Entradas etiquetadas como ‘Real Jardín Botánico’

Una exposición virtual del CSIC te enseña las plantas que vinieron de América y cambiaron nuestra dieta para siempre

Por Mar Gulis (CSIC)

Tomates, pimientos, patatas, cacao, maíz, piña, cacahuetes… ¿Qué tienen en común estos alimentos? Su origen lejano. Porque, aunque hoy sean habituales en nuestra dieta, todos llegaron de las Américas y poco a poco se colaron en los hogares europeos. ¿Cómo se produjo este trasvase de ingredientes? El punto de inflexión tuvo lugar en la noche del 11 al 12 de octubre de 1492, cuando se oyó el grito de “¡Tierra!” y la historia de Europa y de América experimentó un cambio radical. Cristóbal Colón y su tripulación habían descubierto lo que denominarían el Nuevo Mundo.

Papaya y patata

Izquierda: Papaya (Carica papaya L.). 1750-1773, Christoph Jakob Trew; ilustrador: Georg Dionysius Ehret, grabador: Johann Jacob Haid, Real Jardín Botánico-CSIC (CC BY-NC-SA). Derecha: Patatas (Solanum tuberosum L.) 1892-1893, Amédée Masclef, Real Jardín Botánico-CSIC (CC BY-NC-SA).

Las nuevas relaciones entre ambos continentes trajeron grandes transformaciones, pero aquí solo nos vamos a referir a las que tienen que ver con nuestra alimentación. “La manera de comer de los europeos hoy día sería muy diferente si Colón no hubiera tratado de descubrir una ruta más rápida para llegar desde España a las islas de las especias en el sureste de Asia”. Esta idea es el hilo conductor de la exposición Las plantas comestibles que vinieron de América, que te propone un recorrido virtual por los alimentos que, tras viajar miles de kilómetros, cambiaron nuestra dieta para siempre. La muestra, constituida por una selección de grabados del Real Jardín Botánico (RJB-CSIC), da cuenta de cómo algunas plantas que descubrieron los colonizadores “no sólo enriquecieron las cocinas de Europa, Asia y África, sino que tuvieron un enorme impacto en la cultura, economía y política a nivel mundial”.

En la exposición encontrarás varias curiosidades. Por ejemplo, la patata y el tomate, dos alimentos básicos de la dieta mediterránea, inicialmente fueron consideradas plantas tóxicas y se destinaron exclusivamente a usos ornamentales en jardines. Hubo que esperar a finales del siglo XVII para que los tomates fueran incluidos en los menús del sur de Europa. En el caso de la patata, tuvo que transcurrir un siglo más para que el denostado tubérculo fuera ampliamente utilizado en el recetario europeo. La llegada del cacao tampoco generó mucho entusiasmo. En su obra Historia natural y moral de las Indias, de 1590, el jesuita antropólogo José Acosta se refería al chocolate como un brebaje que producía asco, y que sin embargo era muy apreciado en su lugar de origen.

Pimiento y maiz

Izquierda: Pimientos (Capsicum ssp). 1613, Basilius Besler, Real Jardín Botánico-CSIC (CC BY-NC-SA). Derecha: Variedades del maíz (Zea mays L.). 1836, Matthieu Bonafous; ilustradora: Ang.ª Bottione-Rossi; grabador: Dupréel, Real Jardín Botánico-CSIC (CC BY-NC-SA).

Curiosamente, otras plantas traídas por Colón, como el maíz y la batata, fueron bien aceptadas desde el principio. Y algunas especies, como la yuca o la papaya, no llegaron a cultivarse en Europa, pero se llevaron a otros continentes, como África, donde ahora son parte fundamental de la dieta de sus habitantes.

La selección de grabados botánicos que integran la muestra procede de la Colección de libros raros y especiales de la biblioteca del Real Jardín Botánico. Las estampas están dibujadas por conocidos ilustradores y grabadores europeos de diferentes épocas, como Georg Dionysius Ehret (1708-1770), colaborador de Carlos Linneo y uno de los artistas botánicos más importantes del siglo XVIII. O el ilustrador Pierre Jean François Turpin (1775-1840), del que se enseña el grabado de la yuca recogido en la obra Nova genera et species plantarum (1824-1825), donde el naturalista Alexander von Humboldt y el botánico Aimé Bonpland describieron 4.500 plantas recopiladas en su viaje por América del Sur.

La muestra resalta además el trabajo de ilustradoras que, aunque han gozado de un menor reconocimiento, realizaron trabajos de gran calidad y precisión, como la ilustradora y retratista de flores Ernestine Panckoucke (1784-1860) o la acuarelista Angela Rossi Bottione.

Mapa

Mapa de los orígenes de las plantas comestibles americanas. / RJB-CSIC

Las plantas comestibles que vinieron de América se enmarca en las actividades de divulgación del proyecto Linking Biodiversity and Culture Information (LinBi), en el que la biblioteca del Real Jardín Botánico del CSIC participa con otros cuatro socios europeos. Los textos de la muestra, originariamente escritos en inglés, ya están disponibles en castellano.

La ‘trastienda’ del Real Jardín Botánico en primavera

Por Mariano Sánchez García (CSIC)*

Lleva en Atocha desde 1781, fecha en la que Carlos III lo trasladó de Migas Calientes a una zona entonces bien regada y llena de huertas. El Real Jardín Botánico (RJB), ubicado en el Paseo del Arte madrileño, formó parte del proyecto del monarca de crear una colina de la ciencia, junto con el Museo de Ciencias (actual Museo del Prado) y el Observatorio Astronómico. El RJB, actualmente adscrito al Consejo Superior de Investigaciones Científicas (CSIC), fue siempre un reducto de ciencia, pero también de jardinería. Juan de Villanueva, arquitecto del Museo del Prado, realizó el diseño de este bello jardín neoclásico, que se caracteriza por los juegos temporales de color.

En la actualidad el Real Jardín Botánico exhibe unas 5.500 especies vivas: una enorme diversidad si se tiene en cuenta que solo en la península ibérica, una de las regiones con más diversidad florística de Europa, hay unas 7.000 especies de plantas. Además, el Botánico mantiene su esencia como jardín histórico; por eso, en los meses de primavera trata de impactar al público con sus gamas cromáticas y su olor. ¿Cómo se consigue esta explosión visual y aromática que llena el Jardín de marzo a junio?

Narcisos dando la bienvenida al Real Jardín Botánico. / Mariano Sánchez

La jardinería es un arte que se desarrolla con conocimiento y previsión, y hay que trabajar durante todo el año para que un jardín luzca pletórico. Un ejemplo es la floración de primavera, para la cual hay que diseñar las plantaciones a finales del verano anterior. Tras el trazado en el papel, toca meter las manos en la tierra. Esta temporada, en el RJB plantamos a finales de noviembre 6.000 bulbos de narciso y 12.000 de tulipán, que han sido cuidados y vigilados durante todo el invierno. Los narcisos se ubicaron a ambos lados del camino principal en macizos compactos para aportar su aroma al visitante.

Para diseñar la distribución de las variedades de tulipán se jugó con un recorrido que iba de los tonos fríos a los cálidos. Esta tarea es como montar un puzle de 800 metros cuadrados en el que tienes que encajar, de forma armoniosa y agradable para la vista, 35 variedades de un mismo género.

Colección de tulipanes. / Mariano Sánchez

Cuando este año llegó el color y aroma de los narcisos, nos tuvimos que retirar a casa para cuidar y cuidarnos de la pandemia. Pocas semanas después se abrieron los tulipanes, y a esa mezcla cromática y olfativa se sumó el silencio, solo roto por el murmullo del agua en los fontines y los casi ya olvidados cantos de los pájaros. El Real Jardín Botánico se convirtió en un jardín de los sentidos que nadie podía disfrutar. ¿Qué hacer con tanta belleza?

Esa espectacular floración que preparamos para los visitantes no podía quedarse sin ser vista ni sentida. Así, gracias a la colaboración de muchas personas del RJB y a la policía municipal de Madrid, conseguimos que todas esas flores de plantas cuidadas con mimo desde noviembre pudiesen alegrar con sus colores y aromas los miles de rostros cansados de trabajadores y pacientes de los hospitales de Madrid y Guadalajara y residencias de mayores.

Jardinera del RJB cortando los tulipanes en marzo pasado para llevarlos a hospitales y residencias de mayores de Madrid. / Mariano Sánchez

En el jardín el espectáculo debía continuar, de modo que, cuando a finales de abril terminó la floración de los tulipanes, llegó el momento de preparar la flor del verano, las dalias, como quien cambia los jerseys por las camisas y las mangas cortas. De esta forma, a primeros de mayo se retiraron todos los bulbos de tulipán, se guardaron por variedades, y se cavó el terreno que ocupaban para plantar en el mismo lugar 1.200 rizomas de 80 variedades de dalia.

Ejemplar de Dahlia `Frigoulet´. / Mariano Sánchez

Mientras se realizaban los trabajos de plantación de las dalias, despuntaron las peonías, de breve pero impresionante floración. Tras estas flores asociadas al amor y la belleza, florecieron a lo largo del mes de mayo 160 variedades de lirios de nuestra colección, así como la rosaleda con las rosas antiguas y silvestres.

Lirios y rosas se abrirán a la espera de la colección de dalias, plantas tropicales originarias de México que Antonio José de Cavanilles, director del RJB, sembró en 1789 por primera vez en Europa. Estas plantas florecen de junio a noviembre, cuando mueren con las primeras heladas.

Ejemplar de lirio Iris ‘Superstition’. / Mariano Sánchez

Otro trabajo esencial en el jardín durante el período primaveral es el de conservar los ciclos de la huerta. Hay que retirar las hortalizas de invierno, como las coles y las lombardas, para plantar la huerta de verano: garbanzos, tomates, calabazas y sandías.

Biofilia: curar con flores

A fecha de hoy, tanto la sanidad española como, en mayor o menor medida, todos necesitamos el efecto terapéutico de la naturaleza. Este fenómeno se denomina biofilia y hace referencia al amor por lo vivo y lo natural. Habitaciones, mostradores y pasillos de hospitales con ese toque de naturaleza que sana, ya sean plantas, madera o flores, ayudan a mejorar al menos un poco el estado anímico de las muchas personas que permanecen en estos espacios.

Ejemplares de Paeonia lactiflora `Flame’. / Mariano Sánchez

Esa naturaleza sanadora puede y debe ser observable también desde las ventanas de las casas. En este período de confinamiento está siendo fundamental que nos podamos asomar a nuestros balcones para ver el paso del tiempo y de la estación a través de las plantas, y, sobre todo, de los árboles: la fructificación de los olmos en marzo, el brotar de los plátanos de paseo a finales marzo y en abril, y la floración de los castaños de indias y las acacias, que comienza pocos días antes del mes de mayo. Además de los espacios primorosamente cuidados como los jardines, los árboles son también parte de la vegetación urbana que evoluciona y nos acompaña en estos días.

* Mariano Sánchez García es jefe de la Unidad de Jardinería y Arboricultura del Real Jardín Botánico del CSIC.

 

SOS polinizadores: sin insectos no hay futuro para muchas plantas

Por Clara Vignolo (CSIC)

Aunque la mayoría nos encontremos confinados en casa, la naturaleza sigue su curso. Solo hay que asomarse por la ventana para darse cuenta de que la primavera ha comenzado y con ella el ir y venir de los insectos. Algunos de ellos, como las abejas, las mariposas o los escarabajos, van de flor en flor en busca de polen y néctar. Son los llamados insectos polinizadores, cuyo trajín resulta fundamental para la reproducción de muchas plantas.

En la actualidad, la supervivencia de estos insectos se encuentra amenazada por fenómenos como el cambio climático, la agricultura intensiva o las especies invasoras. ¿Quieres saber más sobre estos seres esenciales para la biodiversidad terrestre y los riesgos que afrontan? Te lo contamos en este post y en varios materiales educativos de libre descarga preparados por el Real Jardín Botánico del CSIC. Nada más y nada menos que una guía para todos los públicos, otra para docentes y una app.

Polinizadores

Imagen de Antonello Dellanotte (RJB-CSIC)

Plantas e insectos: un flechazo a primera vista

En su búsqueda de alimento, los insectos polinizadores trasladan (unos con más eficacia que otros) el polen entre las flores y hacen así posible su fecundación. Este transporte se conoce como ‘polinización entomófila’ y es el resultado de un ‘flechazo a primera vista’ entre plantas e insectos que se remonta 140 millones de años atrás.

En ese momento, en pleno Jurásico inferior, aparecieron las primeras angiospermas o plantas con flor. Rápidamente, los insectos comenzaron a aprovechar este nuevo recurso –las flores– de forma eficiente. Surgió así una relación entre las angiospermas y los insectos que desde entonces dirigió la evolución de ambos hasta convertirlos en las dos líneas terrestres más exitosas del planeta. Dicho de otra manera, estos dos grupos de seres vivos se vieron beneficiados de su mutua coexistencia, y esta fructífera relación dio lugar a la aparición de multitud de nuevas especies de plantas con flor y de insectos.

España, un lugar clave para la biodiversidad de abejas

Una muestra de este fenómeno la encontramos actualmente en la Península Ibérica, uno de los lugares con mayor diversidad de abejas del mundo. La presencia de más de 1.100 especies de abejas en nuestro territorio está asociada al gran número de plantas con flor que crecen en él, un total de 6.953 especies.

En primavera, el Real Jardín Botánico ofrece una buena muestra de esta biodiversidad. Si estos días pudiéramos pasear por él, no tardaríamos en advertir a las grandes abejas carpinteras (Xylocopa virginica), negras y con un característico brillo violáceo, construyendo su refugio en un tronco; a los abejorros (Bombus), excavando sus nidos en la tierra; o a las solitarias abejas cerdadoras (Anthidium) y albañiles (Osmias), tomando posesión de cañas secas y pajitas como guarida. Tampoco nos costaría encontrar el rastro de las abejas cortadoras (Megachile), cuyas hembras hacen recortes circulares en las hojas de los árboles con los que forrar sus nidos.

Polinizadores

Imagen de Antonello Dellanotte (RJB-CSIC)

La manzana, el tomate o el café, dependientes de los polinizadores

No existen datos exactos, pero estudios recientes estiman que casi el 90% de las plantas angiospermas (unas 308.000 especies) son polinizadas gracias a los insectos. Además, la polinización entomófila es indispensable para la producción global de alimentos, por lo que se considera un servicio ecosistémico esencial. Un dato revelador es que el 75% de los 111 principales cultivos agrícolas del mundo dependen de estos organismos. Entre los más destacados se incluyen la manzana, la cereza, la almendra, el tomate, el melón, la sandía, el café o el cacao.

Cuando se considera la producción total de alimentos vegetales como biomasa, la importancia relativa de la polinización entomófila disminuye, ya que los principales cultivos vegetales del mundo (arroz, trigo y maíz) son polinizados por el viento. No obstante, los alimentos que proceden de cultivos polinizados por animales son ricos en micronutrientes y fundamentales en nuestra dieta. Con todos estos datos, podemos afirmar que los insectos polinizadores tienen un papel crucial en el mantenimiento de la biodiversidad terrestre y en nuestra vida.

Desaparición de insectos

Sin embargo, el grupo de seres vivos más numeroso del planeta, los insectos, se encuentra seriamente amenazado. Una reciente publicación revela que el 40% de las especies pueden desaparecer en los próximos 100 años. Entre ellas se incluyen todos los grupos de polinizadores: mariposas, polillas, abejas, moscas y escarabajos. Parece que la fatídica “primavera silenciosa” de Rachel Carlson está a la vuelta de la esquina… ¡y eso que ella dio la alarma en 1962!

Las poblaciones de polinizadores están reguladas por varios factores: la abundancia de flores, la disponibilidad de ambientes de nidificación, los depredadores y patógenos, y los pesticidas. Las prácticas agrícolas intensivas tienen un efecto negativo en al menos dos de estas variables: por un lado, al transformar los hábitats de los insectos en monocultivos hacen que los recursos florales disminuyan; y, por otro, conllevan el uso generalizado de plaguicidas. Otros fenómenos que contribuyen a la pérdida de biodiversidad de insectos son la incidencia de parásitos, las especies invasoras o el cambio climático.

Polinizadores

Imagen de Antonello Dellanotte (RJB-CSIC)

¿Qué hacer?

Para evitar este colapso anunciado es necesario comenzar a tomar medidas de forma urgente, principalmente sobre la forma de realizar las prácticas agrícolas. Favorecer la agricultura ecológica frente a la agricultura intensiva tiene grandes beneficios para las poblaciones de polinizadores.

Por una parte, la agricultura ecológica produce alimentos sin emplear pesticidas y fertilizantes sintéticos, lo que permite mantener la fertilidad del suelo y conservar la biodiversidad. Además, promueve un menor laboreo de la tierra y, por tanto, disminuye las perturbaciones en el suelo y el riesgo de destrucción de nidos de abejas.

Por otro lado, la producción ecológica trata de diversificar los cultivos formando una heterogeneidad de parcelas en una misma explotación. Esto ofrece recursos de polen y néctar en distintas cantidades y en diferentes momentos del año. Asimismo, cuando un paisaje agrícola está formado por campos de cultivos de tamaño pequeño y forma irregular, hay más márgenes entre los cultivos. Estos espacios, los márgenes o lindes, son vitales para la supervivencia de los polinizadores ya que representan un refugio para las plantas silvestres y, por lo tanto, una rica fuente de alimento y un lugar para la reproducción. Funcionan como pasillos que conectan los campos y generan el intercambio de polen en largas distancias. Se ha comprobado, además, que un aumento de estos espacios repercute en una mayor producción de frutos y semillas de los propios cultivos.

Si queremos seguir escuchando el zumbido de las abejas y el canto de las aves, debemos pensar en otras formas de manejar el campo más respetuosas con la vida silvestre. Es posible una convivencia más amable con estos seres que, además de realizar un servicio ecosistémico fundamental, son fuente de alimento de miles de especies.

Polinizadores

Imagen de Antonello Dellanotte (RJB-CSIC)

Para saber más desde casa

El conocimiento de los insectos polinizadores nos permitirá abordar su problemática y pensar en un futuro más halagüeño para nuestro planeta. Por eso en el Real Jardín Botánico, en colaboración con la Fundación Española para la Ciencia y la Tecnología (FECYT), hemos preparado varios materiales sobre la importancia de estos seres vivos, sus beneficios para nuestra vida y las amenazas a las que están sometidos:

 

* Clara Vignolo forma parte de la Unidad de Programas Educativos del Real Jardín Botánico del CSIC. Ha desarrollado proyectos educativos en torno al tema de los insectos polinizadores.

Cuando el arsénico se usaba para decorar los hogares

Por M. Teresa Telleria (CSIC)*

En el siglo XIX se puso de moda el color verde intenso que proporcionaban algunos pigmentos elaborados a base de arsénico y cobre. Primero fue el verde Scheele (arsenito cúprico), sintetizado por el químico sueco Karl W. Scheele en 1775, y después, en 1814, el verde Scheweinfurt (acetoarsenito de cobre), también conocido como verde París, verde Veronese, verde Viena y, sobre todo, como verde esmeralda. Su fabricación, sencilla y barata, lo hizo asequible a todos los bolsillos y su uso trascendió al del mundo del arte. Pasó así de los paisajes de Joseph Turner y la obra de Edouard Manet a la manufactura de papeles pintados, envoltorios, tapicerías, cortinas, vestidos, juguetes e incluso a los alimentos. Todo se vistió de verde esmeralda, un verde que en su fórmula llevaba más de un 40% de arsénico. Tal fue la magnitud de su uso, que llegó a estimarse en varios millones de km2 la superficie de pared en los hogares británicos que, allá por 1860, estaba recubierta por papeles pintados con verde Scheweinfurt.

Detalle de papel pintado, según diseño de William Morris, hacia 1880. Denisbin/Flickr.

El arsénico nunca ha gozado, y con razón, de buena fama y, poco a poco, diferentes casos de indisposición, enfermedad y alguna que otra muerte comenzaron a ser atribuidos a las paredes empapeladas con trazos de este temible elemento; el peligro se había filtrado en los hogares europeos de la mano de su decoración. No tardó el químico alemán Leopold Gmelin en percatarse de que las habitaciones así decoradas, máxime si eran húmedas y mal ventiladas, despedían un olor desagradable que definió como “olor a ratón”. Gmelin atribuyó este tufo a un componente volátil del arsénico, que llamó “alkorsin”. En noviembre de 1839, el científico remitió una carta al Karlsruher Zeitung dando cuenta del hecho. No fue casual el medio utilizado para hacer circular la noticia, ya que lejos de elegir una publicación científica optó por un periódico y, además, en su edición dominical.

Los hongos hacen su entrada en esta historia de la mano de Bartolomeo Gosio, médico y microbiólogo italiano que entre 1899 y 1944, fue director de los laboratorios científicos de la Direzione di Sanità en Roma. Conocía Gosio algunas teorías previas sobre el posible origen de los gases volátiles del arsénico; teorías que postulaban la capacidad de determinados microorganismos para volatilizar los compuestos de arsénico. Sobre esta base, Gosio propuso la siguiente hipótesis: la humedad y temperatura de las estancias favorecían el crecimiento de hongos y bacterias en las paredes forradas con papeles pintados; en su crecimiento, estos organismos producían hidrógeno que, al reaccionar con el arsénico del pigmento, lo transformaban en trihidruro de arsénico (AsH3), también conocido como arsano o arsina, un gas incoloro, inflamable, reductor y altamente tóxico que despide un ligero olor a ajo.

Hongo Scopulariopsis brevicaulis. J. Scott/EOL.

Gosio se encargó de demostrar que, en estos menesteres, era particularmente activo un hongo que identificó, en principio, como Penicillium brevicaule y que hoy conocemos como Scopulariopsis brevicaulis. Para llegar a esta conclusión diseñó el siguiente experimento: en un sótano colocó distintos medios de cultivo expuestos al aire que contenían patata y diferentes compuestos de arsénico, incluidos los pigmentos; hizo crecer en ellos las especies de hongos y bacterias que pretendía testar y quedó a la espera de que estas prosperaran y produjeran el buscado material volátil. Él lo detectaría gracias a su característico olor a ajo. El ensayo resultó un éxito; el cultivo de Scopulariopsis brevicaulis emanaba este particular olor, lo que claramente demostraba, en opinión de Gosio, la presencia del arsénico volatilizado.

En 1901, Gosio y su colega, el químico Pietro Biginelli, lo identificaron como dietilarsina. Treinta años después, Frederick Challenger y colaboradores lo identificaron definitivamente como trimetilarsina. Así quedó ya desvelada definitivamente la naturaleza química de este arsénico volatilizado que se conoce como “gas Gosio”, en honor a su descubridor. Bartolomeo Gosio siempre estuvo convencido de la toxicidad del gas que lleva su nombre y, aunque las pruebas realizadas para demostrarlo nunca fueron del todo concluyentes, la balanza acabó decantándose de su lado.

Las paredes de las estancias decoradas con llamativos tintes esmeralda y, por tanto, cargadas de acetoarsenito de cobre, un ambiente húmedo que favorecía el crecimiento de S. brevicaulis y el proceso de biometilación que este hongo era capaz de generar eran los elementos y circunstancias necesarios para que el gas hiciera acto de presencia. Los culpables de los envenenamientos ya estaban identificados: el verde Scheweinfurt y S. brevicaulis.

XYZ Buildings en la 6th Avenida de
Nueva York. Wally Gobetz/Flickr.

Pero en el relato de la funesta conjunción del verde esmeralda y S. brevicaulis quedaban aún algunos cabos sueltos. En un trabajo publicado en 1914 se plasmaban los resultados de un detallado estudio sobre varios microorganismos que volatilizaban el arsénico utilizando para ello diferentes sustratos. Su autor R. Huss, del Pharmaceutical Institute de Estocolmo, realizó además una serie de pruebas clínicas sobre el posible efecto que estos gases producían en ratones, conejos y cobayas. Tras el estudio, demostró la falta de efecto nocivo que tenían los gases sobre los animales e incluso sobre él mismo, que durante medio año había estado expuesto diariamente en el laboratorio a los nocivos vapores. Gracias a las conclusiones de este y otros estudios contemporáneos, la hipótesis del gas tóxico comenzó a desinflarse por la evidencia de los hechos. Que muchos de los compuestos de arsénico sean altamente tóxicos no quiere decir, necesariamente, que lo sean todas sus formas gaseosas. Hoy se sabe que la trimetilarsina es un genotóxico, pero también se sabe que su tasa de letalidad por inhalación es relativamente baja.

Casi un siglo después, una publicación de William R. Cullen y Ronald Bentley (2005) desmontó lo que ellos consideraron una leyenda urbana, la toxicidad del gas Gosio y la relación entre el verde esmeralda (acetatoarsenito de cobre), los hongos y las muertes por envenenamiento. En su opinión, estas bien pudieron estar más relacionadas con los desórdenes que origina lo que hoy se conoce como “síndrome del edificio enfermo”, un conjunto de afecciones de etiología desconocida como ronquera, erupciones cutáneas, náuseas o vértigos, que afecta a ocupantes de edificios no industriales, siendo los síntomas difícilmente objetivables mediante pruebas diagnósticas. De nuevo la mezcla de un mal sistema de ventilación, humedad y  la consecuente proliferación de hongos y bacterias podría ser un cóctel nocivo para la salud. En este caso también se quiso establecer, no sin controversia, una relación directa entre Stachybotrys chartarum y el mencionado síndrome. Un hongo volvía a ser el culpable, ahora sin el arsénico, y como en otro tiempo, también sin pruebas concluyentes.

María Teresa Telleria es investigadora del CSIC en el Real Jardín Botánico y autora del libro Donde habitan los dragones y de Los hongos, disponibles en la Editorial CSIC Los Libros de la Catarata.

Ginkgo, el árbol que sobrevivió a la bomba de Hiroshima

Gingko en el Real Jardín Botánico

Gingko en el Real Jardín Botánico (CSIC). / Marisa Esteban.

Por Mar Gulis (CSIC)

Una altura de 17 metros, un tronco de 0,52 metros de diámetro, entre 90 y 110 años de antigüedad y unas inconfundibles hojas en forma de abanico. Estas son las características del ginkgo que puede contemplarse en el Real Jardín Botánico (RJB-CSIC) de Madrid. Más allá de su evidente atractivo, este árbol tiene una historia llena de curiosidades, como su sorprendente resistencia a la radiación.

El 6 de agosto de 1945 Estados Unidos lanzó una bomba atómica contra su enemigo japonés. El blanco fue Hiroshima, una ciudad portuaria que quedó absolutamente devastada tras la explosión. Decenas de miles de personas murieron y en un radio de más de 10 kilómetros todo –edificios, templos, parques, etc.– quedó arrasado. Sin embargo, a unos mil metros del epicentro de la explosión ocurrió algo extraordinario. Un ejemplar de ginkgo, situado en el templo Housenbou, logró sobrevivir. “Seguramente en el momento de la explosión tenía yemas latentes que no murieron, y eso le permitió rebrotar apenas un año después”, explica Mariano Sánchez, conservador del RJB. Por eso hoy este veterano superviviente es un árbol venerado; tanto que ha sido mantenido a la entrada del templo, pese a las obras de remodelación que se han llevado a cabo a lo largo de los años. Junto al árbol, el visitante puede leer: “No más Hiroshima”.

¿Cómo pudo un ser vivo soportar las enormes cantidades de radiación? Sánchez subraya que se trata de “una especie con una capacidad de rebrote muy grande. Además, tiene una corteza bastante blanda, gruesa y húmeda, lo que pudo contribuir a protegerlo”. Hay otro dato interesante: la bomba se lanzó en agosto, “una fecha en la que el árbol probablemente estaría acumulando reservas y tendría mucha agua y almidón en el tronco, las ramas y las raíces. Esto seguramente aumentó su resistencia”, apunta el conservador.

Hojas

Las características hojas en forma de abanico hacen del gingko un árbol muy reconocible. / James Field (CC-BY-SA-3.0) vía Wikimedia Commons.

Según este experto, el ginkgo es un género único, “un fósil viviente que no padece plagas ni enfermedades porque ha ido sobreviviendo a todas ellas”. Algo así como una reliquia botánica que fue descrita por primera vez en 1691 en Japón. “Hasta ese momento había fósiles de sus hojas, pero no se conocía ningún ejemplar vivo”, afirma Sánchez. La explicación más extendida es que, aunque se extinguió en la naturaleza, al ser un árbol sagrado para el budismo, muchos templos hicieron notables esfuerzos para conservarlo. A raíz del hallazgo de varios ejemplares en Asia, se empezó a comerciar con semillas y así se reprodujo en otros continentes.

Conocido también como el árbol vivo más viejo del mundo (su existencia se remonta al Cretácico o incluso a épocas precedentes), el ginkgo puede alcanzar los 2.000 años de edad. Su madera se utiliza en ebanistería y tiene propiedades medicinales: es vasodilatador cerebral, antivaricoso y aporta beneficios para el tratamiento de los problemas de memoria y la alteración de las funciones cognitivas asociadas al envejecimiento.

En el Extremo Oriente se cultiva además como árbol frutal por sus semillas, que se consumen cocidas o tostadas a pesar de que, cuando se machacan, desprenden un olor desagradable, parecido al del pescado podrido.

Aviso para paseantes: además del ejemplar del Real Jardín Botánico, los madrileños parques del Oeste y de la Fuente del Berro también albergan una buena representación de ginkgos. El Parque de la Ciudadela, en Barcelona; el paseo de la Isla, en Burgos; o los Jardines de Alfonso XXII de Málaga son también lugares donde se puede contemplar este árbol milenario.

¿Conoces Arbolapp? La app del CSIC para identificar árboles estrena web y añade 25 especies

Arbolapp

La app está diseñada para su uso en el medio natural, incluso en zonas donde no hay conexión a internet. / Eliezer Sánchez (CSIC).

Por Mar Gulis (CSIC)

Aquí van algunas preguntas para gente curiosa: ¿Sabías que las bolas de la Lotería Nacional están hechas con madera de boj? ¿Y que el palmito es la única palmera autóctona de la península? ¿O que hay un árbol que se llama espantalobos porque sus frutos suenan como un sonajero? Estas son algunas pinceladas de la nueva versión de Arbolapp, una aplicación dirigida a todas las personas que, al observar un árbol, se han preguntado de qué especie se trataba.

Si eres una de ellas, esta herramienta creada por el Real Jardín Botánico y el Área de Cultura Científica del CSIC, con apoyo de la FECYT, te resultará de utilidad. Diseñada para ayudar a los usuarios a identificar árboles silvestres de la Península Ibérica y las Islas Baleares, Arbolapp nació en noviembre de 2014 como una app gratuita para teléfonos móviles. Hoy, tras superar las 200.000 descargas, presenta una página web (www.arbolapp.es) que también permite reconocer árboles. De este modo, ya no hace falta tener un teléfono o una tablet para acceder a sus contenidos.

Además, tras la avalancha de usuarios pidiendo la inclusión de más especies, la aplicación se renueva con la incorporación de 25 árboles, entre los que se encuentran el boj, el brezo, el granado, la morera o la coscoja. Así, la app y la web cuentan a partir de ahora con un catálogo de 143 especies que pueblan bosques y demás hábitats naturales de nuestro territorio.

Espina de Cristo

La espina de Cristo (Pailirus spina-christi) es una de las nuevas especies incluidas en Arbolapp. / Felipe Castilla (RJB-CSIC).

Si aún no conoces Arbolapp, ten en cuenta un dato importante: cualquiera puede utilizar esta herramienta; no es necesario tener conocimientos de botánica para salir airoso y llegar hasta el árbol que se quiera reconocer. Para ello pueden usarse dos tipos de búsqueda: una guiada, en la que hay que escoger en sucesivas pantallas la alternativa que mejor describe el ejemplar que se quiere identificar; y otra abierta, que permite encontrar árboles por provincia, tipo de hoja, fruto, flor u otros criterios.

Para facilitar el recorrido, más de 300 ilustraciones acompañan los enunciados de las búsquedas y más de 500 fotografías muestran con detalle las hojas, flores, frutos y cortezas de las distintas especies.

Otro apunte: la app está diseñada para su uso en el medio natural, incluso en zonas donde no hay conexión a internet. Eso significa que una vez instalada sus contenidos y funciones son accesibles offline. Para descargar Arboalapp por primera vez en tu teléfono o tablet, accede a Play Store o Apple Store. Si ya la tenías instalada, no hace falta que hagas nada: la aplicación se actualizará automáticamente cuando el dispositivo se conecte a una red WIFI. En el caso de que esto no ocurra, puedes poner al día la app a través de los stores.

Del futuro próximo de Arbolapp solo podemos desvelar, de momento, que la aventura continúa con una nueva versión dedicada a los árboles canarios en la que ya estamos trabajando. ¡A finales de 2016 o comienzos de 2017 presentaremos Arbolapp Canarias!

 

Apps científicas que no te puedes perder

Por Mar Gulis

Identificar árboles y setas en tus paseos por el campo, colaborar con proyectos científicos recogiendo datos o visitar virtualmente centros de investigación emblemáticos… Estas son solo algunas de las posibilidades que te ofrecen las apps desarrolladas por el Consejo Superior de Investigaciones Científicas (CSIC). Te las presentamos a continuación, para que sepas cómo acercarte a la ciencia desde tu móvil o tablet.

Si te gusta la naturaleza no te puedes perder dos apps imprescindibles para ir de excursión: Arbolapp, que te permitirá reconocer árboles silvestres de un modo sencillo e intuitivo; y FungiNote, que te ayudará a identificar hongos y compartir tus fotos y hallazgos con otros usuarios y usuarias.

Tigatrapp y Arbolapp

Tigatrapp y Arbolapp son dos de las aplicaciones móviles del CSIC más populares.

Los contenidos de ambas han sido desarrollados por el Real Jardín Botánico del CSIC pensando en todo tipo de públicos. Arbolapp contiene fotografías, mapas de distribución y descripciones de 118 de especies de árboles silvestres de la Península Ibérica y las Islas Baleares. En sus fichas podrás encontrar diversas curiosidades, como que La Gioconda está pintada sobre una tabla de álamo o que en el Antiguo Egipto se usaban los frutos del almendro para ajusticiar a los criminales.

¿Qué hongo es ese? ¿Es venenoso? ¿En qué otros lugares crece? Preguntas como esta son las que trata de responder FungiNote, una guía de campo que incluye información e imágenes sobre 150 especies. Todas ellas están ilustradas con fotografías que, en muchos casos, se complementan con dibujos botánicos de finales del siglo XVIII, el siglo XIX y principios del XX.

Otras apps del CSIC invitan a la ciudadanía a involucrarse directamente en proyectos de investigación. Es el caso de Tigatrapp, una aplicación que permite participar en el estudio y seguimiento del mosquito tigre, especie invasora que está considerada potencial transmisor de enfermedades víricas tropicales, como el dengue y la chikungunya.

Desarrollada por el Laboratorio de Ecología del Movimiento del Centro de Estudios Avanzados de Blanes del CSIC, esta app te enseña a reconocer al mosquito tigre y te permite compartir fotografías y datos de localización de los ejemplares y lugares de cría que vayas localizando. También puedes participar en misiones puntuales propuestas por el equipo científico.

De ciencia ciudadana también se ocupa SeabirdsTagram. Si te dedicas a la pesca por profesión u afición y quieres colaborar en el estudio de las aves marinas del Mediterráneo, puedes utilizar esta app para enviar fotografías cada vez que encuentres un ejemplar accidentado en tus redes. Tus datos serán de enorme utilidad para que los científicos del Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB) puedan estimar la tasa de mortalidad de aves amenazadas y evaluar el impacto de las capturas accidentales.

Otra opción es participar con tu móvil en el estudio del impacto del cambio climático en los encinares mediterráneos. A través de la app GeoODK, puedes evaluar el estado de los bosques de encinas que encuentres y enviar tu información a los investigadores del Museo Nacional de Ciencias Naturales.

Pero la cosa no queda aquí: si lo que quieres es hacer una visita virtual a los centros del CSIC con más historia y conocer los tesoros científicos que albergan en su interior, tienes a tu disposición las apps del Museo Nacional de Ciencias Naturales y del Real Jardín Botánico. Y si estás pensando visitar el Valle de Arán, no dudes en consultar Eth Holet, una aplicación en la que un duende mitológico te guiará por espacios naturales descritos por investigadores del CSIC. Por último, si lo tuyo es bucear en los restos del pasado, descárgate Arqueológicas, la versión para móviles del libro Arqueológicas: la razón perdida (Bellaterra, 2012), del investigador del CSIC Felipe Criado-Boado.

Te presentamos Arbolapp, una app gratuita para identificar árboles

FICHA ANDROIDok

Por Mar Gulis

¿Sabías que La Gioconda está pintada sobre una tabla de álamo? ¿O que los frutos del madroño contienen alcohol y su consumo excesivo puede provocar borracheras? ¿O que en el Antiguo Egipto se usaban los frutos del almendro para ajusticiar a los criminales? Estas son algunas de las curiosidades que recoge Arbolapp, una app con la que podrás identificar los árboles silvestres de la Península Ibérica y las Islas Baleares desde tu móvil. El lugar idóneo para utilizarla es el medio natural, así que si estás planeando una salida al campo, ahora tienes otro aliciente. Pero si no te mueves de casa, también puedes empezar a curiosear: Arbolapp ya se puede descargar gratuitamente en teléfonos Android o IOS.

Aunque su uso es muy intuitivo, vamos a dar algunas pistas. Esta app incluye información sobre 118 especies de árboles que pueblan bosques y demás hábitats naturales de la España peninsular, Portugal continental, Andorra y las Islas Baleares. A lo largo de 98 fichas encontrarás textos descriptivos, fotografías y curiosidades de arces, abedules, avellanos, higueras, fresnos, enebros, pinos, chopos… Además podrás acceder a mapas que te mostrarán en qué provincias está presente cada el árbol.

Para identificar una especie, puedes elegir entre dos tipos de búsqueda. Una guiada, en la que hay que escoger en sucesivas pantallas la alternativa que mejor describe el árbol que quieras reconocer; y otra abierta, que permite encontrar árboles por provincia, tipo de hoja, fruto, flor u otros criterios.

Fagus sylvatica, haya Felipe Castilla

Hojas de haya (Fagus sylvatica) / Felipe Castilla

Y si la botánica nunca ha sido tu punto fuerte, no te preocupes. Arbolapp está pensada para que cualquier usuario pueda manejarla, por eso utiliza un lenguaje asequible y cientos de fotografías y dibujos acompañan los textos para facilitar la comprensión. Eso sí, detrás de este proyecto está el trabajo de un equipo de personas pertenecientes al Área de Cultura Científica y al Real Jardín Botánico del CSIC, por lo que al afán divulgativo se une el rigor científico. Además, el proyecto ha sido cofinanciado por la Fundación Española para la Ciencia y la Tecnología (FECYT).

Una cosa más: la app está disponible en Google play y App Store tanto en castellano como en inglés. También cuenta con una página web (www.arbolapp.es) donde encontrarás más información sobre su uso y contenidos. ¿Te animas a probarla?