Archivo de la categoría ‘Física’

Los riesgos del teletrabajo: ¿es seguro trabajar en la red?

Por David Arroyo, Víctor Gayoso y Luis Hernández (CSIC)*

El confinamiento ha sido uno de los principales elementos de contención de la COVID-19 desde el inicio de la crisis pandémica. Para mantener la actividad laboral y educativa ha sido necesario desplegar un conjunto de soluciones tecnológicas que han hecho que el teletrabajo y la enseñanza online cobren un peso muy significativo en nuestra sociedad. Así, por ejemplo, se ha estimado que entre marzo y septiembre de 2020 hubo un incremento del 84% en el uso de herramientas de teletrabajo. En paralelo, sin embargo, también han proliferado los ciberataques y los cibercrímenes: a lo largo de 2020, se estima que hubo un incremento del 6.000% en ataques por spam, ransomware (programas de secuestro de datos) y phishing (suplantación de la identidad de un tercero –persona, empresa o servicio– para que un usuario proporcione datos confidenciales creyendo que trata con un interlocutor de confianza).

Un ejemplo de los riesgos que trae consigo el teletrabajo es el de las aplicaciones de videoconferencia, como Zoom, Skype o Teams, que nos han permitido seguir manteniendo reuniones. El uso de herramientas como estas, desarrolladas por terceros, puede hacer mucho más vulnerable la seguridad de la información intercambiada; sobre todo, cuando se recurre a ellas con urgencia y no son debidamente auditadas y verificadas.

La amenaza del espionaje afecta también a las reuniones presenciales, pero acceder maliciosamente a la información que se comparte en estos encuentros supone que los atacantes pongan en marcha procedimientos y técnicas de alto coste y específicos para cada situación. En el caso de las videoconferencias, si existen vulnerabilidades de seguridad en una aplicación, todas las reuniones celebradas usando ese software estarán afectadas por un riesgo de interceptación de la información intercambiada. Esto es, existiría una vulnerabilidad matriz que puede ser explotada de modo generalizado.

El software que se emplea en videoconferencias solo es una pieza dentro del complejo del teletrabajo, que constituye un verdadero reto para las políticas de ciberseguridad. Lo es en situaciones de normalidad, pero mucho más en escenarios de crisis similares al deparado por la COVID-19. En este contexto, el teletrabajo se ha adoptado en la mayor parte de los casos de modo improvisado, sin una política de seguridad previamente definida y debidamente evaluada. Baste mencionar como ejemplo de ello los recientes ataques contra el Servicio Público de Empleo Estatal (SEPE) y el Ayuntamiento de Castellón, o los mensajes fraudulentos relacionados con el ofrecimiento de servicios a domicilio para la vacunación contra la COVID-19.

Ciberhigiene y ciberseguridad

Sin duda, es deseable que todas las personas que teletrabajan sigan unas buenas prácticas de ciberhigiene, como evitar la instalación de software no recomendado por los responsables de cibersegu­ridad, no conectarse a redes wifi públicas o no responder correos sospechosos de phishing. Ahora bien, una buena política de seguridad no asume sin más que esas normas de ciberhigiene se vayan a cumplir, sino que establece mecanismos de control para salvaguardar la seguridad, o al menos paliar las consecuencias de posibles ataques, en caso de incumplimiento.

Pues bien, en la crisis de la COVID-19 el teletrabajo se ha desplegado, en muchos casos, sin que las plantillas tengan arraigada esa disciplina de ciberhigiene y sin que su empresa haya diseñado una política de seguridad adecuada. Es más, en muchas situaciones los teletrabajadores han tenido que utilizar ordenadores y dispositivos propios. Dada la situación de confinamiento generalizado y la limitación de recursos tecnológicos en el hogar, es de suponer que en muchos domicilios los ordenadores han sido compartidos entre varios integrantes de la unidad familiar. Esta práctica tiene que ser considerada como un riesgo de seguridad adicional, ya que cada miembro del hogar tiene, a priori, una cultura de ciberseguridad distinta y usa la tecnología para objetivos diferentes.

Por ello, es preciso formar de modo adecuado a las personas que potencialmente van a teletrabajar para que tomen conciencia de los riesgos de ciberseguridad asociados a entornos de trabajo fuera del perímetro de seguridad de su empresa. En este sentido, sería de alto interés la planificación de simulacros y ciberejercicios en los que la interacción con las personas responsables de la ciberseguridad permitiera fortalecer rutinas de ciberhigiene, así como establecer pautas para la resolución de problemas de seguridad con el apoyo telemático de especialistas.

Si se ejecutan de modo correcto y de forma regular, estos ejercicios pueden servir para disminuir el impacto de los ciberataques al mejorar las competencias tecnológicas de la plantilla y la gestión de factores psicológicos que pueden ser explotados por ciberatacantes en periodos de crisis. Es el caso del estrés, la ansiedad o la falta de concentración motivada por las distracciones que se dan en un entorno distinto del laboral. Aquí conviene tener presente que la cadena de ataque habitual incluye estrategias de ingeniería social y phishing mediante las que los usuarios pueden bajar la guardia e instalar software sin evaluación de seguridad, acceder a sitios web asociados a campañas de malware y ser víctimas de robo de información o de ciberacoso.

Fomentar una cultura de ciberseguridad y ciberresiliencia puede y debe contribuir a reducir el impacto de estos ataques en posibles crisis futuras.

* David Arroyo, Víctor Gayoso y Luis Hernández son investigadores del CSIC en el Instituto de Tecnologías Físicas y de la Información “Leonardo Torres Quevedo” y autores del libro Ciberseguridad (CSIC-Catarata). Este post es un extracto del mismo.

¿Cómo se mide el tiempo en Marte?

Por Juan Ángel Vaquerizo (CSIC-INTA)*

La respuesta, a priori, es sencilla: en Marte, el tiempo se mide utilizando el Sol. El segundo planeta más pequeño del Sistema Solar y cuarto en cercanía al Sol gira en torno a su eje con un periodo de 24,6 horas, lo que supone que el día solar marciano es aproximadamente un 3% más largo que el día solar terrestre. En concreto, un día en Marte tiene una duración de 24 horas, 39 minutos y 32,55 segundos, lo que se denomina sol.

Amanecer en Marte. / NASA/JPL-Caltech/Doug Ellison/PIA 14293

Amanecer en Marte. / NASA/JPL-Caltech/Doug Ellison/PIA 14293

En la superficie de Marte se utiliza la hora solar local para la medida del tiempo de las misiones que han aterrizado allí. Cada misión tiene su propio tiempo solar local, que estará determinado por su ubicación en el planeta. A pesar de que Marte dispone de un meridiano cero para referir las longitudes geográficas, no tiene zonas horarias definidas a partir de ese meridiano como ocurre en la Tierra. Por tanto, la separación en longitud geográfica de las misiones entre sí determinará la diferencia horaria entre las mismas.

Para determinar el calendario marciano hubo más controversia. Sin embargo, para el día a día de las misiones que han aterrizado en Marte, se ha optado por un criterio más simple: contar los días (soles) en Marte a partir del momento del aterrizaje, que pasa a denominarse sol 0. Por ejemplo, la misión InSight de la NASA (que, por cierto, contiene un instrumento español desarrollado en el Centro de Astrobiología (CSIC-INTA): los sensores mediambientales TWINS) ha sido la última en aterrizar sobre la superficie marciana. Lo hizo el 26 de noviembre de 2018, lo que supone que la nave pasa en Marte hoy su sol 784.

InSight en la superficie marciana. / NASA/JPL-Caltech

InSight en la superficie marciana. / NASA/JPL-Caltech

Las estaciones en el planeta rojo

Del mismo modo que un sol en Marte dura más que un día en la Tierra, la duración del año marciano es también mayor que el terrestre, pues al estar más alejado, describe su órbita alrededor del Sol más lentamente que la Tierra. Un año marciano tiene 668,6 soles, lo que equivale a 687 días terrestres. Esta mayor duración del año hace que las estaciones en Marte sean más largas que las terrestres.

Entonces, ¿hay también estaciones en Marte? Pues sí, en Marte se producen estaciones a lo largo del año debido a que el eje de rotación de Marte también está inclinado respecto al plano de la eclíptica (el plano imaginario en el que los planetas del Sistema Solar giran alrededor del Sol). Esta inclinación del eje, conocida como oblicuidad, es de 25,2° en Marte, un poco mayor que los 23,4393° de la Tierra. Además, la órbita de Marte es más excéntrica que la terrestre.

La órbita más elíptica de Marte provoca que sus estaciones tengan duraciones muy diferentes entre sí, de manera que las primaveras marcianas en el hemisferio norte y los otoños en el hemisferio sur duran 194 soles, siendo así las estaciones más largas. Las estaciones más cortas en Marte son los otoños en el hemisferio norte y las primaveras en el sur, con una duración de solo 142 soles. Los inviernos en el hemisferio norte y los veranos en el sur duran 154 soles; y, finalmente, los veranos en el hemisferio norte y los inviernos en el sur duran 178 soles.

A vueltas con el calendario marciano

Pero, ¿qué ocurre con el calendario marciano? En la Tierra los meses vienen determinados por el ciclo lunar, pero Marte tiene dos lunas, los dos satélites naturales llamados Fobos y Deimos. Como curiosidad, las lunas del planeta vecino reciben sus nombres de la mitología griega: Fobos significa ‘miedo’ y Deimos ‘terror’, y son los nombres de los caballos que tiraban del carro de Ares, el dios griego de la guerra, equivalente al dios romano Marte.

Captura de parte de la órbita que realiza Fobos alrededor de Marte. / NASA, ESA y Z. Levay (STScl)

Captura de parte de la órbita que realiza Fobos alrededor de Marte. / NASA, ESA y Z. Levay (STScl)

Los periodos de Fobos y Deimos son muy cortos, por lo que utilizar el mismo sistema que en la Tierra resulta inútil. Por ello, se eligió dividir el año en segmentos más o menos similares, más largos que nuestros meses, que cubrieran todo el periodo orbital. Los astrónomos Percival Lowell, Andrew E. Douglass y William H. Pickering, Robert G. Aitken y sir Patrick Moore diseñaron calendarios marcianos con mayor o menor suerte, pero no fue hasta 1986 cuando el ingeniero norteamericano Thomas Gangale publicó el calendario dariano, llamado así en honor a su hijo Darius.

En el calendario dariano, el año marciano se divide en 24 meses para acomodarlo manteniendo la noción de un “mes” razonablemente similar a la duración de un mes de la Tierra. El año cero del calendario se situó inicialmente en 1975, año del primer aterrizaje con éxito en la superficie de Marte de una nave estadounidense, con las misiones Viking. Más tarde, se definió como nuevo año cero para el calendario el año 1609, como doble homenaje a la publicación de las leyes de Kepler y la primera observación con un telescopio realizada por Galileo.

MY (martian year) y Ls (longitud planetocéntrica)

La Planetary Society decidió finalmente no emplear un calendario como tal, sino utilizar la longitud planetocéntrica del Sol, conocida como Ls (ángulo que indica la posición de Marte en su órbita alrededor del Sol), para medir la época del año en Marte y que funcionaría a modo de fecha marciana. Así, el valor Ls = 0° corresponde al paso de Marte por el punto vernal, es decir, el equinoccio de primavera en el hemisferio norte marciano; el valor 90° corresponde al solsticio de verano boreal; 180° al equinoccio de otoño boreal y 270° al solsticio de invierno boreal.

En este calendario, el año marciano 1 o MY1 (por sus siglas en inglés) comenzó oficialmente el día 11 de abril de 1955 a las 00:00 h UTC y terminó el 26 de febrero de 1957 a las 00:00 h UTC. El motivo de elegir esta fecha fue hacer coincidir el comienzo del calendario con la tormenta global de polvo que se observó en Marte en 1956. El comienzo de la estación de tormentas de polvo en Marte se produce justo después del paso por el perihelio, el punto de la órbita más cercana al Sol y donde más rápido se desplaza, sobre Ls = 260°.

Posteriormente, el calendario se extendió y se determinó el año marciano 0, MY0, que comenzó el día 24 de mayo de 1953 a las 00:00 h UTC. Cualquier año anterior llevaría delante el signo menos. Por tanto, MY-1 comenzó el 7 de julio de 1951, el MY-2 el 19 de agosto de 1949, y así sucesivamente. Como curiosidad, la primera observación conocida de Marte con un telescopio, realizada por Galileo a finales del año 1610, correspondería al MY-183.

El róver Curiosity en Marte. / NASA/JPL-Caltech/MSSS

El róver Curiosity en Marte. / NASA/JPL-Caltech/MSSS

Así pues, con este criterio de designación de fechas, el róver Curiosity (que lleva a bordo el otro instrumento español en Marte: REMS, la estación medioambiental también del Centro de Astrobiología) aterrizó en Marte el MY31 Ls150, es decir, el 6 de agosto de 2012. Y por su parte, InSight el MY35 Ls112.

Sea cual fuere el modo de medir el tiempo en Marte, dado que la idea de enviar seres humanos a explorar Marte es ya un proyecto consolidado, no estaría de más ir buscando un criterio unificado. No vaya a ser que el primer ser humano que ponga el pie en Marte no sepa cómo poner su reloj en hora.

 

* Juan Ángel Vaquerizo es el responsable de la Unidad de Cultura Científica del Centro de Astrobiología (CSIC-INTA) y autor del libro ‘Marte y el enigma de la vida’ (CSIC-Catarata) de la colección ¿Qué sabemos de?

Puentes que se derrumban y copas que estallan: el fenómeno de la resonancia mecánica

Por Daniel Ramos Vega y Mar Gulis (CSIC) *

El 12 de abril de 1831, una compañía del cuerpo de fusileros del ejército británico regresaba al cuartel después de unas maniobras militares. Al cruzar el puente de Broughton (Manchester), los 74 hombres que componían la compañía notaron un ligero balanceo. Comenzaron entonces a marcar el paso más firmemente e incluso llegaron a cantar canciones de marcha militar, cuando se escuchó un ruido atronador, como si de una descarga de armas se tratase. Uno de los cuatro pilares que sostenían la cadena que soportaba el peso del puente se desplomó y provocó su colapso: el puente acabó derrumbándose por completo sobre el río arrastrando consigo a 40 soldados. Por fortuna, en esa época del año aún no había crecido el nivel del agua y no hubo que lamentar víctimas mortales. Eso sí, 20 soldados resultaron heridos.

Puente de Tacoma Narrows oscilando

¿Por qué se derrumbó el puente? La causa más probable del colapso la encontramos en el fenómeno de la resonancia mecánica.

Para entenderlo, antes tenemos que hablar de ondas y frecuencias. Una onda es una perturbación que se trasmite por el espacio, lleva implícito un cambio de energía y puede viajar a través de diferentes materiales. Imaginemos por ejemplo las ondas que se generan cuando lanzamos una piedra a un estanque o cuando sacudimos una cuerda de arriba a abajo. Para definir una onda utilizamos conceptos como la amplitud, que es la distancia vertical entre el punto de máximo desplazamiento y el punto medio; el periodo, que se define como el tiempo completo en que la onda tarda en describir una oscilación completa; o la frecuencia, que es el número de veces que se repite la oscilación en un tiempo dado.

Onda, magnitud y frecuencia. / Daniel Ramos Vega.

Todo cuerpo presenta una o varias frecuencias especiales que se denominan frecuencias características o propias. Dependen de la elasticidad del objeto, sus dimensiones o su masa. Como los objetos transmiten mejor unas frecuencias que otras, cuando aplicamos una fuerza que oscila a la frecuencia propia del objeto, logramos hacer que el efecto se magnifique. Entonces decimos que entra en resonancia.

Una resonancia, por tanto, se produce cuando sometemos un cuerpo a una fuerza periódica igual a su frecuencia característica. En el caso del puente, la amplitud de las vibraciones es cada vez más grande, hasta el punto que se produce un colapso de la estructura. De esta forma, una fuerza relativamente pequeña, como pueden ser los pasos de unos soldados al marchar sobre él, puede causar una amplitud de oscilación muy grande.

Este curioso episodio tuvo una consecuencia inesperada que aún perdura hasta nuestros días: desde ese accidente, las tropas británicas tienen orden de romper la formación y el paso cuando cruzan un puente.

A lo largo de la historia ha habido episodios similares y han sido varios los puentes que han terminado derrumbándose por el efecto de la resonancia mecánica. Tal vez el más significativo sea el Puente de Tacoma Narrows (Washington), construido en 1940 y que acabó desplomándose violentamente cuatro meses después de su construcción. En este caso fue el viento el que provocó que el puente entrara en resonancia y hay varias filmaciones que muestran el momento del derrumbe.

Vibraciones que hacen estallar copas de cristal

Otro ejemplo de cómo la resonancia mecánica puede tener unos efectos cuanto menos sorprendentes es el siguiente. A principios del siglo XX la cantante de ópera australiana Nellie Melba era conocida por hacer estallar las copas de cristal al cantar. También el famoso tenor italiano Enrico Caruso conseguía este fenómeno cuando cantaba ópera. Y el marido de María Callas, considerada la cantante más eminente del siglo XX, afirmaba que se cortó el brazo al estallar una copa cuando su mujer ensayaba en casa.

¿Puede realmente una cantante de ópera hacer estallar una copa al cantar? La respuesta es sí y la razón es que se ha excitado la resonancia del cristal. Como hemos explicado, este fenómeno físico tiene lugar cuando se ejerce una fuerza sobre un cuerpo con una frecuencia que coincide con la frecuencia propia del sistema. Es lo que pasa cuando empujamos un columpio en el parque: no lo hacemos de cualquier forma, sino que damos un pequeño empujón en el momento adecuado, justo cuando el columpio alcanza su máxima amplitud. Si conseguimos aplicar la fuerza con la misma frecuencia que la frecuencia del balanceo del columpio, somos más efectivos. En el caso de la cantante y la copa de cristal, bastará con que se emita una nota musical cuya frecuencia coincida con la vibración propia de la copa. Manteniendo la nota con la potencia necesaria, como pasaba con el columpio, la energía que se acumula en ella gracias al fenómeno de la resonancia hará que se produzcan vibraciones tan grandes dentro del cristal que la copa estalle.

Eso sí, si algún cantante de ópera quisiera emular a Melba, Caruso o Callas, no le valdría cualquier copa. Debería ser de cristal muy fino y de gran calidad, cuya composición química sea homogénea para que la copa tenga una única frecuencia propia y se comporte como un sistema limpio, de forma que toda su estructura pueda entrar en resonancia. Afinen esas cuerdas vocales mientras alejan su cristalería más preciada.

 

*Daniel Ramos Vega es investigador del Instituto de Micro y Nanotecnología (IMN) del CSIC y autor del libro Nanomecánica (CSIC-Catarata) de la colección ¿Qué sabemos de?

¿Cómo funciona en realidad un ordenador cuántico?

Por Carlos Sabín (CSIC)*

En una entrada reciente hablábamos de uno de los tópicos más resistentes en la divulgación de la física cuántica, aquel según el cual las cosas estarían en “dos sitios a la vez”. Cuando esa manera de pensar se traslada a los computadores, el ordenador cuántico es presentado como una máquina que estaría en un montón de estados a la vez y que, por tanto, sería capaz de “hacer un montón de cálculos en paralelo”. Este suele ser el enfoque, de hecho, en casi todos los textos divulgativos que se escriben sobre computación cuántica. Es un enfoque consistente desde el punto de visto lógico, pero tiene un problemilla: es falso.

Interior de un ordenador cuántico

Interior de un ordenador cuántico. / IBM Research (CC-BY-SA).

Como explica brillantemente Scott Aaronson en un cómic ilustrado por Zach Weinersmith, la computación cuántica tiene poco que ver con un montón de ordenadores clásicos trabajando en paralelo. De hecho, no sería tan interesante si fuera así, ¿no? En realidad, la computación cuántica se basa en dos ideas, digamos, ‘genuinamente cuánticas’, que en jerga técnica se denominan con las palabrejas ‘superposición’ e ‘interferencia’.

La primera es precisamente la palabra para designar que en la física cuántica las propiedades pueden estar indefinidas o, mejor dicho, definidas solo por probabilidades. Esto hace que el cúbit, la unidad mínima de información en computación cuántica, pueda comportarse de un modo muy distinto a los bits clásicos. Mientras que un bit tiene que estar necesariamente en uno de sus dos estados posibles, 0 ó 1, un cúbit se puede preparar para que tenga una cierta probabilidad de estar en 0 y otra cierta probabilidad de estar en 1. Lo mismo puede hacerse con un conjunto de cubits: se pueden preparar para tener una cierta probabilidad de estar en, digamos, 0000011000… y una cierta probabilidad de estar en 0000111111… o lo que sea.

La segunda palabreja quiere decir que en física cuántica las cosas pueden interferir, de la misma forma que interfiere la luz: cuando dos ondas de luz se encuentran en un sitio, el resultado puede ser que no haya la misma luz que la suma de la luz de las dos ondas por separado: puede haber más luz (interferencia constructiva) o menos luz (interferencia destructiva). Un ordenador usaría la interferencia constructiva para aumentar la probabilidad de tener una de las posibilidades iniciales (la solución del problema) y la interferencia destructiva para reducir las de todas las demás. Esto sólo es posible si en el proceso se genera el famoso entrelazamiento cuántico: es decir, en algún punto es preciso que un conjunto de cubits no solo esté en superposición, sino que existan correlaciones muy fuertes entre ellos, correlaciones que solo pueden alcanzarse en un sistema cuántico. No todas las superposiciones tienen esa propiedad.

Un ejemplo que sí la tiene sería un caso con dos cubits preparados para que tengan una probabilidad del 50% de estar en 00 y la misma probabilidad de estar en 11. El estado de cada cúbit es completamente aleatorio (cada uno de ellos tiene la misma probabilidad de estar en 0 o en 1) pero está totalmente correlacionado con el de su compañero: si hago una medida y determino que el estado de uno de ellos es, por ejemplo, 0, inmediatamente sé que el estado del otro cúbit es también 0.

Circuito de cuatro cubits

Circuito de cuatro cubits. / IBM Research (CC-BY-SA).

El ejemplo de la guía telefónica

Veamos un ejemplo bonito de esto. Por diversos motivos, el interés de este ejemplo es meramente académico, pero confío en que sirva para entender mejor cómo podría funcionar un ordenador cuántico.

Imagine que tiene un número de teléfono pero no sabe a qué persona pertenece. Imagine también que se le ocurre usar la guía telefónica para esto. Puesto que el orden de la guía es alfabético para los nombres, resulta que los números no tienen ninguna ordenación en absoluto, así que ya se puede preparar para una búsqueda lenta y tediosa.

¡Ah, pero podemos usar un ordenador! El ordenador, básicamente, hará lo mismo que haría usted: ir número por número y compararlo con el que tiene usted, hasta que haya una coincidencia. Podría haber mucha suerte y que el ordenador encontrase esa coincidencia tras comparar pocos números… pero también podría haber muy mala suerte y que el ordenador tuviese que rastrear casi toda la guía.

En general, podemos decir que el número de búsquedas que habrá que hacer (el número de pasos del algoritmo que está aplicando el ordenador) crecerá linealmente con el número total de teléfonos de la guía: si multiplicamos por dos el número total de números de teléfono, también aumentará por dos el número de pasos. Pues bien: si tenemos un ordenador cuántico, podemos usar una receta, el ‘algoritmo de Grover’, que hará que encontremos el resultado correcto en menos pasos. Con este algoritmo si aumentamos por dos el número total de teléfonos, el número de pasos aumentará sólo en la raíz cuadrada de dos.

Simplifiquemos aún un poco más, para ver exactamente de qué estamos hablando. Imagine que tras una fiesta usted ha apuntado cuatro números de teléfono en un ordenador (por supuesto, a estos efectos, un teléfono móvil es un pequeño ordenador), cada uno con su nombre correspondiente. Unas semanas más adelante, vaciando los bolsillos, usted se encuentra con una servilleta arrugada donde hay un número escrito, pero ya no se distingue el nombre. No hay problema: solo tiene que introducir el número en su ordenador para que busque a cuál de los cuatro contactos que usted apuntó corresponde.

Si su aparato es clásico, su agenda digital de cuatro números necesitará unos cuantos bits: la información de cada número (por ejemplo, “Nombre: …, Número: …”) estará clasificada por el valor de dos bits: o bien 00, o bien 01, o bien 10, o bien 11. Pongamos que el número que busca está guardado en la casilla 10. Cuando usted teclee el número de la servilleta, el ordenador irá casilla por casilla hasta encontrar la 10, identificar el nombre asociado al número y devolvérselo. Con mucha suerte, su número estará en la primera casilla de búsqueda, pero con mala suerte estará en la última, y el ordenador tendrá que dar cuatro pasos antes de encontrar lo que usted busca.

Pero usted mola mucho más que todo eso y tiene un pequeño ordenador cuántico. Entonces, para encontrar su número solo necesita dos cubits y haberse bajado la app ‘Grover’. El primer paso que dará la app será preparar los cubits para que tengan una probabilidad del 25% de estar en 00, una probabilidad del 25% de estar en 01… y así con las cuatro posibilidades. Cuando usted introduzca el número, la app lo identificará como el correspondiente a, por ejemplo, 01, y entonces sabrá la operación (puerta lógica cuántica) que tiene que aplicar sobre el ambos cúbits. Tras esa operación, el algoritmo de Grover nos dice que los cubits ahora estarán en un estado tal que la probabilidad de estar en 01 (o el que sea) es exactamente el 100%. Es decir, en este caso concreto, con solo cuatro números, usted encontrará siempre el número en un solo paso.

Errores cuánticos

Naturalmente, esto (aunque es muy molón) no tiene gran aplicación práctica: la diferencia en el número de pasos no es muy grande, y usted puede encontrar un número en una lista de cuatro con un golpe de vista. Pero si pensamos en una guía de un millón de números, estamos hablando de la diferencia entre hacer un número de pasos del orden de un millón (con un ordenador convencional) o del orden de mil (con un ordenador cuántico). Por supuesto, para eso necesitamos correr la app Grover en un ordenador cuántico con muchos más cubits, y eso todavía no es posible. De momento, los ordenadores cuánticos tienen a lo sumo unas cuantas decenas de cubits, y todavía cometen muchos errores.

Uso dos cubits del ordenador cuántico de IBM para encontrar un número de teléfono en una lista de 4.

Uso dos cubits del ordenador cuántico de IBM para encontrar un número de teléfono en una lista de 4.

Para hacernos una idea, he lanzado el experimento que acabo de describir con dos cubits en el ordenador cuántico de IBM, que es accesible en línea. En la imagen, vemos las operaciones que hay que hacer en el caso de estar buscando el 00. En el primer instante de tiempo (todo lo que ocurre en la misma línea vertical es simultáneo) las dos puertas H sirven para preparar a los cubits en el estado inicial descrito más arriba. Todo lo demás, salvo las dos últimas operaciones, es el proceso de transformación de los cubits, y podemos considerar que es un paso del algoritmo de Grover (este paso sería distinto si estuviera buscando el 01, el 10 o el 11). En el camino, los cubits se entrelazan. Para una búsqueda en una lista más larga, ese paso tendría que repetirse un cierto número de veces.

Las dos últimas operaciones son medidas del estado de los dos cubits. La teoría nos dice que en un ordenador cuántico ideal el resultado de estas medidas sería siempre 00, con probabilidad 100 %. Como los ordenadores cuánticos reales todavía tienen errores que los alejan del comportamiento ideal, el resultado real no es perfecto: como vemos en la segunda imagen, tras 1024 repeticiones del experimento, la probabilidad de obtener el 00 fue del 87 % (ocurrió en 890 ocasiones). Esto nos da una idea realista del estado de la computación cuántica en la actualidad: incluso en ejemplos sencillos y académicos como este los errores son todavía significativos. Por supuesto, esto podría cambiar rápidamente en los próximos años, pero, como ven, hay mucho trabajo por delante todavía.

Resultados de 1024 repeticiones del experimento de la imagen anterio

Resultados de 1024 repeticiones del experimento de la imagen anterior. El resultado correcto se obtuvo el 87% de las veces.

Como resumen, confiamos en que haya quedado claro que un ordenador cuántico no es un aparato que realiza muchas operaciones a la vez o en paralelo. Si así fuera, no sería muy distinto de un supercomputador clásico. Al contrario, un ordenador cuántico usa las propiedades de la física cuántica para acelerar un cálculo concreto. Las correlaciones entre los distintos bits cuánticos pueden hacer que se llegue al resultado deseado significativamente antes de lo que lo haría un ordenador convencional. Eso requiere de recetas específicas para cada problema, las cuales conocemos en un número pequeño de casos, de momento. En el futuro, no solo habrá que diseñar esas recetas para cada caso de interés, sino que habrá que conseguir que los ordenadores cuánticos cometan muchos menos errores, o sean capaces de corregirlos.

* Carlos Sabín es investigador del CSIC en el Instituto de Física Fundamental, responsable del blog Cuantos completos y autor del libro Verdades y mentiras de la física cuántica (CSIC-Catarata).

Lecturas fresquitas para un verano de ciencia

Por Mar Gulis (CSIC)

Llegan las vacaciones de verano y en ‘Ciencia para llevar’ queremos invitarte a que hagas un hueco en tu maleta para la divulgación. La colección ¿Qué sabemos de? (CSIC-Catarata) te ofrece más de cien libros con los que podrás disfrutar de la ciencia durante estos días de descanso. Aquí te presentamos algunos de los más recientes.

Lecturas veraniegas

 

Mentiras de la física cuántica

El primero va de los falsos mitos que rodean a la física que estudia las partículas más diminutas, como los átomos o los electrones. En Verdades y mentiras de la física cuántica, Carlos Sabín, investigador del CSIC en el Instituto de Física Fundamental, desmonta creencias erróneas acerca de esta rama de la física y aclara que los gatos no están vivos y muertos a la vez, que no modificamos la realidad solo con observarla o que la información no puede viajar más rápido que la luz. En palabras del autor, el libro trae “malas noticias” para quienes creen que la física cuántica es “una manera de escapar a las leyes de la física y entrar en un mundo nuevo donde todo está permitido, todo es impredecible y la realidad puede modificarse a voluntad”. La buena noticia es que Sabín ofrece la explicación correcta a los fenómenos cuánticos más desconcertantes, y lo hace de forma clara y sencilla, sin renunciar al humor o la ironía.

Asimetrías en la materia, la vida y el universo

Aunque a priori parezca improbable, nuestras manos, un tornillo y la concha de un caracol tienen algo importante en común: todos ellos son objetos quirales. Esto quiere decir que su imagen especular no puede superponerse con la original, por mucho que la giremos. Por eso, en el espejo la mano derecha se convierte en la izquierda, un tornillo cambia la dirección de su rosca y la concha ‘da vueltas’ en sentido contrario. En el libro La quiralidad. El mundo al otro lado del espejo, el químico del CSIC en el Instituto de Catálisis y Petroleoquímica Luis Gómez-Hortigüela nos invita a emular a Alicia, el personaje de Lewis Carroll, y a embarcarnos en un viaje alucinante para descubrir las sorprendentes y variadas expresiones de esta propiedad, que está estrechamente relacionada con la asimetría. La quiralidad, por ejemplo, se manifiesta en el cuerpo humano, con un corazón que se encuentra desviado a la izquierda y un cerebro que compartimenta las funciones de forma asimétrica en sus dos hemisferios. Sin embargo, la relevancia fundamental de este fenómeno se expresa en objetos mucho más pequeños, como el ADN, con sus hélices retorciéndose invariablemente hacia la derecha, o las partículas elementales, entre las que ha prevalecido la materia sobre la antimateria, una asimetría que ha dado forma a nuestro universo.

Algas diatomeas, el otro pulmón de la Tierra

Las diatomeas, algas unicelulares capaces de producir más oxígeno que todos los bosques amazónicos, centroafricanos e indonesios juntos, son ‘el otro pulmón’ de la Tierra. El investigador del Instituto de Ciencias del Mar (CSIC) Pedro Cermeño explica, en Las diatomeas y los bosques invisibles del océano, la importancia de estos microorganismos para los ecosistemas marinos y el conjunto del planeta, y presenta algunas de sus posibles aplicaciones tecnológicas.

Con este libro podrás descubrir que en los océanos también hay bosques y desiertos, y que las diatomeas forman una parte esencial de los primeros, donde sirven de alimento para larvas, moluscos, crustáceos y peces. “Si pudiésemos acumular toda la biomasa que producen las diatomeas, en tan solo dos décadas tendríamos suficiente como para reemplazar todos los bosques tropicales del mundo”, ilustra el autor. Otra de sus cualidades es que incrementan la eficiencia de la bomba biológica, un proceso mediante el cual los ecosistemas marinos absorben dióxido de carbono (CO2) de la atmósfera y lo transfieren hacia las capas más profundas del océano, lo cual contribuye a paliar el efecto invernadero y a enfriar el clima del planeta. Si quieres saber más sobre las denominadas ‘joyas del mar’, no dejes de abrir las páginas de este libro.

Virus ‘buenos’ que combaten bacterias infecciosas

¿Existen los virus ‘buenos’? La respuesta es sí: algunos de ellos pueden usarse para luchar contra bacterias resistentes a los antibióticos, uno de los grandes retos de la biología y la medicina en la actualidad. En Los bacteriófagos. Los virus que combaten infecciones, cuatro investigadoras del CSIC en el Instituto de Productos Lácteos de Asturias (Lucía Fernández, Diana Gutiérrez, Ana Rodríguez y Pilar García) nos presentan a los virus que atacan a las bacterias. Como cualquier otro agente vírico, los bacteriófagos son parásitos que necesitan infectar una célula, en este caso una bacteria, para multiplicarse en su interior; pero, a diferencia de otros virus, resultan totalmente inocuos para los humanos, los animales, las plantas y el medioambiente. El libro presenta las bacterias patógenas que se esconden en el nanomundo y traza la historia de los antibióticos, que hasta ahora en Occidente han relegado a los bacteriófagos. También explica cómo la progresiva pérdida de eficacia de la penicilina y otros compuestos con el mismo efecto están abriendo la puerta al empleo de los bacteriófagos en múltiples campos: desde la terapia fágica para la salud humana y animal, hasta biocidas para la agricultura o productos desinfectantes.

Escritos por personal investigador del CSIC, los libros de la colección ¿Qué sabemos de? son ediciones de bolsillo, por lo que resultarán un práctico compañero de viaje. Pero, si lo prefieres, también podrás leerlos en formato electrónico. ¡Buenas vacaciones y buena lectura!

Sumérgete en el océano desde casa: una propuesta del CSIC para explorar los ecosistemas marinos

Por Mar Gulis (CSIC)

3, 2, 1… ¡Al agua! Este viaje comienza con los habitantes más pequeños del océano: protozoos, microalgas, virus, bacterias y animales microscópicos como los tardígrados o las pulgas de agua. Aunque no los vemos a simple vista, son millones de seres diminutos que cumplen un papel esencial para el funcionamiento de los ecosistemas marinos. Este fascinante micromundo te espera en ‘El océano en casa’, un proyecto del Instituto de Ciencias del Mar (ICM-CSIC) que ofrece todo tipo de materiales para que el público infantil se sumerja en las aguas oceánicas sin moverse del sofá.

Solo tenéis que entrar en su web y elegir entre varios bloques temáticos que dan a conocer la biodiversidad marina y la importancia de los mares en nuestro día a día. Si os decantáis por el epígrafe ‘Un océano con muchas características’, encontraréis lecturas, dibujos para colorear o rompecabezas y enigmas sobre los distintos ambientes marinos que hay en el planeta. También podréis probar el juego ‘De tierra o de mar’ o experimentar el viaje que realiza un grano de arena desde los Pirineos hasta el cañón de Palamós.

La web del proyecto, cuyos contenidos fueron inicialmente publicados en catalán y ahora se han traducido al castellano, está llena de recursos para niñas y niños curiosos. Por ejemplo, los epígrafes ‘El océano: un mar de ríos’, ‘Las praderas del mar’ y ‘Animales del océano’ incluyen animaciones de la NASA, experimentos caseros, unidades didácticas y hasta cuentos y cómics para aprender qué son las corrientes marinas, ver prados de posidonia y conocer la diversidad animal que esconden mares y océanos.

El viaje no ha hecho más que empezar, porque el bloque titulado ‘El océano y nosotros/as’ está repleto de contenidos para seguir buceando y descubriendo organismos fascinantes. A través de varios vídeos, en el primer apartado, dedicado a las medusas, entenderéis por qué estos animales nos pican cuando nos bañamos en la playa, qué necesitamos para identificarlos y cómo actuar en caso de una picadura. Quienes quieran saber más sobre estos extraños invertebrados podrán también participar en el proyecto de ciencia ciudadana ‘Observadores del mar’.

La aventura continúa con ‘Buques oceanográficos’, donde encontraréis información sobre las grandes embarcaciones donde muchos científicos y científicas investigan a la vez el océano. Si estáis listos para embarcar, buscad el vídeo que os llevará a bordo del Sarmiento de Gamboa, uno de los buques oceanográficos del CSIC.

Hay más. Los epígrafes ‘El fitoplancton’, ‘Basura marina’ y ‘Océano y atmósfera’ contienen audiovisuales para descubrir ese universo de microbios y pequeños organismos acuáticos o calibrar el impacto que tienen los microplásticos y otros residuos en el mar. En esos apartados se puede acceder a otro montón de actividades para realizar en casa: experimentos, guías didácticas o incluso fichas para colorear y entender el ciclo del agua.

Si el mundo marino os engancha, estad atentos a la web de ‘El océano en casa’ porque habrá nuevos contenidos. ¡Y participad! El Instituto de Ciencias del Mar os anima a enviar comentarios, preguntas o sugerencias a la dirección de correo electrónico oceanliteracy@icm.csic.es. Al otro lado de la pantalla, alguien dedicado a investigar el universo marino os contestará.

 

 

10 experimentos con luz para hacer en casa: crea un arcoíris en tu habitación, monta un microscopio casero o descubre cómo funciona la fibra óptica

Por Mar Gulis (CSIC)

Estos días de confinamiento muchas personas estamos aprovechando para, al fin, hacer limpieza y poner un poco de orden en casa, ese espacio en el que últimamente pasamos todo el tiempo. Llega el momento de deshacerse de cosas: CDs antiguos que aún conservamos a pesar de no tener dispositivos para ver su contenido, cajas o cartones que acumulábamos esperando darles un nuevo uso o, incluso, algún esmalte de uñas que se ha quedado un poco seco y ya no vamos a utilizar.

Pero, antes de desechar definitivamente estos y otros objetos, ¿por qué no darles una nueva oportunidad y pasar con ellos un rato entretenido? Eso es lo que te proponemos en este post: sacarles partido para descubrir de manera sencilla y amena los espectaculares efectos que tiene la luz.

Si hace unas semanas te animábamos a realizar experimentos relacionados con el agua y sus propiedades, esta vez te invitamos a jugar y aprender con la luz. Es tan fácil como descargar de manera gratuita diez fichas de experimentos de la web del CSIC y seguir sus sencillas instrucciones e ilustraciones, que te permitirán entender, y también enseñar a los más pequeños de la familia, conceptos y propiedades de la luz.

¿Qué puedes conseguir con estos experimentos? Cosas tan variadas como crear imágenes de tres dimensiones como si de un holograma se tratase, desmentir que el blanco sea un color y argumentarlo sin problemas o construir un espectroscopio casero con el que observar los espectros de colores que se dibujan con diferentes fuentes de luz.

Holograma creado durante una actividad de la Semana de la Ciencia del IOSA Student Chapter en el Instituto de Óptica del CSIC. Juan Aballe/Cultura Científica CSIC

Además, gracias a estos experimentos podrás conocer cómo funcionan tecnologías que nos facilitan mucho la vida –sobre todo en estos días de confinamiento–, como los láseres o la fibra óptica. También tendrás la oportunidad de fabricar un microscopio casero y observar con él una gota de agua ampliada hasta 10.000 veces para ver lo que se mueve en su interior. Seguramente te sorprenda lo que podemos encontrar en una muestra de saliva de nuestra boca y en el agua que beben nuestras mascotas, la que se filtra tras regar las plantas o la que podemos recoger de cualquier charco que se forme tras la lluvia; pero también podrás entender en qué consiste la convergencia de la luz.

Además de sacar ese lado curioso que todos llevamos dentro, estos experimentos te ayudarán también a entender y asimilar conceptos complejos, como la reflexión y refracción de la luz, la dispersión de los rayos de luz o el funcionamiento de las cámaras oscuras, que supusieron uno de los primeros pasos en el mundo de la fotografía.

¿Quién no se ha maravillado al observar un arcoíris o un hermoso atardecer? ¿Quién no se ha quedado hipnotizado viendo el baile de una vela o el crepitar del fuego de una chimenea? ¿Y qué decir cuando una pajita parece partida dentro de un vaso de agua? Si eres de los que siente curiosidad por estas cosas y quieres saber por qué ocurren, ponte manos a la obra y encuentra las respuestas que buscas.

Un universo de luz

Estas fichas de experimentos forman parte de los recursos elaborados por el Consejo Superior de Investigaciones Científicas (CSIC), con ayuda de la Fundación Española para la Ciencia y la Tecnología (FECYT), en el marco del Año internacional de la luz 2015. Si después de hacer los experimentos te quedas con ganas de saber más, siempre puedes descargar otros materiales elaborados durante esta conmemoración, como la exposición Un Universo de luz, que incluye impresionantes imágenes y textos divulgativos, y las unidades didácticas para diferentes niveles educativos que la acompañan.

Para conocer otros materiales que el CSIC pone a tu disposición para aprender ciencia desde casa de una manera divertida, pincha aquí.

Ciencia online: más de 100 conferencias de divulgación del CSIC para ver en casa

Por Mar Gulis (CSIC)

¿Por qué el cambio climático es un problema urgente? ¿De qué está hecho el universo? ¿Cómo se extinguieron los Neandertales? ¿Tiene la vida un origen extraterrestre? Estos días de confinamiento suponen una excelente oportunidad para saciar tu curiosidad científica. Las más de 100 charlas para todos los públicos que el Consejo Superior de Investigaciones Científicas (CSIC) ofrece en sus canales online te ayudarán a buscar respuestas a estas y otras muchas preguntas. Además, te permitirán conocer los últimos avances de la ciencia por boca de investigadores e investigadoras que trabajan en una gran variedad de campos, como la demografía, la biología, la geología o la física teórica.

Fernando Valladares

Fernando Valladares, investigador del Museo Nacional de Ciencias Naturales (MNCN-CSIC), en una de sus charlas sobre cambio climático.

Del universo a las partículas elementales

Si lo que te interesa son los meteoritos, las estrellas o la vida extraterrestre, puedes asomarte al impresionante catálogo de conferencias del Ciclo Lucas Lara, organizado por el Instituto de Astrofísica de Andalucía (IAA-CSIC). En ellas no solo oirás hablar de astronomía, sino también de asuntos como la inteligencia artificial, el dolor o los mosaicos de La Alhambra.

En caso de que te vaya más la física ‘pura y dura’, las conferencias del Instituto de Física Teórica (IFT-CSIC/UAM) no te defraudarán. El bosón de Higgs y el misterio de la masa, el fin del espacio-tiempo o las misteriosas propiedades de los neutrinos son solo algunas de las muchísimas cuestiones tratadas en ellas. De todas formas, la física del CSIC no se agota aquí. En esta misma área del conocimiento, tampoco puedes perderte las charlas del Instituto de Física Fundamental (IFF-CSIC), que se ocupan de temas como la antimateria, los mitos de la física cuántica o la computación cuántica.

La investigadora Laura López-Mascaraque, del Instituto Cajal (IC-CSIC), habla de la ruta de los aromas de la nariz al cerebro en el ciclo ‘¿Qué sabemos de?’.

Para saber de todo

Para quienes no tengan tan definida una temática de interés, el ciclo Jam Science ofrece la oportunidad de ver a investigadores e investigadores de perfil muy diverso hablando de su trabajo en un ambiente muy distendido: nada más y nada menos que un bar. Organizada por la científica del CSIC Carmen Fernández, esta iniciativa ha abordado cuestiones como el enigma de los Neandertales, el posible origen extraterrestre de la vida en nuestro planeta, la exploración antártica o la importancia de las vacunas. Los vídeos de estas charlas están disponibles en los canales de Youtube DC SciCommAgora Mundi Ciencia.

Otro ciclo de contenido científico amplio que te permitirá aumentar tus conocimientos son las Friday Talks. ‘Música y neurociencia’, ‘Un nuevo océano en la era del plástico’ o ‘Gatos y tigres… ¿bajo el mar?’ son títulos de algunas de las intervenciones recogidas por esta propuesta del Instituto de Ciencias del Mar (ICM-CSIC).

Y aún hay más. ¿Qué somos capaces de hacer editando genes? ¿Cómo sabe el cerebro lo que la nariz huele? ¿Se va a convertir la Comunidad Valenciana en un desierto? Estos interrogantes sirven de partida a tres de las conferencias del ciclo ‘¿Qué sabemos de?’ con el que la Delegación del CSIC en Valencia te propone indagar en las claves científicas del bienestar.

Los Neandertales son el eje de esta charla de Antonio Rosas, del MNCN-CSIC, en el ciclo Jam Science.

Cambio climático y geología

Volviendo a temáticas más específicas, el investigador del Museo Nacional de Ciencias Naturales (MNCN-CSIC) Fernando Valladares te invita a reflexionar sobre el cambio climático y los desafíos que plantea en su serie de vídeos La salud de la humanidad, en la que intercala conferencias con varias piezas informativas de elaboración propia. Y en una línea similar, Daniel García-Castellanos, del Instituto de Ciencias de la Tierra Jaume Almera (ICTJA-CSIC), comparte su pasión por la geología en sus charlas sobre megainundaciones, tectónica de placas y erosión del suelo.

Y para terminar, puedes darte una vuelta por los ciclos Demografía hoy y ¿Qué sabemos del arte rupestre?, así como los seminarios de la Estación Biológica de Doñana. Estos vídeos, de contenido algo más especializado que los anteriores, te permitirán profundizar en las cuestiones que tratan.

Como ves, tienes muchas conferencias para elegir. ¿Por cuál quieres empezar?

Si quieres conocer más recursos del CSIC para aprender ciencia desde casa, pincha aquí.

Ciencia en casa: 10 sencillas propuestas para hacer experimentos con agua

Por Mar Gulis (CSIC)

¿Te atreves a construir tu propio acuífero? ¿Quieres coger un hielo sin tocarlo? ¿Te animas a ‘fabricar’ escarcha? Estos son solo algunos de los 10 experimentos que complementan la exposición La esfera del agua (CSIC-Aqualogy) y cuyas fichas, disponibles online de forma gratuita, te lo pondrán muy fácil para convertir tu casa en un entretenido laboratorio.

Todos ellos pueden realizarse con materiales económicos y de uso cotidiano, y se adaptan al público de diferentes edades. Si estos días de confinamiento quieres que tus hijos e hijas a partir de tres años conozcan las peculiares propiedades del agua mientras pasan un buen rato o eres una persona adulta que no ha perdido la curiosidad científica, no lo dudes y ponte manos a la obra.

Huevo en un vaso de agua

Hacerlo es tan sencillo como coger un vaso con agua, un huevo y un puñado de sal. Con estos elementos y la ficha ‘El huevo que flota’ podrás entender de manera muy sencilla y explicar a quienes te rodean conceptos complejos como la densidad, el peso o el volumen. El objetivo del experimento es precisamente que cualquiera pueda comprender estos fenómenos y tratar de dar sentido a sus definiciones abstractas –por ejemplo, la que establece que la densidad es “una magnitud escalar referida a la cantidad de masa en un determinado volumen de una sustancia o un objeto sólido” –.

Veamos otro caso. Coge una moneda y echa, poco a poco, gotas de agua sobre ella con un gotero, una jeringuilla o algo similar. ¿Eres capaz de adivinar cuántas gotas se quedarán sostenidas sobre la moneda? Si lo pruebas, te sorprenderás y seguramente lograrás familiarizarte con otro concepto: el de tensión superficial. ¿Y qué pasaría si añadimos un poco de detergente al agua y volvemos a contar cuántas gotas caben? Solo tienes que probar para descubrirlo.

Gotas de lluvia horneadas

Gotas de lluvia horneadas en el experimento de la ficha nº 5.

También encontrarás propuestas para recordar estos días de cuarentena, como la que te invita a guardar gotas de lluvia de un día concreto. Basta con sacar por la ventana un recipiente con harina mientras llueve y dejar que varias gotas caigan sobre él. Si las horneas un poco como si de un bizcocho se tratase, podrás guardarlas como testimonio de estos días tan especiales. ¿Te apetece luego pintarlas o realizar con ellas un cuadro?

Poner a prueba tu habilidad es otro de los desafíos que te esperan. ¿Crees que puedes coger un hielo sin tocarlo? Pues con agua, hielo, un vaso, sal y un hilo o una cuerda, lo lograrás. Esta experiencia te permitirá conocer en qué consiste el denominado descenso crioscópico, es decir, el descenso de la temperatura por debajo de los cero grados centígrados, y cómo cambia la temperatura del agua o el hielo cuando añadimos un poco de sal.

Las fichas te ayudarán a llevar a cabo todos los experimentos con éxito. Cada una recoge los materiales necesarios, el procedimiento que debes seguir dividido en sencillos y concisos pasos y una explicación adaptada a distintas edades (Educación Infantil y Primaria, por un lado; y Educación Secundaria y público adulto, por otro). También incluye un apartado final de curiosidades e imágenes que te servirán para entender mejor todo el proceso.

La exposición La esfera del agua y sus fichas de experimentos son recursos elaborados por el Consejo Superior de Investigaciones Científicas (CSIC) y Aqualogy en el marco del Año internacional de la cooperación en la esfera del Agua 2013. La muestra, cuyos paneles también pueden descargarse, introduce al público en el mundo del agua, desde sus propiedades químicas hasta su papel en la historia y la civilización humana.

Si quieres conocer más recursos del CSIC para aprender ciencia desde casa, pincha aquí.

Ciencia para la cuarentena: pon a prueba tus conocimientos con Hi Score Science

Por Mar Gulis (CSIC)

¿A qué temperatura hierve el agua en lo alto del Everest? ¿Qué es la energía según la física? ¿De qué color es el grafeno? Estas son algunas de las casi 1.000 preguntas que incluye Hi Score Science, un juego para dispositivos móviles y ordenadores con el que podrás poner a prueba tus conocimientos científicos mientras pasas un buen rato.

Desarrollado por dos centros de investigación del CSIC y la Universidad de Zaragoza –el Instituto de Ciencias de Materiales de Aragón y el Instituto de Síntesis Química y Catálisis Homogénea–, Hi Score Science lanza ahora un torneo nacional online para quienes busquen planes alternativos durante la cuarentena.

Hi Score Science

Como en torneos anteriores, en esta ocasión también pueden participar personas de cualquier edad de todas las localidades de España. El ganador o ganadora obtendrá un premio especial: el juego escape room ‘Exit: el laboratorio secreto’. Las tres primeras personas clasificadas recibirán, además, un lote de libros de divulgación de la colección ‘¿Qué sabemos de?’ (CSIC-Catarata) y una chapa Hi Score Science, y las 10 primeras, un certificado.

Si te apetece participar o simplemente sientes curiosidad, lánzate sin prejuicios. La participación es anónima y gratuita, y los perfiles de quienes han ganado concursos precedentes son muy variados: hay docentes y personal investigador, pero también estudiantes de entre 11 y 17 años.

Quien quiera aligerar la cuarentena con un poco de ciencia, que tome nota de las coordenadas: el torneo permanecerá abierto desde el próximo jueves 26 de marzo a las 11 horas hasta el lunes 30 a la misma hora. Concursar es muy sencillo: simplemente hay que descargarse Hi Score Science en un móvil Android o iOS o en un ordenador PC o Mac, y jugar, con nombre de usuario y contraseña, en modo multijugador online en el torneo Curie.

Hi Score Science cuenta con apoyo económico de la Fundación Española para la Ciencia y la Tecnología (FECYT), adscrita al Ministerio de Ciencia e Innovación.

Si quieres conocer más recursos del CSIC para aprender ciencia desde casa, pincha aquí.