en su juventud.

Erudición sobre hormigas y rositas: acerca de los libros y las mujeres que los escriben*. ¿Qué diferencias hay entre la novela de alguien que se dedica en exclusiva a la escritura y la de alguien que tiene otro trabajo y cuida de su familia? En este ensayo publicado en abierto, la escritora y editora Elena Medel reflexiona acerca de cómo el género y la clase social inciden sobre la escritura. La autora aborda, sin esconder sus “costuras y contradicciones”, cuestiones como si existe o no la literatura femenina; y también dialoga sobre las circunstancias que rodean al hecho de escribir con escritoras de distintas épocas y procedencias, como Virginia Woolf, Gertrude Stein o Carmen Martín Gaite.

Los avances de la ciencia, para todos los públicos

La vida y su búsqueda más allá de la Tierra. ¿La vida extraterrestre será similar o muy distinta a la que conocemos en la Tierra? En este libro de divulgación, Ester Lázaro explica que hay “buenas razones” para creer en la vida extraterrestre, y defiende que probablemente será muy diferente a cómo la imaginamos. La investigadora del CSIC se pregunta qué características tendría que tener un objeto que halláramos fuera de la Tierra para ser considerado un ser vivo, y recorre algunos de los lugares del cosmos más prometedores para encontrar vida: Marte, las lunas de Júpiter o los exoplanetas situados en la zona de habitabilidad de sus respectivas estrellas.

Las moléculas que comemos. Azúcares, hidratos de carbono, fibra, grasas, minerales, proteínas y vitaminas son los componentes básicos de los alimentos, las moléculas que comemos. ¿Qué propiedades tienen? ¿Por qué son importantes para nuestro desarrollo y salud? ¿Cómo proporcionan a los alimentos sus diferentes aromas, colores, sabores y texturas? ¿Qué tipo de reacciones químicas se producen al cocinar? Esta guía didáctica coordinada por las investigadoras del CSIC Inmaculada Yruela e Isabel Varela responde a estas y otras preguntas sobre la alimentación y las moléculas presentes en nuestra dieta. El libro incluye sencillas explicaciones y una amplia variedad de experimentos y talleres que pueden hacerse tanto en la cocina de casa como en el colegio.

Cómo se meten ocho millones de especies en un planeta. ¿Por qué hay monos en Sudamérica? ¿Por qué en el ecuador hay más especies que en los polos? ¿Por qué se dice que hay ocho millones de especies diferentes en el planeta y no solo cien o cien millones? ¿Por qué la especie más competitiva no gana a todas las demás y vive sola dominando el mundo? Para responder estas preguntas, el investigador del CSIC Ignasi Bartomeus realiza un recorrido a través de la historia de la ecología, una disciplina nacida hace apenas 150 años. En este libro de la colección ¿Qué sabemos de? presenta las principales leyes que regulan las comunidades ecológicas y los cuatro mecanismos básicos que determinan los ecosistemas: la evolución, la dispersión, las regulaciones bióticas y abióticas y, por último, la suerte.

Un pasado muy presente

Tragedia en tres actos. Los juicios sumarísimos del franquismo*. Durante la guerra civil y la posguerra, más de medio millón de personas fueron sometidas a juicios sumarísimos: procedimientos regidos por la jurisdicción militar, carentes de garantías y en los que la mayoría de las sentencias supusieron condenas a muerte. El antropólogo de la UNED Alfonso M. Villalta Luna reconstruye la dinámica de estos procesos y las vivencias de sus protagonistas: los presos que desde el interior de la cárcel intentan escapar de la muerte, los militares que sobre el estrado buscan una condena en el consejo de guerra y los familiares y amigos, que realizan viajes y gestiones repletos de incertidumbres y adversidades con el fin de salvar la vida de sus seres queridos.

Consejo de guerra contra los supuestos integrantes de la llamada ‘Checa de Bellas Artes’. / Revista Semana.

La Escuadra de Asia. Entre 1795 y 1803, mientras el mundo entero está en guerra, una pequeña división es enviada a Filipinas para proteger los intereses españoles. Capitaneada por Ignacio María Álava, la Escuadra de Asia tendrá que hacer frente a una misión compleja y lidiar con huracanes, asaltos, incendios, persecuciones, engaños, corruptelas y rivalidades. El historiador Pablo Ortega-del-Cerro relata las hazañas y vicisitudes de la expedición y se adentra en un periodo especialmente convulso, caracterizado por la rivalidad militar y económica entre Gran Bretaña y España. Este episodio excepcional le permite observar el nacimiento de una nueva realidad global.

Cartel del CSIC para la Feria del Libro 2023. / Irene Cuesta

Autofagia o cómo se elimina la basura de nuestras células

Por Laura Baños Carrión* (CSIC)

Desde que nos levantamos hasta que nos acostamos, los seres humanos generamos basura constantemente. Deshacernos de ella es un acto sencillo y cotidiano, y encontramos a pocos pasos de nuestras viviendas y trabajos algún contenedor donde poder tirarla.  Nuestras células también producen basura todo el tiempo, pero ¿cómo se deshacen de ella? El mecanismo que utilizan para mantenerse limpias es conocido como autofagia, un término que proviene del griego y que significa ‘’comerse a uno mismo’’.

La autofagia es la forma que tienen las células de mantenerse en condiciones óptimas y saludables, evitando que se acumulen productos de desecho que puedan afectar a su funcionalidad. Es un sistema de limpieza por el que, como si fueran una aspiradora, las células se tragan la suciedad, que en su caso serían todos aquellos componentes celulares y proteínas dañadas, que no funcionan correctamente o que simplemente ya no necesitan.

Un sistema de limpieza y reciclaje celular

En condiciones normales, este proceso ocurre a niveles basales, es decir, a unos niveles mínimos en los que se garantiza la calidad de la célula. Sin embargo, se ve incrementado ante situaciones de estrés o demanda energética. Sin oxígeno, la célula no tiene forma de obtener energía y por tanto la autofagia se ve incrementada para intentar ahorrar energía reutilizando componentes. Cuando escasean los nutrientes, se activa la autofagia y se forma una vesícula de doble membrana en el interior de la célula llamada autofagosoma. Es una especie de bolsa de basura celular que engloba los residuos (como las proteínas mal plegadas) y los envía a unos orgánulos celulares denominados lisosomas. En este momento, los lisosomas, gracias a su alto contenido en enzimas digestivas, son capaces de descomponer prácticamente cualquier tipo de material biológico en los pequeños elementos que lo forman.

Pero no hay nada que se desaproveche. Estas piezas descompuestas se convierten en nuevos componentes celulares que pueden volver a utilizarse. Por ejemplo, una proteína defectuosa se degradaría en aminoácidos, que pueden reutilizarse para formar una nueva proteína funcional en lugar de tener que ser sintetizados de cero, ahorrando así energía. Por lo tanto, la autofagia, además de ser un sistema de limpieza, también funciona como un sistema de reciclaje celular.

Existe un tipo de autofagia selectiva: la xenofagia. Detecta microorganismos que han entrado dentro de la célula, incluidos los virus y bacterias

Y todavía hay más. Existe un tipo de autofagia selectiva: la xenofagia, que detecta específicamente los microorganismos que han entrado dentro de la célula, incluidos los virus y bacterias, los engulle y los dirige a los autofagosomas para su posterior degradación. Es una forma de defensa frente a infecciones, eliminando los patógenos y activando a las células de nuestro sistema inmune. No obstante, algunos patógenos han aprendido a ‘hackear’ este sistema, utilizando los autofagosomas como sitios de replicación y/o proliferación.

¿Y si falla la autofagia?

Después de saber todo esto, parece que no podemos vivir sin autofagia. Y así es. Cuando este sistema no funciona correctamente, se acumula basura en las células, esto puede afectar a su funcionamiento y resultar muy perjudicial.  De hecho, se ha demostrado que cuando la autofagia está alterada (bien por inactivación o por hiperactivación) da lugar a algunas enfermedades neurodegenerativas, cardiovasculares, autoinmunes, metabólicas e incluso diversos tipos de cáncer.

La enfermedad de Lafora es un ejemplo en el que se produce un fallo en la autofagia, aunque en este caso dicha alteración no es la causa principal.  En el Instituto de Biomedicina de Valencia (IBV) del CSIC, investigamos esta enfermedad ultrarrara que apenas afecta a una persona cada millón de habitantes y que principalmente cursa con crisis epilépticas y neurodegeneración. Aparece en población infantil y juvenil y, desafortunadamente, provoca la muerte de los pacientes en apenas diez años desde la aparición de los primeros síntomas.

Aunque se piensa que la causa principal de la enfermedad es la acumulación de una forma anormal de glucógeno (la molécula donde el cuerpo almacena la glucosa para poder aprovecharla cuando tiene necesidad inmediata de obtener energía) en el cerebro y otros tejidos, existen alteraciones a otros niveles. Se han detectado fallos en la autofagia, pero todavía se desconocen los mecanismos moleculares por los que este proceso está desregulado en esta enfermedad.  La autofagia es un proceso muy controlado, a la vez que complejo, en el que participan muchas proteínas que hacen posible la formación de los autofagosomas y la posterior degradación lisosomal de los residuos celulares. Esto implica que la alteración de la autofagia puede venir por fallos a distintos niveles de control.

Al igual que la mayoría de las enfermedades raras, la enfermedad de Lafora no tiene cura. Existen más de 7.000 enfermedades raras y, a pesar de ser poco frecuentes, alrededor de 3 millones de personas en España padece alguna de ellas. Con la investigación, podremos conocer el mecanismo molecular y lograr tratamientos adecuados que permitan mejorar la calidad de vida de las personas afectadas e incluso ampliar su esperanza de vida y, quién sabe, quizá en un futuro poder curarla.

* Laura Baños Carrión es investigadora en el Instituto de Biomedicina de Valencia del CSIC.