Entradas etiquetadas como ‘krill’

Plancton: un mundo en una cucharadita de agua de mar

Por Albert Calbet (CSIC)*

En una pequeña cantidad de agua de mar como la que podemos recoger en la playa con una simple cuchara de café, podemos encontrar unos 50 millones de virus, 5 millones de bacterias, cientos de miles de pequeños flagelados unicelulares, ya sean fotosintéticos, consumidores, o una combinación de ambos, miles de algas microscópicas, unos cinco ciliados o dinoflagelados heterótrofos, y, con mucha suerte, algún pequeño crustáceo, como por ejemplo un copépodo. El plancton, conformado por este vasto acervo de seres diminutos, es fundamental para el funcionamiento de los ecosistemas marinos. Es el responsable de que haya vida en la Tierra, nos ha proporcionado, a escalas geológicas, una buena parte del oxígeno de nuestro planeta y sin él seguro que no comeríamos pescadito frito.

Calanus minor, especie de copépodo del mar Mediterráneo, sobre fondo negro.

Calanus minor. Especie de copépodo del mar Mediterráneo. Si bien en el Mediterráneo el género Calanus no es dominante, en mares más fríos y productivos, como el Mar del Norte o el Océano Ártico representan la mayoría de la biomasa de zooplancton y son claves para el mantenimiento de las pesquerías de la zona. / Imagen capturada al microscopio por Albert Calbet

Plancton: el motor de la vida marina

Todos estos seres que podemos encontrar en cualquier agua de mar están interconectados en una imbricada red trófica (el conjunto de cadenas alimentarias interconectadas) en la que no solo un organismo se come a otro, sino que, al hacerlo, ayuda a que se liberen los nutrientes acumulados en la materia viva y vuelvan a estar disponibles para que empiece de nuevo el ciclo de la vida. La red trófica marina también ayuda a reducir el CO2 atmosférico gracias a un proceso denominado bomba biológica marina. Mediante este proceso las algas absorben CO2 que ha penetrado en el mar desde la atmósfera y lo incorporan en forma de carbono orgánico en su materia viva. Al ser consumidas por el zooplancton, el carbono contenido en las algas pasa a formar parte de este, o acaba en paquetes fecales que son expulsados y sedimentan hacia las profundidades del océano. Allí, este carbono será reciclado o acabará secuestrado en los sedimentos por cientos o miles de años.

Copépodo marino del género Labidocera sobre fondo negro

Copépodo marino del género Labidocera. Este género habita aguas superficiales y posee tonalidades azules que le confieren sus pigmentos fotoprotectores. / Imagen capturada al microscopio por Albert Calbet

La mayor migración de la Tierra

Este proceso de transporte vertical de carbono está estrechamente relacionado con las migraciones de zooplancton. Estos desplazamientos diarios son considerados las mayores migraciones que existen en el planeta. Al migrar hacia capas superficiales para alimentarse durante la noche, el zooplancton evita que sus depredadores, los peces, lo puedan ver y devorar. Todo encaja en un orden y un equilibrio marcados por millones y millones de años de evolución conjunta de depredadores y presas.

Ilustración de la red trófica oceánica

Ilustración de Albert Calbet

El plancton no solo muestra ritmos diarios, también los hay anuales y plurianuales. Los ritmos anuales están marcados por las estaciones. En invierno, el fitoplancton, a pesar de tener plenitud de nutrientes, está limitado por la escasa luz y la baja temperatura. Hacia finales del invierno y principios de la primavera la luz es más intensa y la temperatura comienza a subir, lo que favorece la floración explosiva o bloom del fitoplancton, el cual irá acompañado por un crecimiento de las poblaciones de protozoos primero y de zooplancton de mayor tamaño después.

Ciliado tintínido del género Favella. Los ciliados son protozoos y forman parte del microzooplancton, el mayor grupo de herbívoros del mar. / Imagen capturada al microscopio por Albert Calbet

Cuando el verano está en su máximo esplendor, la ya bien formada termoclina, la capa de separación entre dos masas de agua a temperatura diferente, separa claramente dos zonas: una capa superficial, caliente y pobre en nutrientes, y una más profunda, fría y repleta de nutrientes. El consumo de las algas va agotando lentamente los nutrientes en la capa de mezcla superficial y con la falta de sustento estas van perdiendo empuje. Las algas veraniegas son o bien de pequeño tamaño o bien grandes, pero con capacidad de locomoción (como los dinoflagelados), y esto les permite explorar las micromanchas de nutrientes que puedan quedar. Son estas algas de gran tamaño las que, en condiciones propicias (por ejemplo, dentro de zonas confinadas como bahías, puertos y espigones), pueden multiplicarse hasta formar proliferaciones nocivas. En esta época es cuando aparecen también las medusas y otros tipos de plancton gelatinoso.

Las primeras tormentas del otoño llegan acompañadas de un aumento en la intensidad del viento, lo cual acaba deteriorando la termoclina, que al final se rompe y permite que las aguas ricas en nutrientes lleguen de nuevo a la superficie. En ocasiones, si las condiciones climáticas del año lo permiten, puede haber otro pequeño crecimiento de algas, pero muchas veces las pobres intensidades lumínicas y bajas temperaturas hacen que el fitoplancton no consiga aprovechar la abundancia de nutrientes. Vuelve el invierno y el ciclo comienza de nuevo.

Imagen de alga diatomea al microscopio

Diatomea del género Coscinodiscus. Las diatomeas son algas unicelulares planctónicas o bentónicas que tienen su cuerpo recubierto por dos valvas de sílice, a modo de cajita. / Imagen capturada al microscopio por Albert Calbet

Ritmos alterados por el cambio climático

Este ciclo se repite año tras año en las zonas templadas, sin embargo, la duración de las estaciones y la magnitud de los parámetros físicos (temperatura, densidad, luz) que se alcanzan en ellas es variable. Debido al cambio climático, el plancton se enfrenta a grandes retos y a fenómenos extremos que están provocando cambios en las comunidades. Estas alteraciones en el plancton se transmiten a través de la red trófica al resto de seres vivos y llegan hasta las pesquerías, de las que tanto dependen algunas zonas del planeta. Desincronización entre el período de aparición de depredadores y presas, desplazamiento y sustitución de especies por otras invasoras, aumento de las proliferaciones algales nocivas (antes conocidas como mareas rojas), incremento en la abundancia de medusas, etc., son algunos de los ejemplos de los retos a los que nos enfrentamos. La red trófica planctónica es compleja y nuestra actividad puede dañarla. Por eso es necesario que se apliquen medidas de contención del cambio climático y de la actividad antropogénica en general, y debemos seguir estudiando cómo evolucionarán las comunidades marinas, pues la incertidumbre ante el futuro no había sido nunca tan grande desde nuestra historia reciente.

Sapphirina sp. o zafiro de mar sobre fondo negro

Sapphirina sp. o zafiro de mar. Esta especie de copépodo de forma deprimida posee cristales de guanina que le confieren iridiscencias que reflejan la luz con diferentes tonalidades. / Imagen capturada al microscopio por Albert Calbet

* Albert Calbet es investigador del CSIC en el Instituto de Ciencias del Mar (ICM-CSIC) y autor del libro El plancton y las redes tróficas marinas (2022), una de las últimas novedades de la colección ¿Qué sabemos de? (Editorial CSIC-Catarata). El libro ofrece una visión clara y amena sobre el plancton y su importancia, desarrolla estos y otros temas en detalle y presenta curiosidades sobre el plancton que difícilmente se encuentran en los libros de texto.

 

Océanos que regulan el clima y otras curiosidades, en la ‘Gymkhana de los mares’

Por Mar Gulis (CSIC)

Detalle de uno de los talleres de la Gymkhana: diferentes tipos de arenas del mundo

Detalle de uno de los talleres de la Gymkhana: diferentes arenas del mundo

¿Hay vida en el hielo marino? ¿Cuál es la máxima profundidad a la que viven los corales? Hoy se celebra en Madrid la Gymkhana de los mares y océanos’, un gran evento de divulgación en el que estudiantes de ESO y Bachillerato ‘navegarán’ por la ciudad en busca de respuestas a estas y otras muchas preguntas sobre el medio marino. Si tú también sientes curiosidad por conocer la solución a estos interrogantes, sigue leyendo.

Los mares y océanos tienen un papel fundamental en la regulación del clima de nuestro planeta. Entre otras cosas, son responsables de que la temperatura media en Lisboa sea más elevada que la de Nueva York, aunque ambas ciudades se encuentren situadas prácticamente sobre la misma latitud. En concreto, las causantes de este fenómeno son la corriente del Golfo y su brazo que se alarga hasta el Atlántico Norte. Impulsadas principalmente por los vientos del oeste, transportan el agua cálida del trópico y el subtrópico hasta las costas europeas, dando al continente un clima mucho más cálido del que tendría si no existieran.

El medio marino alberga también una gran variedad de hábitats, sin los cuales la vida en el planeta no sería posible tal y como la conocemos. Los millones de kilómetros cuadrados de hielo que cada año se forman en los casquetes polares podrían parecer un hábitat hostil para los organismos vivos, pero paradójicamente son responsables de una de las mayores explosiones cíclicas de vida que se dan en el planeta. Durante el invierno atrapan en su interior numerosas microalgas que, con el deshielo, se liberan al agua y comienzan a multiplicarse de forma masiva, despertando todo el ecosistema de la Antártida. El krill, pequeños crustáceos que se alimentan de microalgas y de los que a su vez se nutren otras especies, también ‘florece’ y con él los elementos superiores de la cadena trófica, como peces, ballenas, focas, pingüinos y otras aves.

Uno de los grupos de estudiantes participantes en la Gymkhana

Uno de los grupos de estudiantes participantes en la Gymkhana

Los bosques de corales pétreos que habitan a más de 400 metros de profundidad son otro hábitat esencial para la biodiversidad marina. A diferencia de los arrecifes más conocidos de los trópicos, estos corales profundos son fríos –se desarrollan a temperaturas de entre 4ºC y 13ºC– y no dependen de la luz solar para sobrevivir. Sin embargo, forman auténticas ‘guarderías’ para especies de interés comercial como el bacalao antártico.

La ‘Gymkhana de los mares y oceános’, organizada por el Consejo Superior de Investigaciones Científicas (CSIC) y la Obra Social “la Caixa”, se propone acercar a los más jóvenes el conocimiento científico sobre el medio marino. Cerca de 300 estudiantes de ESO y Bachillerato están participando en los talleres, juegos y experimentos de esta iniciativa, que se celebran de manera simultánea en una decena de centros de investigación, museos y fundaciones de la ciudad. Todas las actividades han sido diseñadas por investigadores del Instituto de Ciencias del Mar del CSIC en el marco del proyecto ‘El mar a fondo’.