Ciencia para llevar Ciencia para llevar

CURIOSIDADES CIENTÍFICAS PARA COMPARTIR

Entradas etiquetadas como ‘universo’

El fondo cósmico de microondas, la fotografía más antigua del universo

Galaxia Andrómeda. / Robert Gendler.

Por Pablo Fernández de Salas (CSIC)*

Cuando miramos al cielo nocturno, la mayoría de lo que vemos es un manto negro con algunas estrellas dispersas. Por eso, siempre nos han dicho que el universo está prácticamente vacío.

Sin embargo, en el interior de una galaxia como la nuestra esto no es realmente cierto, ya que en el espacio que media entre las estrellas hay mucho polvo y nubes de gas molecular. Otra cosa distinta es lo que ocurre en el enorme espacio que por lo general separa las galaxias. Sin ir más lejos, Andrómeda, la galaxia más cercana a la Vía Láctea, se encuentra a nada menos que dos millones y medio de años luz. Si alguien nos enviara un mensaje desde allí, ¡tendríamos que esperar un mínimo de dos millones y medio de años para recibirlo! La cantidad de polvo y gas que hay en estas grandes distancias es ridículamente pequeña, y es por ello que decimos que el espacio intergaláctico se encuentra vacío. No obstante, estrictamente hablando, dicho espacio queda muy lejos de no contener nada.

Lo que llena el espacio intergaláctico está presente a lo largo y ancho de todo el universo. Se trata, principalmente, de fotones, las partículas que componen la luz. Comparten el espacio con otras partículas, como por ejemplo los neutrinos, pero los fotones son las más abundantes del universo. Concretamente, hay más de medio millón de fotones en el volumen que ocupa una botella de litro y medio en el ‘vacío’ cósmico. ¿Cómo es posible que, siendo fotones, no los veamos a simple vista?

Arno Penzias y Robert Woodrow Wilson bajo la antena que descubrió el fondo cósmico de microondas, en Holmdel, Nueva Jersey. / NASA.

La explicación la encontramos en su origen. Los fotones que pueblan el universo se conocen, en su conjunto, como el fondo cósmico de microondas, y son, además de los más abundantes del cosmos, también los más viejos. Proceden de una época en la que el universo tenía menos de medio millón de años. Trescientos ochenta mil años, siendo más precisos, frente a los casi catorce mil millones de años que tiene en la actualidad. ¡Apenas un día en la vida de un ser humano!

Estos fotones, creados cuando el universo era tan joven, sufrieron un proceso que se conoce con el nombre de desacoplamiento. Antes de que esto ocurriera, el cosmos era una especie de ‘sopa traslúcida’, conocida como plasma, en la que los fotones no duraban mucho, ya que se aniquilaban y creaban de nuevo sin descanso debido a sus frecuentes interacciones con electrones y núcleos de elementos ligeros. Sin embargo, cuando la temperatura descendió por debajo de los 3.000 grados, los electrones se hicieron suficientemente lentos como para que los núcleos los capturaran para formar átomos. Eso, a su vez, permitió que los fotones dejaran de chocar constantemente con esas partículas y pudieran emprender un viaje en solitario y en todas las direcciones hasta nuestros días.

satélite Planck

Representación artística del satélite Planck. /
ESA-AOES Medialab.

A lo largo de todos estos años que nos separan, estos fotones se han ido enfriando por culpa de la expansión del universo hasta alcanzar hoy una temperatura de 270 grados bajo cero. Paradójicamente, esto hace que calienten el universo, ya que si no estuvieran en todas partes la temperatura del cosmos se encontraría en el cero absoluto, a menos 273 grados.

Además de enfriarlos, la expansión del universo ha expandido la longitud de onda de estos fotones, por lo que ya no nos llegan en forma de luz –nuestros ojos no pueden verlos–, sino en forma de microondas –que no pueden ser ‘vistas’ pero sí detectadas–. La primera detección de este fondo cósmico de microondas fue realizada de forma más o menos fortuita por Arno Penzias y Robert Woodrow Wilson en 1964 con una descomunal antena. Ambos fueron galardonados con el Premio Nobel de Física.

Desde entonces la comunidad investigadora ha observado estos antiquísimos fotones con satélites como COBE, WMAP o Planck, y con experimentos situados en la superficie de la Tierra. Actualmente, la observación más precisa de las anisotropías del fondo cósmico se la debemos al satélite Planck, que tras cuatro años de operación nos ha permitido tomar la fotografía más antigua del universo.

Antisotropías

Anisotropías del fondo cósmico de microondas medidas por el satélite Planck. La fotografía más antigua del universo. / ESA-Planck Collaboration.

La imagen refleja las minúsculas variaciones –del orden de las cienmilésimas de grado– que existen entre estos fotones según la dirección de la que procedan. Estas pequeñas desviaciones, conocidas como anisotropías, constituyen una fuente de información maravillosa sobre nuestro universo, en especial en sus primeros años de vida. Por ejemplo, permiten estudiar las diferencias en la densidad del plasma cósmico cuando el universo tenía trescientos ochenta mil años, o características de los neutrinos y de la materia oscura ligadas con las propiedades estadísticas de dichas anisotropías, tareas que llevamos a cabo en el Instituto de Física Corpuscular (IFIC, centro mixto del CSIC y la Universidad de Valencia) con datos preliminares obtenidos por el satélite Planck.

 

* Pablo Fernández de Salas es investigador en el Instituto de Física Corpuscular (centro mixto del CSIC y la Universidad de Valencia).

¿Qué tiene que ver la gravedad con la vida en el universo?

Por Carlos Barceló Serón (CSIC)*

La gravitación, el fenómeno por el cual los objetos con masa se atraen entre sí, parece estar detrás de la vitalidad que muestra el universo, es decir, de su capacidad para generar vida.

Remolinos de polvo interestelar en la nebulosa del Águila captados por el telescopio Hubble. Son conocidos como los “pilares de la creación” de la nebulosa, por ser un lugar donde nacen estrellas. / NASA-ESA.

Así ocurre porque la vida tal como la conocemos requiere para su existencia de una gran variedad de elementos químicos. Para que esta complejidad química se haya producido, fue necesario formar primero un ecosistema de estrellas. Es en estos inmensos y potentes hornos donde se generaron los elementos químicos complejos (todos salvo los elementos primordiales generados en fases del universo temprano); incluido el carbono, que es fundamental en los compuestos orgánicos. Es más, algunos elementos pesados solo pudieron formarse en explosiones de tipo nova, supernova o en las colisiones de estrellas de neutrones.

Esto quiere decir que únicamente un medio suficientemente procesado por el nacimiento y muerte de generaciones de estrellas es un terreno abonado para la vida. Y la fuerza suprema responsable de la formación de estrellas es la gravedad. Es ella la que tiende a compactar la materia, aumentando su densidad hasta permitir las reacciones termonucleares responsables del enriquecimiento químico.

Sin embargo, existe otro aspecto todavía más importante que relaciona biología y gravedad, considerada una de las cuatro interacciones físicas fundamentales. Es el hecho de que la gravedad, a través de la generación de estrellas, abre una puerta entrópica en el universo.

¿Qué quiere decir esto? Para entenderlo, hay que saber que la entropía es un concepto fundamental en física de sistemas complejos (gases, fluidos, etc., en general, sistemas con muchos componentes). En la descripción propuesta por Ludwig Boltzmann, la entropía de un sistema es una medida de cómo de ordinaria es la configuración en la que se encuentra entre todas las configuraciones que el sistema podría adoptar. Todos los sistemas físicos conocidos satisfacen la segunda ley de la termodinámica, la cual nos dice que todo sistema evoluciona de lo singular a lo ordinario, es decir, que su entropía y su desorden siempre aumentan.

Restos de una explosión estelar en la nebulosa de Orión. /ALMA (ESO-NAOJ-NRAO), J. Bally-H. Drass et al., via Wikimedia Commons.

Sin embargo, la evolución biológica parece ir a primera vista en contra de esta ley, ya que aparentemente produce de forma progresiva estructuras más organizadas, más singulares. No obstante, esta violación es solo una apariencia y, de hecho, la segunda ley de la termodinámica no se vulnera aquí tampoco. Lo que sucede es que cada disminución de entropía de un sistema vivo se ve compensada con aumentos de entropía en otras partes del sistema total. Nosotros y todos los seres vivos consumimos energía empaquetada de forma singular para devolverla al sistema en forma ordinaria. Al contrario de la visión popular, no funcionamos a base de consumir energía como si de hacerla desaparecer se tratara; nuestros procesos vitales conservan la cantidad de energía. Funcionamos a base de desorganizar la energía. Para poder hacer esto necesitamos que haya fuentes de energía susceptibles de ser desorganizadas. Y un foco caliente –una estrella– en un universo frío proporciona precisamente esta situación.

Todo apunta a que el universo comenzó su andadura a partir de un estado extremadamente singular y que este hecho ha permitido que en la actualidad contenga tal riqueza estructural. Aunque la conexión exacta todavía se nos escape, deberíamos retener la idea de que la gravedad guarda la clave de lo que podría ser el más singular de todos los hechos: el nacimiento entrópico del universo.

 

* Carlos Barceló Serón es investigador del CSIC en el Instituto de Astrofísica de Andalucía, autor del libro de divulgación La gravedad (CSIC-Catarata) e impulsor del proyecto audiovisual ‘Territorio gravedad’.

El universo y lo que el ojo humano no ve… o sea, casi todo

Por Enrique Pérez Montero (CSIC)*

¿Qué hace una persona ciega estudiando el universo? Además de investigador en el Instituto de Astrofísica de Andalucía del CSIC, soy invidente. Tengo una enfermedad degenerativa de la retina llamada retinosis pigmentaria por la que he ido perdiendo visión, lo que hizo que me afiliara a la ONCE hace ya seis años. Quizá algunos piensen que esta limitación física me impide llevar a cabo mi profesión, pues podría parecer que el sentido de la vista es importante para percibir el universo, pero la realidad es que todos estamos casi igual de ciegos a lo que éste contiene. Eso es algo que hemos descubierto en el último siglo, en el que han aparecido telescopios cada vez mayores, cámaras fotográficas capaces de capturar imágenes imperceptibles a simple vista, detectores sensibles a la luz que el ojo humano no puede ver porque se encuentra en otras frecuencias distintas de la luz visible, como las ondas de radio o los rayos X. Todo ello ha hecho que hayamos descubierto cosas increíbles que hasta hace no tanto ni siquiera éramos capaces de imaginar.

Incluso el ser humano ha puesto en órbita sondas espaciales que pueden visitar otros planetas y satélites de nuestro sistema solar. También hemos lanzado al espacio observatorios que recopilan la luz que no puede atravesar la atmósfera terrestre.

Muchas de las cosas que sabemos del universo las conocemos porque hemos diseñado ojos artificiales que miran más allá de lo que nuestros ojos pueden llegar a ver. No obstante, el universo tiene muchas otras cosas que, ni siquiera con los últimos adelantos técnicos ni los más sensibles telescopios o detectores, podemos observar aún. Os voy a poner cinco ejemplos.

Asteroides. Nuestro sistema solar está plagado de innumerables cuerpos rocosos que son vestigio de la época en que una parte de la nube gaseosa que formó todo el sistema se condensó en pequeños fragmentos orbitando alrededor del Sol. Muchos de ellos se agruparon en objetos cada vez mayores que dieron lugar a los planetas y sus satélites, pero otros muchos siguen sueltos y, de vez en cuando, acaban colisionando contra los otros cuerpos mayores. Desde la Tierra los buscamos y los seguimos, pero la mayoría de los cuerpos más pequeños, de hasta 100 metros de diámetro, son aún una amenaza invisible para nosotros. El mayor riesgo lo constituyen aquellos que no reflejan la luz del sol hasta que no están muy cerca de nosotros para ser detectados, bien por su debilidad o bien por su posición. El uso de un telescopio infrarrojo situado en una órbita interior podría resolver en parte la escasez de recursos para hacer un censo más completo de estos cuerpos pero, mientras esto sucede, seguimos viajando alrededor del Sol entre un auténtico enjambre de estos bólidos.

Exoplanetas. Vivimos una etapa revolucionaria de la historia de la astronomía, ya que se ha roto una de las barreras observacionales más complicadas: la detección de planetas fuera de nuestro sistema solar. El telescopio espacial Kepler ya ha catalogado más de 2.000 y algunos de ellos tienen un tamaño similar al de nuestra Tierra, y podrían albergar vida. De todas maneras, no busquéis muchas imágenes de ellos porque nos las vais a encontrar. Los planetas extrasolares se detectan por la variación en el brillo de las estrellas o en el movimiento de éstas cuando los planetas pasan por delante de ellas. Habrá que esperar a las nuevas generaciones de telescopios gigantes que se construirán en la próxima década para poder verlos directamente.

Agujeros negros. Son uno de los misterios más grandes de la naturaleza. Según la teoría de la relatividad general de Albert Einstein, acumulan tanta masa en un volumen tan reducido que curvan el espacio y el tiempo de tal modo que ni siquiera la luz puede escapar de ellos porque el tiempo está congelado en su superficie. Se han podido detectar por la radiación que emite el gas antes de caer en ellos o por el movimiento peculiar de las estrellas que pasan cerca, pero no se sabe qué leyes físicas gobiernan lo que ocurre en su interior. Una manera prometedora de estudiarlos son las ondas gravitacionales, detectadas el año pasado en un observatorio especial llamado LIGO que mide las oscilaciones del espacio-tiempo que se propagan cuando una gran masa es acelerada. La sensibilidad de estos observatorios tiene que mejorar mucho aún, pero han abierto la puerta para poder mirar dentro de estos ‘monstruos’.

Recreación de las órbitas estelares alrededor de SgrA*, un candidato a agujero negro supermasivo en el centro de nuestra galaxia (Crédito: ESO).

Recreación de las órbitas estelares alrededor de SgrA*, un candidato a agujero negro supermasivo en el centro de nuestra galaxia./ ESO

Materia oscura. Su existencia solo es conocida porque es necesaria su presencia para explicar los movimientos de las estrellas en las galaxias y de las galaxias en los cúmulos de galaxias. También es imprescindible para entender cómo se curva la luz cuando viene propagándose desde las primeras etapas del universo y tiene que atravesar grandes distribuciones de masa. Al no interaccionar con la luz de ninguna otra manera no puede ser observada directamente, pero se calcula que es cuatro veces más abundante que todos los otros tipos de materia que conocemos y compone todo lo que podemos percibir. Todos los intentos realizados hasta ahora para descubrir de qué se trata han sido infructuosos y aún se desconoce por completo su naturaleza.

Mapa 3D de la Materia Oscura a través del análisis de datos del Hubble Space Telescope (Crédito: ESA; Richard Massey)

Mapa 3D de la materia oscura a través del análisis de datos del Hubble Space Telescope./ ESA; Richard Massey

Energía oscura. Para finalizar hablaré de la energía más misteriosa y, al mismo tiempo, la más abundante. Se estima que la energía oscura compone más del 70% del total de masa y energía del universo. Teniendo en cuenta que la mayoría del resto de masa es materia oscura, esto deja en apenas un 5% la cantidad relativa de la materia que conocemos. La energía oscura es de nuevo un requerimiento teórico para explicar por qué el universo está acelerando su movimiento de expansión después del Big Bang. Si no existiera, las galaxias irían frenando su movimiento de expansión y acabarían atrayéndose unas a otras hasta volver a unirse en una única singularidad. Sin embargo esto no ocurre así, lo que ha hecho postular a los teóricos la existencia de una fuerza repulsiva a gran distancia que haría que el universo siga expandiéndose sin fin.

La mayoría de todo lo que hay en el espacio, desde las más pequeñas escalas cerca de nuestro planeta hasta las más grandes, que dominan el movimiento de todo el espacio, está repleto de objetos desconocidos y aún por descubrir. Posiblemente acabemos conociendo lo que son con ayuda de nuestros ojos mejorados y nuestras mentes despiertas.

* Enrique Pérez Montero es investigador del CSIC en el Instituto de Astrofísica de Andalucía y fundador del proyecto Astronomía accesible.

 

Baade y Zwicky: la extraña pareja que descubrió las estrellas supernovas

autorPor Miguel A. Pérez Torres (CSIC)*

Si el director de cine Gene Saks hubiera decidido hacer una versión de la excelente comedia La extraña pareja (1968) protagonizada por científicos, sin duda habría escogido a Walter Baade en el papel de Félix (Jack Lemmon) y a Fritz Zwicky para el de Óscar (Walter Matthau).

Fritz Zwicky (Bulgaria 1898 – EE.UU. 1974), físico especialista en materia condensada, llegó al Instituto de Tecnología de California (el famoso CalTech) en los años veinte del siglo pasado, procedente de Suiza, donde se crió y cursó estudios universitarios. Era brillante y polifacético, pero su corrosiva y neurótica personalidad, así como su arrogancia sin límites, lo convirtieron en poco más que un bufón para muchos de sus colegas.

Pareja

Walter Baade (arriba) y Fritz Zwicky (abajo).

En una ocasión, en el colmo de la arrogancia, Zwicky llegó a afirmar que él y Galileo eran las dos únicas personas que sabían utilizar correctamente un telescopio. Un ejemplo de su bufonería neurótica estaba relacionado con el fanatismo que profesaba por el deporte. No era raro encontrarlo en el suelo del recibidor del comedor de CalTech haciendo flexiones con un solo brazo, demostrando así su virilidad ante cualquiera que, en su opinión, la hubiera puesto en duda.

Asimismo, era tan agresivo y sus modales tan intimidatorios que incluso su colaborador más cercano, Walter Baade (Alemania 1893 – 1960), el otro protagonista de este artículo, y que tenía una personalidad tranquila, llegó a negarse a que lo dejaran solo con Zwicky entre las cuatro paredes de un despacho. En un más que probable acceso de paranoia, Zwicky llegó a acusar a Baade de ser nazi, lo cual era completamente falso. Y, al menos en una ocasión, Zwicky amenazó con matar a Baade, que trabajaba en el observatorio de Mount Wilson, colina arriba de Caltech, si alguna vez lo veía en el campus de su instituto.

En fin, Zwicky era un científico que la mayoría no querría tener como compañero de despacho, pero cuya brillantez y colaboración con Baade iban a resultar fundamentales para explicar la aparición de unas estrellas extremadamente brillantes, y que habían traído de cabeza a los astrónomos durante décadas.

En marzo de 1934, Baade y Zwicky enviaron dos comunicaciones a la Academia de Ciencias de los Estados Unidos que marcarían un antes y un después en la astrofísica.

En la primera de esas comunicaciones, titulada ‘On Super-novae’, los autores proponían la existencia de un nuevo tipo de estrellas ‘nova’, las ‘super-novas’. Las novas, estrellas que aumentan su brillo enormemente durante periodos típicos de días o semanas, eran conocidas al menos desde el siglo anterior, y quizá por ello habían dejado de llamar la atención de los astrónomos. La aparición de una nova excepcionalmente brillante en la nebulosa de Andrómeda, en 1885, renovó el interés de los científicos por este tipo de astros. Sin embargo, nadie había logrado explicar satisfactoriamente este fenómeno.

En su trabajo, Baade y Zwicky proponían que las supernovas eran un fenómeno general en las nebulosas (en aquella época, el término ‘galaxias’ no estaba todavía asentado). Además, estas supernovas ocurrirían con mucha menor frecuencia que las novas, de ahí que se hubieran descubierto tan pocas.

Baade y Zwicky utilizaron como supernova-patrón el objeto descubierto en 1885 en la galaxia de Andrómeda, y calcularon que su luminosidad máxima debió de ser unas 70 millones de veces la de nuestro sol, compitiendo así con la luminosidad total de una galaxia. Posiblemente, esta colosal luminosidad fue decisiva para que propusieran el nombre de ‘super-novas’.

Supernova 1994D (punto brillante en la parte inferior derecha) captada por el teloscopio Hubble. / NASA-ESA-

Supernova 1994D (punto brillante en la parte inferior derecha) captada por el teloscopio Hubble. / NASA-ESA-

La pareja también estimó que la estrella tuvo que haber perdido una fracción significativa de su masa inicial, incluso varias veces la masa del sol. La conclusión principal del trabajo era que las supernovas representaban la transición de una estrella ordinaria a un objeto con una masa mucho menor. Aunque expresada con ciertas reservas, ya que la presencia de objetos como la supernova de 1885 en Andrómeda era todavía muy escasa, la hipótesis de Baade y Zwicky se vio plenamente confirmada por observaciones y estudios posteriores.

En la segunda comunicación, titulada explícitamente ‘Cosmic Rays From Super-Novae’, Baade y Zwicky sugerían que los rayos cósmicos se producían en las supernovas (¡cuya existencia habían propuesto en la página anterior!) y explicaban satisfactoriamente las observaciones de rayos cósmicos existentes en la época.

Estos resultados habrían bastado, por sí solos, para ganarse una reputación de por vida, como así fue por otra parte. Pero la pareja fue más allá en su segundo trabajo y, “con todas las reservas”, avanzó la hipótesis de que las supernovas representaban la transición de una estrella ordinaria a una estrella de neutrones.

Hay que tener en cuenta que James Chadwick había descubierto el neutrón apenas año y medio antes, en 1932. Baade y Zwicky entendieron que ese nuevo estado de la materia en las estrellas las haría estables, pero quisieron ser especialmente cautos. Solo así también se entiende que separaran sus resultados sobre las supernovas en dos comunicaciones, en lugar de publicarlas como un único artículo.

Son muy pocos los trabajos en astrofísica que, como estos de Baade y Zwicky, presentan tantos conceptos nuevos, incluso revolucionarios, al tiempo que dan con la solución a problemas que habían permanecido largo tiempo sin respuesta satisfactoria alguna. La presentación de estos resultados en dos breves, concisos y muy claros artículos, propició su rápida difusión, no sólo entre los astrofísicos, sino también entre el público en general.

Hoy día, todos los estudiantes de astrofísica aprenden en los libros de texto que la muerte de una estrella masiva da como resultado una supernova, que a su vez deja como remanente una estrella de neutrones (o quizá un agujero negro, como hoy sabemos). También aprenden que las supernovas representan la principal fuente de rayos cósmicos en el universo. Todo esto se lo debemos a los estudios pioneros realizados por Baade y Zwicky en los años 1930. Insisto, a “Baade y Zwicky”, ya que es muy habitual citar solamente a Zwicky como la persona que realizó estas gestas científicas, algo que posiblemente se deba a su peculiar personalidad, que contrastaba con la del tranquilo y caballeroso Baade.

 

* Miguel A. Pérez Torres es investigador del CSIC en el Instituto de Astrofísica de Andalucía.

El origen del universo: las tres grandes evidencias del Big Bang

AutorPor Alberto Fernández Soto (CSIC)*

Todo cambia: nosotros, otros seres vivos, la geografía de nuestro planeta, etc. El universo también evoluciona, aunque habitualmente lo hace en escalas de tiempo mucho mayores. Existen procesos, como la explosión de una supernova, que podemos observar en tiempo real. Pero además el cosmos cambia como un todo, y hace aproximadamente 13.800 millones de años conoció la mayor transformación que podemos imaginar: surgió de repente, de modo que la materia, la energía, e incluso el espacio y el tiempo aparecieron espontáneamente a partir de la nada en lo que hoy llamamos la ‘Gran Explosión.

Esta es una idea difícil de digerir, y como tal requiere evidencias muy sólidas que la apoyen. Tres son las grandes pruebas en que se basa:

  1. El universo se expande. Edwin Hubble observó hacia 1925 que las galaxias se alejan unas de otras a velocidades proporcionales a la distancia entre ellas. Georges Lemâitre había probado anteriormente que un universo en expansión representaba una solución válida de las ecuaciones de Einstein, aunque éste se había mostrado reticente (sus ecuaciones son correctas, pero su física es abominable, cuentan que le dijo). Si el cosmos se encuentra en expansión es fácil imaginar que en el pasado ocupaba un volumen mucho menor y, en el límite, un volumen nulo. Tal instante, en el que la temperatura y la densidad serían extremadamente altas, es lo que llamamos ‘Gran Explosión’ o ‘Big Bang’.
  1. La composición del universo es tres cuartos de hidrógeno y un cuarto de helio, los dos elementos más ligeros. Todo el resto de la tabla periódica, incluyendo los elementos que componen la mayor parte de nuestros cuerpos y nuestro planeta (silicio, aluminio, níquel, hierro, carbono, oxígeno, fósforo, nitrógeno, azufre…), representa aproximadamente el 2% de la masa total. Cuando hacia 1950 algunos físicos (entre ellos Fred Hoyle, William Fowler y el matrimonio formado por Geoff y Margaret Burbidge) entendieron por primera vez las ecuaciones que regían las reacciones nucleares en las estrellas, probaron que todos esos átomos ‘pesados’ habían nacido en los núcleos estelares. George Gamow, Ralph Alpher y Robert Herman aplicaron las mismas ecuaciones a la ‘sopa’ de partículas elementales que debería haber existido en los primeros instantes del universo, teniendo en cuenta su rápido proceso de enfriamiento. Dedujeron que, aproximadamente tres minutos después del instante inicial, la temperatura habría bajado lo suficiente como para frenar cualquier reacción nuclear, dejando un universo con las cantidades observadas de hidrógeno y helio.

    Arno Penzias y Robert Wilson en la antena de Holmdel (Bell Labs, Nueva Jersey) con la que descubrieron la radiación de fondo de microondas. / NASA.

    Arno Penzias y Robert Wilson en la antena de Holmdel (Bell Labs, Nueva Jersey) con la que descubrieron la radiación de fondo de microondas. / NASA.

  1. Si el universo nació en ese estado indescriptiblemente caliente y se ha ido enfriando, ¿cuál será su temperatura actual? Eso se preguntaban Robert Dicke, Jim Peebles, Peter Roll y David Wilkinson en Princeton a mediados de los sesenta. Antes de completar su antena para intentar medir esa temperatura, supieron por un colega que dos astrónomos de los cercanos laboratorios Bell, que utilizaban una gran antena de comunicaciones para medir la emisión de la Vía Láctea, detectaban un ruido de fondo que no conseguían eliminar. Arno Penzias y Robert Wilson habían descubierto, sin saberlo, la radiación de microondas causada por la temperatura de fondo2,7 grados Kelvin (aproximadamente menos 270 grados)– que constituye el eco actual de la Gran Explosión.

Otros resultados recientes, como la medida de la tasa de expansión del universo a partir de observaciones de supernovas (1998) o la detección de escalas ‘fósiles’ características en el agrupamiento de galaxias (2005), han permitido estimar con precisión los parámetros del modelo. Así, la edad del universo es 13.800 millones de años (con una precisión menor del 1%).

La evolución de la estructura del universo según una simulación por ordenador, en escalas de tiempo que cubren desde hace 12.800 millones de años (línea superior) al presente (línea inferior), y escalas de tamaño que van desde 325 (columna izquierda) a 50 millones de años-luz (columna derecha). / Millennium-II Simulation: M. Boylan-Kolchin et al. (Max Planck Institute for Astrophysics), Volker Springel (Heidelberg Institute for Theoretical Studies).

La evolución de la estructura del universo según una simulación por ordenador, en escalas de tiempo que cubren desde hace 12.800 millones de años (línea superior) al presente (línea inferior), y escalas de tamaño que van desde 325 (columna izquierda) a 50 millones de años-luz (columna derecha). / Millennium-II Simulation: M. Boylan-Kolchin et al. (Max Planck Institute for Astrophysics), Volker Springel (Heidelberg Institute for Theoretical Studies).

Eso sí, menos de un 5% del contenido del cosmos es la materia que estamos acostumbrados a ver. Existe otro tipo de materia del que hay una cantidad cuatro veces mayor que de materia normal –sólo notamos su efecto gravitatorio, y la llamamos ‘materia oscura–. Además una nueva componente, que llamamos ‘energía oscura a falta de un nombre mejor, representa casi un 75% del contenido del cosmos. ¿Su propiedad principal? Que genera una presión que se opone a la gravedad haciendo que el universo se encuentre en un proceso de expansión desbocada.

Hace 10.000 millones de años se formó nuestra galaxia, y nuestro sistema solar apareció solamente unos 5.000 millones de años atrás. En uno de sus planetas aparecieron hace casi 4.000 millones de años los primeros seres vivos: entes capaces de almacenar información genética, reproducirse y evolucionar. Tuvieron que pasar casi todos esos años para que, prácticamente ayer, apareciera una especie de primate capaz de observar el mundo a su alrededor, hacerse preguntas, y almacenar información de un nuevo modo: el instinto, el habla, la escritura, la cultura, la ciencia…

La cosmología observacional ha conseguido hoy responder a muchas preguntas que hace poco más de un siglo eran absolutamente inatacables para la física. No obstante un gran número de nuevos problemas se han abierto: ¿Qué es la materia oscura? ¿Cuál es la naturaleza de la energía oscura y cómo provoca la expansión? ¿Qué produjo la asimetría inicial entre materia y antimateria? ¿Tuvo el universo temprano una fase inflacionaria de crecimiento acelerado? Multitud de programas observacionales y esfuerzos teóricos y computacionales se dedican a intentar resolver estas cuestiones. Esperamos que al menos algunas de ellas tengan respuesta en los próximos años.

 

* Alberto Fernández Soto investiga en el Instituto de Física de Cantabria (CSIC-UC) y en la Unidad Asociada Observatori Astronòmic (UV-IFCA). Junto con Carlos Briones y José María Bermúdez de Castro, es autor de Orígenes: El universo, la vida, los humanos (Crítica).

El universo es un globo que se hincha a toda velocidad

Balloon-AnalogyPor Mar Gulis

Una de las mejores imágenes para representar la expansión del universo es la de un globo que se hincha. Si sobre la superficie de este globo marcamos previamente unos puntos con tinta, veremos que los puntos no se mueven con respecto al globo, sino que la ‘cantidad de globo’ entre ellos aumenta a medida que lo inflamos. En el caso de que pudiéramos anclar observadores en las marcas, estos verían cómo se alejan mutuamente entre sí a velocidades proporcionales a su distancia, por más que ellos no gasten ninguna energía en moverse.

Las galaxias se parecen a estos puntos: flotan como objetos inertes en el espacio, pero se alejan entre sí arrastradas por el propio crecimiento de la ‘cantidad’ de espacio. Por esta razón no se puede hablar de un centro del universo, como no se puede hablar de un país que esté en el centro de la superficie terrestre.

Resulta muy fácil observar marcas en un pequeño globo desde fuera, pero en el caso de nuestro universo estamos situados dentro de algo que, por lo demás, es enorme. ¿Por qué entonces sabemos que las galaxias se alejan entre sí?

Como explica el físico del CSIC José Luis Fernández Barbón, para entenderlo hay que tener en cuenta que en la teoría de Einstein una expansión del espacio conlleva un ‘estiramiento de las ondas de luz que lo atraviesan. En consecuencia, si intercambiamos señales de luz entre dos galaxias que se alejan, la longitud de onda en recepción tiene que ser mayor que en emisión. Cuanto más tiempo dura el viaje de los fotones, más estiramiento sufrirán.

Ondas

Este efecto se parece al cambio de agudo a grave en el sonido de un tren que pasa por nuestro lado a gran velocidad (el llamado efecto Doppler). En astronomía se llama corrimiento al rojo cosmológico, un concepto clave para determinar las distancias de las galaxias lejanas: cuanto más rojas se ven, más lejos están y más rápido van. Esto es así porque en el espectro visible el rojo se corresponde con mayores longitudes de onda.

Corrimiento al rojo

Cuanto más lejos están las galaxias (eje vertical), mayor es la longitud de onda medida en nanómetros (eje horizontal) y, por tanto, más rojo se aprecia su espectro.

Estudiando el espectro de las galaxias podemos deducir a qué velocidades se alejan. Si nos fijamos en el cúmulo de Virgo, a una distancia media de 50 millones de años luz, veremos que todas se alejan de nosotros a velocidades entre 1.000 y 2.000 kilómetros por segundo. Y en el supercúmulo de Coma Berenice, a 300 millones de años luz, las velocidades oscilan entre 7.000 y 8.500 por segundo.

El corrimiento al rojo cosmológico ocurre con todas las galaxias, salvo las situadas en nuestro cúmulo local, como Andrómeda. En este caso, el desplazamiento del espectro se produce hacia el azul, lo cual quiere decir que, en lugar de alejarse, se acerca a nosotros a una velocidad de 60 kilómetros por segundo. Eso significa que dentro de 4.000 millones de años Andrómeda y la Vía Láctea se fusionarán, pero eso es otra historia…

 

Si quieres más ciencia para llevar sobre la expansión del universo y el corrimiento al rojo consulta el libro Los agujeros negros (CSIC-Catara), de José Luis Fernández Barbón, la web de divulgación sobre astronomía NASE y la web de Henrietta Leavitt del Instituto Astrofísico de Andalucía (CSIC).

¿Qué pasará si el universo no frena su expansión?

AutorPor José Luis Fernández Barbón (CSIC)*

El universo se expande, sí, pero ahora sabemos que lo hace de forma acelerada. Todas las galaxias lejanas se escapan de nosotros más rápido que las cercanas, pero además lo hacen hoy más deprisa que ayer. Esto significa que, de seguir así, todas ellas acabarán por aproximarse a la velocidad de la luz, y también que hay galaxias en el universo cuya luz nunca llegará hasta nosotros. Aunque esperemos una eternidad, la fabricación constante de espacio entre medias impide que los fotones puedan completar el viaje.

Universo lejano

Campo ultraprofundo del Telescopio Hubble. La imagen recoge una colección de galaxias de las más distantes que se han logrado observar. / NASA,
ESA, S. Beckwith (STScI) y HUDF Team

Todas las consideraciones nos dicen que, en un espacio-tiempo en expansión acelerada como el que parece corresponder a nuestro universo, debe existir un horizonte de sucesos cosmológico. Desde nuestro punto de vista, ese horizonte se ve como una gigantesca esfera negra con un tamaño de unas 20.000 veces la distancia que nos separa de la galaxia de Andrómeda. Lo que sucede más allá de este horizonte siempre estará fuera del alcance de nuestros instrumentos.

Bajo la hipótesis de que la expansión acelerada se mantenga eternamente, acabaremos por tener a todas las galaxias lejanas congeladas sobre nuestro horizonte cosmológico, cada vez más tenues, hasta que los fotones de su luz sean tan débiles que no los podamos detectar. En este caso, la astronomía será poco interesante para nuestros descendientes.

Para ellos, después de fusionarse con Andrómeda, la Vía Láctea parecerá una isla solitaria en el centro de un universo vacío. Resultaría irónico que una visión ‘galactocéntrica’ acabara por imponerse miles de millones de años después de que el geocentrismo griego hubiera sido relegado por la historia. Si así fuera, vivimos en una época privilegiada, una época en la que todavía podemos echar la vista atrás y divisar las reliquias del Big Bang.

 

* José Luis Fernández Barbón es investigador del CSIC en el Instituto de Física Teórica (CSIC-UAM) y autor del libro Los agujeros negros (CSIC-Catarata).

¿Queda algo por contar sobre los agujeros negros?

M. Villar

Por Montserrat Villar (CSIC)*

Se ha hablado y escrito tanto sobre los agujeros negros que, quizás, se podría pensar que es difícil contar algo nuevo e interesante. Sin embargo, hay motivos para afirmar sin dudarlo que aún queda mucho por decir sobre ellos.

Imagen generada por ordenador. Ilustra la distorsión visual que observaríamos en las proximidades de un agujero negro debida a los efectos de la gravedad. / Alain Riazuelo

Imagen generada por ordenador. Ilustra la distorsión visual que observaríamos en las proximidades de un agujero negro debida a los efectos de la gravedad. / Alain Riazuelo

Los agujeros negros siguen siendo objetos misteriosos. Según las ecuaciones de la teoría de la relatividad general de Einstein (enunciada hace unos cien años), toda la masa de un agujero negro está contenida en una zona infinitamente pequeña, no ocupa espacio en absoluto. Se trata de algo tan extraño que desde su predicción, y aún hoy, sigue desafiando a las mentes más brillantes. El propio Einstein afirmó que, aunque la teoría predijera su existencia, no podría haber objetos tan exóticos en el mundo real. Hoy todo parece indicar que existen. Es más, son algo común en el universo.

Contamos con dos teorías exitosas cuando se aplican por separado. Una de ellas es la teoría de Einstein que acabo de mencionar. Da cuenta de manera sublime de la forma en que la gravedad ejerce influencia sobre el movimiento de los planetas, estrellas y galaxias. Describe el mundo de las distancias enormes y las masas gigantescas. Pero no explica, por otro lado, el mundo en las escalas más pequeñas, el de los átomos y las partículas que los forman, aquel en que las masas son diminutas y la gravedad despreciable. Para ello contamos con una teoría diferente y también maravillosa: la mecánica cuántica, que describe cómo funciona la naturaleza en el nivel más fundamental. A su vez, no puede explicar la gravedad, que funciona en escalas de espacio y masas mucho mayores. Ambas teorías, por tanto, aportan visiones parciales de la realidad.

Los intentos de combinar la mecánica cuántica y la teoría de la relatividad general de Eintein se engloban en la llamada teoría de la gravedad cuántica. / CERN

Los intentos de combinar la mecánica cuántica y la teoría de la relatividad
general de Einstein se engloban en la llamada teoría de la gravedad cuántica. / CERN

En general, la mecánica cuántica y la relatividad general no entran en conflicto porque actúan en ámbitos en apariencia independientes. Sin embargo, existe un escenario en el que ambas deberían ser aplicables: allí donde el tamaño es muy pequeño y la masa gigantesca: los agujeros negros. Pues bien, aquí ambas teorías son incompatibles.

Hay miles de millones de agujeros negros en el universo y, por tanto, miles de millones de lugares donde dos teorías magníficas por separado, dejan de funcionar. Los esfuerzos que durante décadas se han dedicado a formular una teoría (la llamada gravedad cuántica) que unifique la relatividad general y la mecánica cuántica no han logrado el objetivo hasta el momento. Las dificultades son enormes, desde incertidumbres conceptuales en cuanto al tratamiento del espacio y del tiempo, hasta los obstáculos inherentes al diseño de experimentos y observaciones (particularmente en el área de la astronomía, en concreto la cosmología) y, por consiguiente, la escasez de datos que permitan poner a prueba los posibles avances teóricos. ¿Cómo pueden coexistir ambas teorías? No hay muchas preguntas que representen un reto tan grande para el pensamiento científico y filosófico.

Los agujeros negros seguirán dando que hablar durante mucho tiempo, porque son un símbolo de lo que no entendemos y porque son enigmáticos y complicados. El desafío de comprenderlos es formidable y, como consecuencia, mayor es su atractivo.

 

* Montserrat Villar es investigadora en el Centro de Astrobiología (INTA/CSIC) en el grupo de Astrofísica extragaláctica.

Física cuántica en Navidad

Por Ángel S. Sanz (CSIC)*

Ciencia en Navidad 2014

‘Ciencia en Navidad’ es un proyecto del CSIC inspirado en las ‘Christmas Lectures’ y desarrollado con el apoyo de la FECYT.

Últimamente, y cada vez más, los medios de comunicación hablan de física (o mecánica) cuántica. Y cuando se escucha este término, no podemos por menos que echarnos las manos a la cabeza pensando que se trata de una teoría altamente compleja e ininteligible, sólo apta para unos pocos, capaces de entender su lenguaje matemático y los misterios que encierra.

Hace un par de años, a raíz del descubrimiento del bosón de Higgs (pieza clave en el puzle de partículas elementales que es el modelo estándar), la física cuántica saltó a primera línea y, desde entonces, las conferencias en torno a esta temática comenzaron a popularizarse. La física cuántica está de moda. Pero, ¿qué sabemos en realidad de esta teoría? ¿Es tan compleja e ininteligible como se nos presenta o, por el contrario, nos resulta simplemente absurda? ¿Cómo es posible esta situación de incertidumbre si una gran parte del producto interior bruto de los países industrializados está directa o indirectamente basado en la física cuántica?

El bosón de Higgs ha sido la última partícula que se ha descubierto, pero ése es un viaje que ha trazado la Humanidad desde los tiempos de Demócrito, cuando se debatía si la materia era continua o, por el contrario, estaba constituida de pequeñas partes, los átomos. Precisamente, una vez se comprendió que la materia parecía estar constituida por átomos, el siguiente paso fue intentar entender cómo eran posibles, es decir, atacar lo que se conoce como el problema de la estabilidad de la materia, que engloba además una serie de cuestiones inabordables con las teorías físicas del siglo XIX. Este sería el germen de la mecánica cuántica, que comenzó explicando el átomo de hidrógeno y la tabla periódica, y finalizó con el bosón de Higgs. Aunque hay que tener en cuenta que la física cuántica es mucho más, porque al mismo tiempo que nos explica la estabilidad de la materia, también nos dice que el mundo es mucho más rico en matices de lo que estamos habituados a percibir en la vida cotidiana. Esto es, un sistema cuántico puede ser localizado en varios lugares al mismo tiempo, lo que el físico austríaco Erwin Schrödinger ilustró con la vívida idea de que un gato metido dentro de una caja, y cuya vida está sometida al capricho de la desintegración de un pedazo de sustancia radiactiva, estará vivo y muerto al mismo tiempo.

Ciencia en Navidad 2014

‘¿Qué tienen que ver los gatos con el bosón de Higgs?’, el 22 de diciembre a las 18h.

En la Navidad de 1825, el físico autodidacta inglés Michael Faraday lanzó desde la Royal Institution una serie de conferencias anuales, las Christmas Lectures®, en las que se presentaba y explicaba al gran público avances en las diferentes disciplinas científicas de interés de la época. Salvo por la interrupción de cuatro ediciones debida a los bombardeos de Londres durante la Segunda Guerra Mundial, esta tradición se ha mantenido vigente hasta la actualidad.

¿Y por qué les cuento todo esto? Recogiendo ahora el guante de Faraday, por un lado, y ese interés por el misterioso mundo cuántico, por otro, este año se pretende lanzar desde el CSIC la primera experiencia en esa línea, un proyecto ilusionante e ilusionador, que ayude a acercar la ciencia a la sociedad de una manera muy amena, sencilla y, sobre todo, humana.

El propósito de la primera conferencia (¡no al uso!) de ‘Ciencia en Navidad’ es introducir la física cuántica al público general. Se trata de que el público comprenda que la base de la física cuántica es relativamente simple y que, cuando mire a la pantalla de su televisor, toque la pantalla de su móvil, encienda sus leds navideños o simplemente se mire al espejo, recuerde que en todo ello hay un gato que está vivo y muerto a la vez, o que los electrones que hay en esos dispositivos alguna vez, en el pasado, adquirieron su diminuta masa gracias a un bosón de Higgs.

* Ángel S. Sanz es investigador en el Instituto de Física Fundamental (CSIC) y va a inaugurar ‘Ciencia en Navidad’ con la sesión “¿Qué tienen que ver los gatos con el bosón de Higgs?”, que se celebrará el lunes 22 de diciembre a las 18h en el Salón de actos del CSIC (c/ Serrano, 117, Madrid). Entrada libre y gratuita.

Athena, un invento para ver el universo con rayos x

Por Agustín Camón (CSIC)*

Cuando observamos el cielo en una noche estrellada no solemos reparar en todo lo que no vemos. Olvidamos que hay muchas cosas que se le escapan a nuestra retina. Pensar que en esos instantes estamos viendo ‘todo’ es tan absurdo como pensar que por haber oído una emisora de radio ya hemos escuchado todas. La luz, la radio, los rayos X o las microondas, todo es lo mismo, radiación electromagnética. La diferencia, al igual que entre las distintas emisoras, es la frecuencia.

Nuestros ojos son sensores capaces de detectar frecuencias un millón de veces más altas que las de la radio, pero solo en un determinado rango. Si la frecuencia se hace demasiado grande ya no podemos ver la luz; es lo que llamamos el ultravioleta. Lo mismo ocurre si la frecuencia es demasiado baja; en ese caso hablamos del infrarrojo. Así pues, nuestros ojos son como un aparato de radio que puede ‘ver’ las emisoras que van desde el infrarrojo al ultravioleta. Cada una de esas frecuencias intermedias es interpretada por nuestro cerebro como un color, creando por ejemplo el maravilloso espectáculo del cielo nocturno. Pero nos estamos perdiendo todas las frecuencias que no vemos. ¿Cómo sería una noche estrellada si pudiéramos ver el infrarrojo o los rayos X?

    De arriba a abajo, la Vía Láctea a las distintas frecuencias: radio (las cuatro primeras franjas), infrarrojo, infrarrojo medio, infrarrojo cercano, rango visible (u óptico), ustravioleta, rayos X y rayos gamma / NASA

De arriba a abajo, la Vía Láctea a las distintas frecuencias: radio (las cuatro primeras franjas), infrarrojo, infrarrojo medio, infrarrojo cercano, rango visible (u óptico), ustravioleta, rayos X y rayos gamma / NASA

 

Es lo que la NASA ha querido mostrar con esta imagen, donde vemos La Vía Láctea a las distintas frecuencias. Fijaos, por ejemplo, en que lo que en el visible son nubes negras, en el infrarrojo emiten gran cantidad de luz. Son nubes de gas y polvo que no dejan pasar la luz visible pero que, al estar calientes, emiten en el infrarrojo.

Junto con otros laboratorios europeos y españoles, en el Instituto de Ciencias de Materiales de Aragón un grupo de investigadores estamos desarrollando nuevos sensores de rayos X que se utilizarán en ATHENA, un telescopio que la Agencia Espacial Europea lanzará al espacio en 2028. Este telescopio nos permitirá mirar al universo con otros ojos o, siguiendo el símil de la radio, escuchar otra emisora, la que nos hablará de los procesos más violentos y energéticos que tienen lugar en el cosmos: el Big Bang, los agujeros negros, la formación de las estrellas y las galaxias…

Y así no nos perderemos nada.

 

* Agustín Camón es investigador del CSIC en el Instituto de Ciencia de Materiales de Aragón.