BLOGS
Ciencia para llevar Ciencia para llevar

CURIOSIDADES CIENTÍFICAS PARA COMPARTIR

Archivo de la categoría ‘Física’

¿Te inspiran la fotografía y la ciencia? Participa en #FOTCIENCIA

Por Mar Gulis (CSIC)

¿Te gusta la fotografía? ¿La ciencia y la tecnología disparan tu creatividad? Pues estamos esperando tus propuestas. FOTCIENCIA es una iniciativa que celebra su 15ª edición y que seleccionará las mejores imágenes de ciencia del año para conformar un catálogo y una exposición itinerante. La muestra resultante recorrerá una veintena de museos y centros culturales de España en 2018. Las fotografías pueden presentarse hasta el próximo 14 de diciembre de 2017 a las 14:00 horas.

Las imágenes deben estar relacionadas con la investigación científica o sus aplicaciones, y pueden reflejar aspectos como el objeto de estudio de la investigación, las personas que la realizan, su instrumentación e instalaciones, los resultados del avance científico, etc. Para participar es necesario presentar las fotografías en formato digital a través de un formulario disponible en la página web www.fotciencia.es, junto con un texto que permita interpretarlas. El jurado valorará tanto la imagen –su calidad técnica, originalidad y valor estético– como la claridad de la explicación aportada por el autor o autora.

En esta iniciativa puede participar cualquier persona mayor de edad que presente fotografías propias que no hayan sido seleccionadas en procesos similares. Pero también hay una modalidad, ‘La ciencia en el aula’, dirigida al alumnado de centros educativos y de formación profesional, que pueden participar a través de sus profesores y profesoras.

 

Vídeo con las imágenes seleccionadas en la pasada edición de FOTCIENCIA (2016).

 

Las propuestas se pueden presentar a una de las siguientes modalidades:

  • Micro, cuando la dimensión real del objeto fotografiado sea menor o igual a 1 milímetro o la imagen haya sido obtenida mediante un instrumento de micrografía (óptica o electrónica) o técnicas de difracción.
  • General, cuando la dimensión real del objeto fotografiado sea mayor de 1 milímetro.

Además, los autores y autoras también pueden adscribir su imagen a otras modalidades específicas, como ‘Agricultura sostenible’ ‘Alimentación y nutrición’, que cuentan con el apoyo de dos centros del CSIC: el Instituto de Agricultura Sostenible (IAS) y el Instituto de Agroquímica y Tecnología de Alimentos (IATA).

Las dos mejores imágenes de la categoría General y las dos mejores imágenes de la categoría Micro, según los criterios mencionados anteriormente, serán remuneradas con una cantidad de 1.500€ cada una. En las demás modalidades, se seleccionará una foto que recibirá 600€.

La organización hará una selección adicional de fotografías para incluirlas en el catálogo y en la exposición itinerante, que se prestará gratuitamente a las entidades que la soliciten. Todas las fotos presentadas pasarán a formar parte de la galería de imágenes de la web de FOTCIENCIA.

FOTCIENCIA es una iniciativa organizada por el Consejo Superior de Investigaciones Científicas (CSIC) y la Fundación Española para la Ciencia y la Tecnología (FECYT), con la colaboración de la Fundación Jesús Serra.

Toda la información y normas de participación están disponibles en www.fotciencia.es

 

Semana de la Ciencia del CSIC: viajar al pasado, hacer catas científicas y más

Por Mar Gulis (CSIC)

Viajar al pasado a través de los restos orgánicos de un yacimiento navarro (Instituto de Ciencias de la Vid y el Vino), aprender sobre los caballitos de mar (Instituto de Investigaciones Marinas) o realizar catas catas de queso para conocer sus propiedades nutricionales (Instituto de Productos Lácteos de Asturias) son tres de las 331 actividades con las que el CSIC abre este año la Semana de la Ciencia. A través de los más de 81 centros de investigación participantes, esta iniciativa, organizada con apoyo de la Fundación Española para la Ciencia y la Tecnología (FECYT), ofrecerá propuestas para todos los públicos en torno a diversas áreas del conocimiento.

Muchas de las actividades de la Semana de la Ciencia del CSIC han sido diseñadas para que el público asuma un papel activo e interactúe con el personal investigador.

Las actividades, gratuitas y dirigidas al público general, se presentan en formatos clásicos, como exposiciones, rutas científicas o conferencias, y en otros más novedosos, como degustaciones, cafés científicos, concursos o los innumerables talleres diseñados para que el público interactúe con la ciencia. Así, ‘Convierte tu móvil en un microscopio’, organizada por el Instituto de Recursos Naturales y Agrobiología de Sevilla, el taller ‘Experimenta con partículas’, del Centro Nacional de Aceleradores, o ‘Iluminación estroboscópica’, una iniciativa del Laboratorio de Investigación en Fluidodinámica y Tecnologías de la Combustión, reflejan la vertiente práctica de la Semana de la Ciencia.

En esta edición, el CSIC también ha incorporado la ciencia ciudadana a su programación, a través de iniciativas como ‘Plásticos 0 en la playa’, un taller del Instituto Mediterráneo de Estudios Avanzados. El objetivo en este caso es que la propia sociedad recabe datos valiosos para evaluar los efectos de los residuos marinos sobre los ecosistemas costeros.

El pasado 2 de noviembre arrancó la cita anual con la divulgación científica en muchas comunidades autónomas. En la mayoría de ellas, la Semana de la Ciencia se prolongará hasta finales de mes. ¡Consulta la programación y participa!

Matrix acústico: una habitación donde el sonido nunca vuelve

Mar Gulis (CSIC)

Quizá recordéis la mítica escena de Matrix (1999) en la que Morfeo (Laurence Fishburne) y Neo (Keanu Reeves) aparecen en una habitación en blanco, que resulta ser un programa en el que pueden simular la realidad. “¿Esto no es real?”, pregunta Neo tocando un sillón. “¿Qué es real? ¿Cómo defines real?… Si hablas de lo que puedes sentir, de lo que puedes oler, probar y ver… lo real son impulsos eléctricos que tu cerebro interpreta”, le contesta el Guía al Elegido. Bien, en esta ocasión vamos a hablar de lo que puedes oír y de una habitación como la de Matrix, pero ubicada en el Instituto de Tecnologías Físicas y de la Información Leonardo Torres Quevedo (ITEFI) del CSIC, en Madrid.

Al cruzar la puerta, una tiene la impresión de entrar en un espacio muy peculiar. La sensación acústica es “la de estar colgado de un globo a 1.000 metros de altura”, explica el físico del CSIC del Grupo de Acústica Ambiental Francisco Simón. Y es así, todo sonido emitido en esta habitación nunca vuelve, queda absorbido por unas paredes, suelo y techo de grandes cuñas de lana de vidrio.

Cámara anecoica del Instituto Leonardo Torres Quevedo / CSIC Divulga.

Esta cámara anecoica (sin eco ni reverberación) de 220 metros cúbicos sirve para crear campos acústicos virtuales que, como en la habitación de Matrix, simulen una realidad sonora. Esto es muy útil para el diseño de salas de música, dado que pueden reproducir cómo sonaría un violín, por ejemplo, en un espacio antes de construir el recinto, para simuladores de juego, que intentan que te des la vuelta con el sonido de un libro que se cae detrás de ti, para el cine… Los primeros en usar este tipo de tecnología fueron los militares con simuladores de vuelo y la industria del automóvil, que tiene muy en cuenta cuál es el sonido que quiere que emitan sus vehículos.

Cuando se construyeron estas cámaras, en los ’70, esta instalación era absolutamente pionera. Ahora empresas como Google, Microsoft o Telefónica tienen sus cámaras anecoicas. En ellas, las compañías prueban las características acústicas de sus dispositivos, como la potencia o cantidad del sonido que emite cualquiera de sus aparatos, y la directividad, es decir, en qué dirección lo hacen.

Y aquí, ¿podríamos escuchar el silencio total? “Tendríamos que congelarnos del todo para hacerlo”, bromea Simón. “Aquí está nuestro cuerpo, escuchamos el aire salir y entrar de los pulmones, nuestras tripas; si nos calláramos, escucharíamos nuestro corazón”, concreta.

Cámara reverberante del Instituto Leonardo Torres Quevedo / CSIC Divulga.

Cerca de esta cámara encontramos su opuesta: la habitación reverberante, un espacio en el que se busca que el sonido se expanda por todo el espacio y reverbere en todas direcciones. Para ello, hay colgados unos grandes paneles de metacrilato que producen el máximo número posible de reflexiones del sonido. Este espacio de 210 metros cúbicos se usa para sumergir en él materiales de construcción y caracterizarlos. Así, cuando un sonido llega a un material para edificación podemos ver si “rebota”, entra dentro y se disipa o lo traspasa y llega al otro lado. Por eso, aquí se realizan mediciones de absorción acústica de materiales y objetos de mobiliario.

En esta sala, solo escuchamos reverberación, no eco. La diferencia entre el eco y la reverberación es cuestión solo de tiempo: si el sonido tarda en volver menos de 50 milisegundos, lo percibimos como un sonido continuado, si tarda más, escuchamos dos sonidos; se produce el eco.

De hecho, ya en los años 60 y 70 se realizaron en este centro muchos estudios sobre aislamiento en la edificación: aislamiento al ruido aéreo de puertas, ventanas, barreras acústicas, suelos, techo, etc. No se trata de una cuestión baladí: una diferencia de 3 decibelios supone el doble de energía en el sonido que estábamos escuchando.

Por cierto, este mismo mes de octubre se cumplen diez años de la publicación de las condiciones acústicas exigidas en el Código Técnico de Edificación con las que se endurecieron las prestaciones acústicas que deben satisfacer los edificios, ofreciendo a constructores, administración y usuarios herramientas para que las viviendas que se construyen hoy día planteen menos problemas a sus habitantes y proporcionen un nivel de confort adecuado.

 

Ciencia en el Barrio: un proyecto para la igualdad de oportunidades

Por Mar Gulis (CSIC)

Según la última encuesta de Percepción social de la ciencia de la FECYT, cerca de un 5% de ciudadanas y ciudadanos participan en actividades de divulgación científica durante la Semana de la Ciencia y la Tecnología y hasta un 16% visita al menos una vez al año algún museo de ciencia. La mayoría de las participantes son personas que ya tienen un interés previo, muchas de ellas incluso son asiduas y otras constituyen lo que se conoce como público cautivo: alumnas y alumnos que asisten a actividades organizadas por sus centros escolares durante la jornada escolar. Incluso en estos casos, este público cautivo pertenece a institutos de secundaria habituales en las actividades que inundan cada año nuestras ciudades. La dificultad está en llegar a aquellas personas que no solo no acuden sino que ni siquiera conocen estas iniciativas.

‘Ciencia en el Barrio. Divulgación científica para el desarrollo social y la igualdad de oportunidades’ es un proyecto que busca cubrir esta laguna y facilitar el acceso a las actividades de divulgación científica a segmentos de la población que por sus características socioeconómicas hasta ahora no participaban de ellas. La iniciativa, puesta en marcha por el Consejo Superior de Investigaciones Científicas (CSIC) y que cuenta con el apoyo económico de la FECYT, se está desarrollando en cinco distritos de Madrid: Puente de Vallecas, Hortaleza, Carabanchel, Villaverde y San Blas. En ellos, a través de la colaboración de seis Institutos de Educación Secundaria de la red pública, el CSIC ha organizado cerca de medio centenar de actividades sobre temas de actualidad científica con diferentes formatos: talleres experimentales, conferencias, clubes de lectura, exposiciones y visitas guiadas a centros de investigación punteros. En su fase piloto han participado más de un millar de estudiantes de 4º de la ESO, nivel en el que el alumnado aún no ha tenido que elegir de forma definitiva el itinerario docente con la clásica separación de letras y ciencias. El resto de alumnas y alumnos del centro, así como las comunidades educativa y vecinal, también pueden participar en algunas de las actividades.

Ciencia en el Barrio

Durante un año, las chicas y los chicos han tenido la oportunidad de hablar de tú a tú con el personal investigador y técnico del CSIC; desmontar mitos y estereotipos sobre la ciencia; hacer preguntas y experimentar con todos sus sentidos. Catas de chocolate, talleres de cocina macromolecular, charlas sobre las aplicaciones de la luz o sobre cómo se forman las ideas, son algunas de las actividades en las que han participado. También han dialogado con los autores en clubes de lectura sobre libros de temas tan diversos como los neandertales, los robots o la vida de Alan Turing.

Y han sabido aprovechar la oportunidad. Han preguntado y debatido hasta dejar pasar el tiempo del recreo y alargar las horas programadas inicialmente para las actividades.

En la nueva etapa del proyecto, que comenzará este próximo abril, el CSIC aumentará el número de institutos y estudiantes implicados y fomentará la participación de las vecinas y vecinos de los distritos. Una de las principales novedades será la organización de una feria de divulgación científica en la que un grupo de chicas y chicos explicarán a otros estudiantes, familiares y vecinos los experimentos desarrollados en sus aulas con la tutela del CSIC.  Esperemos que sea la primera de muchas ferias.

 

FOTCIENCIA14: estas son las mejores imágenes de 2016

Por Mar Gulis (CSIC)

Un chorro de agua que cambia su trayectoria y curvatura al entrar en contacto con un dedo, resina fosilizada de conífera, una imagen microscópica de un medallón del siglo XIV, esferas de carbono que parecen una ciudad futurista… Estos son algunos de los temas abordados en las propuestas que han resultado elegidas en la 14 edición de FOTCIENCIA.

Si quieres verlas, mira este vídeo:

Estas imágenes, junto a otras que se elegirán entre las 666 presentadas, serán incluidas en un catálogo y formarán parte de una exposición que recorrerá diferentes museos y centros de España durante 2017. Dos copias de la muestra itinerante estarán disponibles para su préstamo gratuito.

FOTCIENCIA es una iniciativa de ámbito nacional organizada por el Consejo Superior de Investigaciones Científicas (CSIC) y la Fundación Española para la Ciencia y la Tecnología (FECYT), con la colaboración de la Fundación Jesús Serra. El objetivo es acercar la ciencia a la ciudadanía a través de fotografías que abordan cuestiones científicas desde una visión artística y estética. Cada imagen va acompañada de un comentario escrito por su autor/a en el que explica el interés científico de lo que ilustra.

Toda la información relativa a FOTCIENCIA está disponible en la web www.fotciencia.es

 

Los ‘puzles’ nanométricos que cambiarán tu ordenador

AutorPor Manuel Souto (CSIC)*

Imaginad el popular juego de construcciones de Lego reducido a una escala nanométrica, es decir, a la billonésima parte de un metro. Suponed que sus minúsculas piezas, constituidas individualmente por una molécula orgánica, encajan de un modo determinado para formar así un diminuto rompecabezas. Este nanoscópico puzle exhibiría a su vez unas propiedades físicas (por ejemplo, ópticas, magnéticas o eléctricas) definidas en función de la forma en que interaccionan sus piezas.

Imaginad ahora que podemos moldear y pulir todas estas ‘nanopiezas’ a nuestro antojo para que encajen de una manera prestablecida y que, como consecuencia, seamos capaces de modificar las propiedades físicas de este material. Pues bien, todo ello es posible gracias a la nanociencia molecular.

Gracias a la nanociencia molecular podemos crear rompecabezas de diminutas piezas ‘a la carta’ para emplearlos en nuevas aplicaciones.

Gracias a la nanociencia molecular podemos crear rompecabezas de diminutas piezas ‘a la carta’ para emplearlos en nuevas aplicaciones.

En el Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC), concretamente en su departamento de Nanociencia Molecular y Materiales Orgánicos (Nanomol), se están investigando nuevos materiales orgánicos que presentan distintas aplicaciones en el área de la electrónica molecular. Una de ellas es su uso como interruptores moleculares que podrían tener aplicación como dispositivos de memoria con más densidad de información. En este caso, el dedo que presiona el interruptor consiste en un estímulo físico externo –como la variación de la temperatura o presión– que es capaz de hacer pasar al dispositivo de un estado apagado (OFF) a uno encendido (ON) de forma reversible. Por ejemplo, simplemente con calentar la solución de uno de estos compuestos orgánicos podremos pasar de un estado magnéticamente apagado a uno encendido y, al mismo tiempo, observar a simple vista un cambio de color de violeta a marrón que indique visualmente el estado encendido. Al enfriar de nuevo la solución, el sistema volverá al estado apagado.

Estos compuestos orgánicos pueden emplearse también como materiales conductores de electricidad si logramos que las moléculas interaccionen de una forma adecuada. Además presentan numerosas ventajas –una mayor versatilidad, ligereza y menor coste de manufactura– respecto a los materiales tradicionales empleados en la fabricación de dispositivos electrónicos, como el silicio. En un trabajo reciente, en el ICMAB hemos diseñado y sintetizado una de estas ‘nanopiezas’ (moléculas) orgánicas que encajan una con otra de un modo determinado consiguiendo que el puzle obtenido conduzca electricidad. En este caso, el material puede pasar de aislante a conductor simplemente con la variación de la presión, ya que de esta forma alteramos la distancia y la forma en la que interaccionan las piezas.

En resumen, gracias a la nanociencia molecular podemos diseñar y crear diminutas piezas ‘a la carta’ para obtener rompecabezas que presenten unas propiedades físicas determinadas y, de esta forma, emplearlos en nuevas aplicaciones, como dispositivos electrónicos y memorias con una mayor densidad de información.

 

* Manuel Souto Salom (@SoutoManel) es investigador posdoctoral en el ICMAB-CSIC y colaborador del blog ‘Reaccionando. Una bitácora para una generación no tan perdida’, El Periódico de Catalunya y El Huffington Post. También es autor del ensayo Sí es país para jóvenes, en el que se aborda la actualidad desde una perspectiva crítica y se proponen alternativas dirigidas a concienciar sobre la necesidad de un cambio fundamentalmente ético.

Del globo aerostático al LHC: a la caza de las partículas elementales

Por Teresa Rodrigo (UC-CSIC)*

La física de partículas se centra en el estudio de lo muy pequeño. Pero resulta que cuanto más pequeños son los objetos que se quieren estudiar, más grandes y complejos son los instrumentos que debemos utilizar para verlos. Es el caso de los actuales aceleradores y detectores de partículas, como el Gran Colisionador de Hadrones (LHC), situado en el laboratorio europeo de Ginebra, el CERN. Pero antes de que existieran estos sofisticados artilugios, la comunidad científica recurrió a otro tipo de herramientas. De hecho, los globos aerostáticos fueron los primeros instrumentos científicos utilizados para la detección de partículas de altas energías.

Kropkoq zvdafgdsa

Globo aerostático de aire caliente. / Kropsoq.

La invención del globo aerostático no solo sirvió como una atracción y un medio de transporte, sino que posibilitó el inicio de toda una nueva rama del conocimiento científico.

En 1912, cien años después de las primeras experiencias en globo, Victor Hess se subió a uno de estos aparatos provisto de primitivos instrumentos de medida de radiación. Hess se elevó hasta una altitud de 5.300 metros y encontró que la tasa de radiación observada se multiplicaba con la altura. Concluyó que “la mejor explicación al resultado de estas observaciones es la suposición de que una radiación de mucha energía entra en nuestra atmósfera desde arriba”. Acababa de descubrir la existencia de los rayos cósmicos, hallazgo por el que recibiría el Premio Nobel en 1936.

Estas partículas de alta energía, principalmente protones, colisionan con los átomos de la atmósfera y producen toda una cascada de nuevas partículas capaces de atravesar la superficie terrestre.

El descubrimiento de los rayos cósmicos abrió una nueva ventana al estudio de la materia y permitió, entre otras cosas, el hallazgo en 1932 de la primera partícula de antimateria: el positrón, seguida de muchas más partículas desconocidas hasta entonces.

Hasta la llegada de los aceleradores de partículas en los años 50 del siglo XX, los rayos cósmicos constituyeron la mejor herramienta para el estudio de la materia y sus interacciones. Los aceleradores nos permiten acelerar y colisionar partículas y así reproducir en el laboratorio de forma controlada los fenómenos que ocurren en la naturaleza. Además, podemos recrear las condiciones en que se encontraba el universo en sus primeros instantes tras el Big Bang y estudiar su evolución hasta nuestros días.

En los últimos 60 años se ha conseguido elaborar una teoría cuántico-relativista, perfectamente confirmada por los experimentos, que explica toda la materia visible en el universo basándose en la existencia de doce partículas y sus correspondientes antipartículas elementales, conocidas como quarks y leptones. Por cierto, la materia visible solo constituye el 5% de la energía total del universo, el resto se compone de lo que llamamos materia y energía oscuras, que hoy es objeto clave de estudio.

CERN

Interior del Gran Colisionador de Hadrones del CERN, en Ginebra. / CERN.

También sabemos cómo estas partículas elementales se relacionan entre sí, es decir, cuáles son las fuerzas que actúan en la naturaleza. Además de la fuerza gravitatoria, existen la fuerza electromagnética, la fuerte y la débil. Con ellas podemos explicar todos los fenómenos observados y todas ellas, salvo la gravedad hasta el momento, pueden explicarse de una forma común, basada en el intercambio de otro tipo de partículas que conocemos como bosones. Un tipo muy especial de bosón es el bosón de Higgs, descubierto en el LHC en 2012. Es el responsable de que la partículas adquieran masa y, por tanto, de que el universo sea tal y como hoy lo vemos.

Las preguntas que nos planteamos las científicas y científicos y que parecen en un principio triviales, como por ejemplo “¿de qué está hecha la materia?”, nos permiten no solo avanzar en el conocimiento más abstracto, sino también desarrollar tecnología punta, que a su vez repercute de manera directa en la mejora de las condiciones de vida cotidianas. Por ejemplo, los aceleradores de partículas se han convertido en un instrumento básico para el diagnóstico y tratamiento médico o la web (www), que fue desarrollada inicialmente para compartir información entre la comunidad científica, y actualmente es un instrumento fundamental de la era de la información.

 

* Teresa Rodrigo es catedrática de Física de la Universidad de Cantabria, miembro del comité científico del CERN y actualmente directora del Instituto de Física de Cantabria (UC-CSIC). Además, es coautora del libro El bosón de Higgs de la colección del CSIC y Catarata ¿Qué sabemos de?

El texto es un extracto de la participación de Rodrigo en el programa Ciencia y Arte en el Museo del Prado, para el programa ‘La Aventura del Saber’ de TVE2, que realizan en colaboración la FECYT y el Museo del Prado. El vídeo se puede ver aquí.

Max Born: la responsabilidad ética de la ciencia

sergio brionesPor Sergio Barbero* (CSIC)

La influencia que la ciencia y la tecnología ejercen sobre nuestras vidas es cada vez más notable. Por ello es fundamental que quienes trabajan en ciencia asuman unos principios éticos. A pesar de esta acuciante necesidad muchas son las carencias de la praxis deontológica en ciencia. De ahí que el testimonio histórico de quienes guiaron su vida por unos criterios éticos sea de inestimable valía en los tiempos actuales.

Max_BornUno de estos testimonios es el de Max Born, al que se le concedió el Premio Nobel de Física por sus investigaciones fundamentales en mecánica cuántica. Durante su dilatada vida (1882-1970), Born tuvo que afrontar dos guerras mundiales, un exilio forzado por los nazis −era alemán y judío− y, entre medias, la dramática evolución de una concepción idealizada de la ciencia hacia una perspectiva mucho más compleja.

El despertar de la conciencia ética de la ciencia surgió en Born durante la Primera Guerra Mundial, influido, entre otros, por el que sería unos de sus mejores amigos: Albert Einstein. La mayor parte de la intelectualidad alemana −incluidos los más destacados científicos− apoyó sin ambages las decisiones bélicas del imperio germánico, salvo contadas excepciones como la del propio Einstein. La primera decisión ética trascendente de Born fue negarse a participar en la unidad de investigación sobre armas químicas liderada por su amigo Fritz Haber, lo cual supuso la ruptura de su amistad. Born comprendió que “sin unos límites a lo permisible, pronto cualquier cosa será permitida”. En una progresiva conversión personal, Born acabaría participando durante el invierno de 1917 en reuniones clandestinas en las que se debatía si Alemania debía utilizar la “guerra submarina sin restricciones”, la cual Born calificó, sin paliativos, como “asesinato de masas”.

Como tantos otros científicos judíos, Born –que sentía un fuerte apego por la cultura alemana− sufrió gravemente las consecuencias del ascenso del nazismo. Tuvo que exiliarse a Escocia y perdió hasta un total de treinta y cuatro familiares y amigos. Durante este periodo, Born dedicó gran parte de su tiempo y esfuerzo a ayudar a los refugiados judíos que huían del horror nazi. Como representante en el área de física de dos organizaciones de refugiados, su misión consistía en encontrar posibles trabajos y en escribir recomendaciones y propuestas de potenciales candidatos. En su generosa labor Born no solo se preocupó por profesores o investigadores, sino que también intentó ayudar a otro tipo de personas −como por ejemplo artistas− que se vieron obligadas a emigrar.

Photo1

Bomba de Nagasaki.

Cuando comienza la Segunda Guerra Mundial, Born y su mujer Hedwig residían en Edimburgo. Desde allí, a pesar de su innato pacifismo, Born defendió el combate decidido contra el nazismo, e incluso llegó a participar en investigaciones militares (aunque sin mucha relevancia) durante algún periodo de la guerra. Como alemán y como judío, sabía lo que hubiese significado la victoria del Tercer Reich. A pesar de todo ello, como hiciera en la Primera Guerra Mundial, se opuso firmemente al uso desmedido de la violencia. Así, condenó el uso de las bombas atómicas contra Hiroshima y Nagasaki y el bombardeo indiscriminado de ciudades. Lamentablemente, Born fue una excepción, ya que pocos fueron los que no se dejaron arrastrar por la inercia de unos patrones de comportamiento que oscilaban entre el miedo paralizador y el éxtasis dogmático.

Tras recibir el Premio Nobel en 1954, pese a su avanzada edad, Born inició una fructífera actividad en pos del desarme nuclear. Sugirió a Bertrand Russel preparar un manifiesto firmado por varios premios nobeles y que, dirigido a los gobiernos y a la opinión pública, alertase sobre los problemas éticos del armamento nuclear. La idea condujo, tiempo después, a la aparición del celebérrimo manifiesto Rusell-Einstein, que fue firmado por once científicos de primera línea entre los cuales se encontraba él mismo. Born fue también promotor del manifiesto de los 18 de Gotinga, de gran influencia, que pretendía evitar el desarrollo del programa nuclear armamentístico en la República Federal de Alemania.

Consciente de la barbarie de la Segunda Guerra Mundial y la amenaza nuclear, el ánimo de Born durante el último periodo de su vida osciló entre un acervado pesimismo −quizá difícil de evitar tras todo lo vivido– y un brío de esperanza en lo humano. Nos quedamos con su visión más optimista, como cuando escribió: “Si el hombre está hecho de tal manera que su curiosidad le conduce a la autodestrucción, no hay esperanza para él. Sin embargo yo no estoy convencido de ello, ya que además de su cerebro tiene su corazón. El amor es un poder tan fuerte como el átomo”.

 

*Sergio Barbero Briones es investigador del CSIC en el Instituto de Óptica (CSIC) y autor de la biografía Max Born, editado por la Fundación Emmanuel Mounier.

¿Es posible el suicidio cuántico?

Por Mar Gulis (CSIC)

Revólver de 6 balas/ Simon Poter vía Flickr

Revólver de 6 balas. / Simon Poter vía Flickr.

La inmortalidad ha sido siempre una de las metas científicas más investigadas y una fuente de innumerables leyendas y mitos. A pesar de los descubrimientos en genética sobre el envejecimiento o del progreso de la computación cuántica –que según ciertas hipótesis podría ayudar a transferir nuestra mente a un ordenador y adquirir así existencia eterna–, la muerte sigue siendo una barrera para el ser humano. Esto que podría parecer una verdad universal no lo es si asumimos determinadas interpretaciones de la física cuántica. En este caso, lo imposible no es escapar de la muerte sino, al contrario, dejar de existir por completo en un universo cuántico.

La física cuántica ha generado varias de las paradojas más famosas de la historia, como la paradoja del viajero en el tiempo, según la cual una persona no podría viajar atrás en el tiempo y matar a su abuelo ya que eso impediría el propio viaje. O la paradoja del gato de Schrödinger, en la que un gato dentro de una caja con un veneno radiactivo provoca la existencia compartida de dos universos en los que el gato está a la vez muerto y vivo. Toda la mitología y las diferentes variantes de estas dos teorías han dado lugar a extensos y longevos debates sobre física. La que traemos hoy a este blog también tiene su miga para el debate.

La teoría del llamado suicidio cuántico, no muy conocida pero planteada en términos similares a las anteriores, vendría a ser una versión del gato de Schrödinger pero aplicada a la teoría de los universos paralelos o multiverso, desarrollada por el físico estadounidense Hugh Everett. El multiverso estaría formado por todos los universos paralelos creados cada vez que una persona toma una decisión, de lo que se deduce un número de universos paralelos infinito coexistiendo al mismo tiempo en realidades diferentes.

La hipótesis del suicidio cuántico, planteada por el físico teórico sueco Max Tegmark en el año 1997, podría resumirse de la siguiente manera: un individuo está sentado en una silla con un revólver cargado apuntando a su cabeza. El arma es controlada por una máquina que mide la rotación de una partícula subatómica. Cada vez que el sujeto aprieta el gatillo el revólver se accionará dependiendo del sentido en el que rota la partícula: si gira en sentido de las agujas del reloj, el arma dispara; si gira en sentido contrario, falla. Esto hace que en cada disparo el universo se divida en dos: uno en el que el sujeto muere y otro en el que vive para seguir disparando. Así, si el sujeto aprieta el gatillo seis veces consecutivas, se  habrán generado seis universos en los que muere –uno por disparo– y uno en el que sobrevive –el universo en el que el arma falló las seis veces–. La cuestión es que, por más que el sujeto siga disparando, siempre habrá un universo en el que sobrevivirá –al menos  no morirá por un disparo de bala–. Por lo tanto, el suicidio, a nivel cuántico jamás llegaría a ser total debido a la existencia de nuestra ‘versión alternativa’ inmortal.

Billete de lotería nacional/ Álvaro Ibañez vía Flickr

Billete de lotería nacional. / Álvaro Ibañez vía Flickr.

Este mismo planteamiento tiene otra versión, algo más lúdica, en la que un sujeto compra un billete de lotería. Después, se conecta a un ordenador programado para que, en caso de que el billete no resulte premiado, este le inyecte una sustancia letal. La teoría de los universos paralelos explica que surgirán tantos universos paralelos como combinaciones de billete haya en nuestra lotería: si suponemos que nuestro cupón tiene cinco cifras, en total habrá 100.000 universos diferentes. Aunque en todos menos uno el sujeto recibirá la inyección, en ese uno el sujeto seguirá vivo y además será millonario. Desde este punto de vista, no solo la inmortalidad parece inevitable sino también la posibilidad de ganar una inmensa fortuna.

Estas paradojas son una forma de representar la contradicción entre la teoría del multiverso y la llamada interpretación de Copenhague. Mientras la primera establece que cada resultado posible de una decisión o acción da lugar a universos paralelos, la ortodoxia cuántica nos dice que una vez observado el resultado este colapsa en un solo universo. El sujeto, como el gato de Schrödinger, estará vivo y muerto a la vez solo hasta que otro sujeto compruebe si ha disparado o no.

¿Quién tiene razón? El físico del CSIC Salvador Miret, autor del libro Mecánica cuántica considera que el debate resulta casi imposible de zanjar: “el problema de la teoría del multiverso es que no es falsable, es decir, no puede ser sometida a una prueba que la confirme o desmienta”. En el planteamiento de Everett, prosigue Miret, “se quiere mantener la linealidad de la teoría cuántica incluso al realizar una medida, y el precio a pagar es la creación de universos paralelos”. Parece por tanto que para seguir avanzando en el conocimiento y en nuestra vida cotidiana la mejor idea sería conformarse con  las decisiones que tomamos y dejar el multiverso para nuestro alter ego inmortal.

Relato ganador Inspiraciencia 2016: ‘Yo no creía en el Satori’

Por Mar Gulis (CSIC)

El certamen de relatos de inspiración científica Inspiraciencia, organizado por el CSIC, celebró ayer en Madrid la entrega de premios de su sexta edición. Compartimos aquí Yo no creía en el Satori, del valenciano Luis Neira Tovar, el relato que ha resultado ganador en la categoría ‘adulto’ en idioma castellano.


Yo no creía en el Satori

Luis Neira Tovar

Todo empezó cuando el yogui llegó al campus. No podía dejar de hacerse notar, sin duda con la intención de buscar prosélitos, con su aire de santón, sus túnicas chillonas y su barba patriarcal. Comenzó a pegar carteles anunciando un curso de meditación y ciencia. No podíamos consentirlo. ¿Qué podía decir aquel mamarracho sobre ciencia? ¡Bastante teníamos con un máster en Reiki en la Universidad! Así que fuimos a reventarle la sesión inaugural.

MeditaciónMe decepcionó comprobar que entre los asistentes se encontraba el rector y varios catedráticos, todos con su chándal y su esterilla. Se produjo un silencio respetuoso y el yogui comenzó ufanándose de haber desarrollado una serie de técnicas que permitían llegar a un control absoluto de la mente sobre la materia. Me chirrió tanto su palabrería que en seguida le interrumpí diciéndole que con la respiración no se podía cambiar la trayectoria de un planeta. El yogui no se alteró.

-No hay nada que no se pueda conseguir con un correcto estado mental.

-¡Qué locura!

-No es locura, sino ciencia. La meditación induce estados en los que se pueden generar ondas de diversa naturaleza. Se emplean las bases de la mecánica cuántica a partir de la hipótesis de De Broglie.

¿Qué estaba farfullando aquel loco? ¿Qué sabía él de mecánica cuántica? Era el típico vendedor de crecepelos que no sabe una palabra de lo que dice pero emplea vagamente conceptos científicos para justificar cualquier disparate.

-¿Pero qué sabes de De Broglie?

-¿Conoce usted la hipótesis de De Broglie?

-Por supuesto. – No era así, pero no me achanté. Sabía que estaba ahí, después de Plank y antes de Schrodinger, en los libros de química. Pero estaba seguro de saber más que él.

-Pues entonces entenderá que toda entidad del universo posee una dualidad onda-corpúsculo. Controlando las energías internas se puede expandir nuestro cuerpo en forma de radiación. Podemos entrar en comunión con el cosmos gracias a ello. De Broglie obtuvo la clave: la longitud de onda se obtiene a partir de la constante de Plank dividida entre el momentum de la partícula. La concentración que propongo controla el momentum y por ello la longitud de onda.

-Eso que dices son vaguedades.

-Si consigo detener todo movimiento en mi ser, al ser el momentum igual a cero y éste ocupar el denominador, ello hace que la longitud de onda sea infinita. Dado que la longitud de onda, para una velocidad de propagación “C”, es inversamente proporcional a la frecuencia, ésta tendrá que ser también infinita, y en consecuencia entrar en un estado de resonancia que permite expandir la mente y comunicarse con el universo.

-¡Qué disparate! ¡No puedes demostralo!

-Nunca he intentado llegar tan lejos como me propone, pero aquí hay reunidos muchos amigos a los que su obstinación está haciendo daño.

El yogui tomó una alfombrilla que tenía enrollada, la extendió en el centro de la estancia y quedó sentado en la posición de loto. Todos guardábamos silencio y podía sentir la inquina en las miradas de la concurrencia, pero me daba igual, yo estaba allí para defender la razón y la ciencia.

Los minutos transcurrían en la contemplación de aquel hombre estático y aquello comenzaba a ser incómodo. No pasaba absolutamente nada. Parecía que no respiraba, que su corazón ni siguiera latía. No movía ni un músculo. Empecé a imaginar cómo evolucionaría la situación si, pasadas unas horas, el individuo siguiera quieto.

Finalmente una sensación desasosegadora se comenzó a apoderar de todos. De repente hacía mucho frío y no había motivo para ello.

El frío emanaba del yogui. La barba se le empezaba a quedar escarchada. La piel se le azulaba. Era asombroso. De repente, el fenómeno se aceleró. Se formó una fina capa de hielo sobre la tez y, de golpe, todo su cuerpo se fracturó en mil pedazos haciéndose añicos, colapsando en una miríada de bloquecillos helados.
En medio de la estupefacción general, Damián me susurró al oído:

-Se equivocó al despejar la ecuación. La frecuencia no tendía a infinito, sino a cero. La energía interna de sus moléculas se ha hecho nula y ha bajado su temperatura hasta el cero absoluto.

-Pues ya me podrías haber avisado antes. Ahora ya no podemos rebatirle.

El caso es que, siendo aquello tan extraño y no teniendo a nadie más a quien culpar, me acusaron a mí de homicidio y no sé de cuántas cosas más. Después de todo, el yogui no sabía tanta física, pero el secreto de cómo era capaz de controlar hasta ese punto cada átomo de su ser se lo ha llevado a la tumba. Todavía recuerdo, antes de que me prendieran, las palabras de Damián:

-Menos mal que no intentó hacer la longitud de onda cero. Podría haber fisionado en una explosión nuclear.

 

Inspiraciencia es una iniciativa del Consejo Superior de Invesitgaciones Científicas (CSIC) que cuenta con financiación de la Fundación Española para la Ciencia y la Tecnología (FECYT), del Ministerio de Economía y Competitividad. Numerosas entidades dan apoyo a este certamen: la Escola d’Escriptura de l’Ateneu Barcelonès, la Escuela de Escritores, la Editorial Galaxia, la Asociación de Escritoras e Escritores en Lingua Galega, Mètode, Revista de difusió de la ciència de la Universitat de València, Euskal Etxea Centre Cultural Barcelona, la Fundazioa ElHuyar, así como otras entidades culturales y bibliotecas públicas.