Archivo de junio, 2023

Proteínas recombinantes: una historia de mutantes zombis al servicio de la ciencia

Por María Zapata Cruz, Laura Tomás Gallardo y Alejandro Díaz Moscoso (CSIC)*

Las proteínas son las moléculas que más funciones diferentes desempeñan en los seres vivos. Entre muchas otras cosas, forman nuestros órganos y tejidos, como hace el colágeno; refuerzan nuestras defensas en forma de anticuerpos; y realizan el metabolismo, como las enzimas que transforman los nutrientes en energía y en otras moléculas necesarias para la vida.

Además, las proteínas resultan muy útiles fuera del organismo: la prueba PCR (Reacción en cadena de la Polimerasa), que se hizo famosa durante la pandemia de COVID-19, o las herramientas de edición genética CRISPR-Cas, conocidas como ‘tijeras moleculares’, basan su funcionamiento en estos ingredientes básicos de la vida. Y lo mismo ocurre con medicamentos como la insulina y algunas vacunas.

Por todo ello, fabricar proteínas despierta un gran interés científico e industrial. Necesitamos producirlas para hacer funcionar esas aplicaciones y para analizar su comportamiento en condiciones controladas, algo que hacemos en el Centro Andaluz de Biología del Desarrollo con el objetivo de conocer mejor su funcionamiento.

Sin embargo, crear una proteína en el laboratorio enlazando uno a uno los aminoácidos que la componen puede resultar muy lento y laborioso: en cada proteína se suelen unir cientos de estas moléculas formando una cadena. Una solución muy práctica para obtener proteínas es ‘secuestrar’ la maquinaria natural de las células para que hagan el trabajo, es decir, conseguir células que fabriquen las proteínas que nos interesan.

Domesticando bacterias

Vamos a explicar este procedimiento con algo más de detalle. Para ello, necesitamos saber que las instrucciones para fabricar una proteína se encuentran en el ADN. En el código genético, hay un gen con las indicaciones para crear cada proteína uniendo de una forma determinada los veinte tipos de aminoácidos que existen en la naturaleza.

Los aminoácidos se unen unos a otros químicamente mediante un ‘enlace peptídico’. Podríamos plantearnos tener veinte botes en el laboratorio, cada uno con un aminoácido distinto, e ir uniéndolos según nos indique el gen correspondiente para fabricar la proteína que nos interesa. Pero, como veíamos, los seres vivos poseen una maquinaria celular mucho más eficaz para formar estos enlaces.

Se pueden utilizar distintos tipos de células para fabricar proteínas, pero la más popular entre los científicos es, sin duda, Escherichia coli, una bacteria que vive de forma natural en el intestino de los seres humanos y otros animales sanos. En las últimas décadas, hemos aprendido a criar esta bacteria en el laboratorio y ha resultado ser una ‘mascota’ muy agradecida que, además, es muy fácil de cuidar.

Puede vivir en un rango amplio de temperaturas; incluso permanecer congelada durante largos periodos de tiempo y después recuperar su actividad normal como si nada. Además, su alimentación es muy barata y crece muy rápido, tanto que es capaz de duplicarse en apenas veinte minutos, lo que permite tener un ‘ejército’ de millones de bacterias en un solo día.

Pero lo más importante es que también hemos aprendido a introducir genes de otros seres vivos en Escherichia coli de forma muy sencilla (lo que se conoce como ‘ADN recombinante’). Esto permite meter en la bacteria un gen con las instrucciones para fabricar una proteína de cualquier otro ser vivo, es decir, crear un mutante.

Da igual si el gen es de otra bacteria, de un pez, una mosca, un ratón, una planta, un lobo o un ser humano. Como las bases moleculares de la vida, el lenguaje del ADN y la síntesis de proteínas son iguales en todos los seres vivos de este planeta, la maquinaria de las bacterias es capaz de construir cualquier cadena de aminoácidos (proteína) independientemente de su origen genético.

Sin embargo, no todo es tan sencillo. Por muy pequeñas que sean, las bacterias no son tontas y no se van a poner a sintetizar, así por las buenas, una proteína extraña que no les sirve para nada o que incluso podría hacerles daño. Para resolver este problema, los investigadores han conseguido bacterias capaces de leer el gen de interés solo cuando queremos que lo lean.

Añadiendo una sustancia específica al cultivo de bacterias, estas pierden parcialmente el control de sus actos y empiezan a fabricar la proteína que queremos como si en ello les fuese la vida. Y así es como conseguimos tener un ejército de bacterias mutantes y zombis que realiza el duro trabajo de fabricar la proteína que nos interesa.

Placas de cultivo con distintas bacterias mutantes. Cada puntito blanco es una colonia de bacterias compuesta por millones de células que ha crecido a partir de una sola célula.

¿Y qué hay de lo mío?

Finalmente, hay un último problema que resolver. La gran mayoría de las veces, producir una sola proteína extraña no es suficiente para que las bacterias cambien de aspecto. No les salen alas, ni garras, ni ojos, ni nada que nos permita distinguirlas. A simple vista, una bacteria normal y una bacteria mutante son exactamente iguales. Para saber si nuestras bacterias mutantes han fabricado la proteína que queríamos, hay que destruir las bacterias y ver si, entre toda la mezcla de proteínas que normalmente fabrican para vivir, se encuentra la nueva.

Se pueden utilizar distintas características que nos permitan distinguir unas proteínas de otras en esta mezcla. Una de las características más utilizadas es su tamaño. En cualquier célula podemos encontrar proteínas desde muy grandes hasta muy pequeñas, según lo larga que sea la cadena de aminoácidos que las forman. Y como la secuencia de aminoácidos de la proteína que nos interesa la podemos conocer a partir del gen que previamente hemos introducido en las bacterias, podemos calcular el tamaño que tendrá.

Para separar las proteínas por su tamaño, utilizamos una técnica llamada ‘electroforesis’. Etimológicamente, este término proviene de la unión de los vocablos ‘electro-’, que hace referencia al uso de electricidad, y ‘-foresis’, que en griego significa ‘transporte’. La técnica consiste en poner la mezcla de proteínas en un medio que hace que adquieran carga negativa. Después, se aplica una corriente eléctrica a la mezcla que hace que las proteínas cargadas negativamente se desplacen a un polo positivo (ánodo).

En su camino, las obligamos a pasar por un gel que forma una red de microtúneles. Al encontrarse con este obstáculo, las proteínas pequeñas serán capaces de avanzar mucho más rápido que las grandes, que se irán quedando retrasadas. Más retrasadas cuanto más grandes sean. Así, al cortar la corriente eléctrica y ver el resultado de la ‘carrera’, observaremos bandas que corresponden a proteínas de distintos tamaños. Las más pequeñas cerca del polo positivo y las más grandes cerca del punto de partida.

Comparando el patrón de bandas de bacterias naturales con el de bacterias mutantes, deberíamos poder ver una única diferencia. Una proteína que esté en la mezcla de bacterias mutantes, que no esté en las naturales y que tenga el tamaño calculado para la proteína que nos interesa. Si es así, ¡¡premio!!, habremos conseguido que las bacterias mutantes zombies fabriquen la proteína que necesitábamos.

Ejemplos de electroforesis de proteínas. Cada una tiene 3 carriles: uno con una muestra de referencia de tamaños (Ref), otro con la mezcla de bacterias naturales (Nat) y otro con la mezcla de bacterias mutantes (Mut). La proteína nueva se indica con una flecha.

* María Zapata Cruz, Laura Tomás Gallardo y Alejandro Díaz Moscoso son el equipo técnico de la Plataforma de Proteómica y Bioquímica del Centro Andaluz de Biología del Desarrollo, centro mixto del CSIC y la Universidad Pablo de Olavide de Sevilla.

Fasciolosis, la enfermedad que afecta al ganado y, cada vez más, a las personas

Por Marta López García* (CSIC)

Afirmar que los parásitos son fascinantes no solo es atrevido, sino que es poco frecuente. Solemos verlos como seres dañinos y nos produce rechazo escuchar la palabra. Sin embargo, desde un punto de vista científico, los parásitos son seres increíbles porque tienen una gran diversidad de formas de vida y sus adaptaciones les permiten vivir dentro de otros organismos (hospedadores). Y esta asombrosa capacidad de moverse entre los hospedadores para asegurar su supervivencia es lo que les hace fascinantes en términos biológicos.

Desde el Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC) se trabaja para frenar esta enfermedad

Sin embargo, los parásitos también pueden tener consecuencias muy negativas para la salud y el bienestar del ser humano y los animales. Por eso, conocer su compleja biología supone un gran reto científico en la actualidad. Ante su elevada prevalencia global es necesario desarrollar herramientas de prevención y control frente a ellos.

En este sentido, desde el Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), trabajamos para frenar la fasciolosis. Esta enfermedad, causada por gusanos del género Fasciola, especialmente Fasciola hepatica, afecta principalmente al ganado ovino y bovino. Tiene una alta prevalencia en Castilla y León, al estar presente hasta en el 50% del ganado. Además, puede infectar a los seres humanos y, de hecho, es considerada una enfermedad emergente porque se encuentra en más de 2,5 millones de personas y 17 millones están en riesgo de infección.

La relación entre ‘Fasciola hepatica’ y hospedador

Fasciola hepatica es el protagonista de nuestra investigación. Se trata de un gusano plano, con forma de punta de lanza, que puede medir hasta 5 cm de largo y 1,5 de ancho cuando es adulto. Trabajamos para conocer las bases moleculares que rigen la infección del parásito dentro del hospedador vertebrado.

Tras ingerir el hospedador alimentos o agua contaminados con las formas infectivas de Fasciola hepatica (formas larvales denominadas metacercarias) se inicia la infección. Cuando estas alcanzan el intestino, salen del quiste como gusanos juveniles y son capaces de atravesar la pared del intestino delgado hasta la cavidad peritoneal, donde inician una compleja ruta de migración hasta el hígado. Allí se mantienen durante mucho tiempo creciendo al alimentarse del tejido hepático. Finalmente llegan a la vesícula biliar, donde se convierten en parásitos adultos y liberan huevos al medio ambiente, a través de las heces del animal, para completar su ciclo de vida.

La patología asociada a la enfermedad se relaciona con la presencia de los parásitos en el hígado. A medida que se alimentan del parénquima hepático (el componente del hígado que filtra la sangre para eliminar las toxinas) pueden causar inflamación y daño en el hígado con síntomas como dolor abdominal, diarrea, fiebre, pérdida de peso y, en los casos más graves, hepatitis, fibrosis y cirrosis. Aunque las infecciones en humanos suelen ser menos comunes que en el ganado, pueden ser graves si no se tratan adecuadamente. En cuanto a las perspectivas de tratamiento, existen medicamentos antiparasitarios, como el triclabendazol para tratarla tanto en seres humanos como en ganado. Sin embargo, cada vez se muestran más indicios de resistencia del parásito, por lo que disminuye la eficacia de este fármaco. Por la complejidad del ciclo biológico del parásito y su inminente resistencia a los fármacos necesitamos nuevas herramientas de control como las vacunas. Desde el laboratorio, tratamos de replicar el ciclo de vida de Fasciola hepatica para desentrañar las moléculas clave que utiliza durante su infección. Esto nos permite conocer qué molécula podría ser una buena candidata para desarrollar una vacuna en los animales frente a la fasciolosis.

Fasciola hepatica afecta principalmente al ganado ovino y bovino / Máximo López Sanz

Sin embargo, como en muchas enfermedades infecciosas, la prevención sigue siendo la clave y es necesario promover prácticas adecuadas de higiene (evitar la ingestión de alimentos y agua contaminada) para reducir la exposición a los parásitos y combatir así la enfermedad.

Como hemos visto, los parásitos son organismos fascinantes que han coexistido con el ser humano desde tiempos inmemoriales, en este caso a través de uno de sus principales sustentos: el ganado. Los estudios sobre los parásitos nos ofrecen una valiosa información sobre la biología y la evolución de sus hospedadores. Por ello, aunque los parásitos no son organismos bienvenidos, sin lugar a duda, nos brindan un gran conocimiento sobre las complejidades de la vida en nuestro planeta.

 

*Marta López García es investigadora del Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC).  

 

¿Cómo sobreviven más de 100 especies diferentes en un solo metro cuadrado?

Por Ignasi Bartomeus (CSIC)*

 

En medio del Parque Natural de Doñana, en Andalucía, hay una pradera con decenas de especies de plantas que rivalizan por atraer a los muchos insectos polinizadores que revolotean por la zona: abejas, moscas, dípteros y hasta escarabajos de diversas clases. Estas plantas también sufren en silencio las mordidas de otros invertebrados que buscan alimento, como los caracoles, las orugas o las chinches. Es la finca Caracoles, que alberga una diversidad única en la que conviven cientos de especies diferentes por metro cuadrado (sin tener en cuenta microorganismos). Y no lo tienen fácil, porque la finca se inunda cada año de forma natural y tiene niveles de salinidad elevados, así que tienen que estar adaptadas a unas condiciones bastante duras. Cómo sobreviven todas esas especies en este espacio es una de las preguntas claves de la ecología.

Imagen de la Finca Caracoles, en el Parque Nacional de Doñana

No sería de extrañar que las mejor adaptadas fueran muy competitivas y desplazaran a las que son peores competidoras, un caso en el que encontraríamos tan solo una o muy pocas especies dominando la pradera. Por el contrario, podríamos preguntarnos por qué, en vez de cientos de especies, no encontramos miles o millones conviviendo en ese espacio.

La teoría ecológica postula que la persistencia de las especies en las comunidades ecológicas está determinada por las interacciones. Es decir, el complejo balance entre quién come a quién, quién ayuda a quién y quién compite con quién determina cuáles podrán coexistir y cuáles no. En la finca Caracoles, investigadores e investigadoras de la Estación Biológica de Doñana del CSIC y de la Universidad de Cádiz hemos medido todas estas relaciones a lo largo de los últimos años, observando una red de interacciones complejas entre cientos de especies. Por ejemplo, la camomila silvestre es una planta bastante abundante en la zona que compite con otras plantas, es polinizada por pequeñas moscas y sus hojas son comidas por orugas. Sin embargo, otras plantas como los melilotus (tréboles de olor) son polinizadas por abejas, y comidas principalmente por caracoles.

Bombus lapidarius sobre Melilotus officinalis (Tallinn) / Ivar Leidus

Con estos datos hemos descubierto que, si estas interacciones fueran al azar, muy pocas especies sobrevivirían. Pero esta red de interacciones tiene una estructura muy precisa que permite que sobrevivan. Para poner un símil, imaginaos que colocamos dentro de una caja unos diodos, un transformador, una antena y algún led y que los conectamos al azar con cables. Es altamente improbable que logremos crear una radio. De todas las conexiones posibles que podríamos hacer, solo una configuración muy precisa de estos componentes dará como resultado una radio funcional. Con la naturaleza pasa lo mismo, solo ciertas estructuras de interacciones entre plantas y animales funcionan y son estables.

¿Cuáles son estas estructuras estables? La primera es que las especies han de competir con ellas mismas más que con las otras. Es decir, que cuando crecen mucho en abundancia y hay muchos individuos de una especie se entorpecen a sí mismas. La segunda, es que se reparten los recursos entre especies, en vez de solaparse en su uso. Esto es similar a lo que pasa con las empresas, que se especializan en vender un producto concreto y se intentan diferenciar de lo que hacen otras lo máximo posible para evitar competir directamente.

Este resultado no es intuitivo. Los primeros ecólogos que empezaron a diseccionar estómagos de aves a mediados del siglo XIX observaron que algunos años las aves comían mucho de algo y otros años de otra cosa, así que hipotetizaron que cuanta mayor sea la diversidad de alimento disponible más estable serían las comunidades de aves, que podrían variar de alimentación en función de la disponibilidad. Tuvieron que pasar casi 100 años para que un ecólogo, Robert May, demostrara que eso no era así, y que la complejidad no es estable: cuantas más piezas tiene un sistema, más difícil es que todas estén conectadas correctamente, y una pequeña perturbación puede desmontar toda la comunidad.

Como vemos en la finca Caracoles, solo ciertas estructuras de interacciones entre especies son estables, y estas son precisamente las que vemos en la naturaleza. Si todas las plantas dependieran de la misma especie de abeja, o todos los caracoles quisieran comer las mismas plantas, la competencia no les permitiría sobrevivir a todos, por eso observamos que las especies interaccionan solo con ciertas especies, y no con otras. Estas estructuras permiten convivir a muchas especies, pero hay un límite en el que, si incrementamos su número, el sistema deja de funcionar y algunas se extinguen. Por eso encontramos cientos de especies en la finca.

 

* Ignasi Bartomeus es investigador de la Estación Biológica de Doñana (CSIC) y autor del libro ¿Cómo se meten 8 millones de especies en un planeta?, perteneciente a la colección ¿Qué sabemos de? (CSIC-Catarata).

Siete ilustraciones científicas para descubrir las neuronas, las tumbas neolíticas o las aves más ruidosas del mundo

Por Mar Gulis (CSIC)

¿Quieres ver las sorprendentes y diferentes formas de las neuronas humanas? ¿Conocer cómo son las cinco especies de lirones que viven en Europa? ¿Descubrir cómo se construyeron algunas tumbas neolíticas para que la luz del solsticio de invierno penetrara en ellas? Estos son solo algunos de los fenómenos que te invitan a explorar las imágenes de Illustraciencia 10, el certamen internacional de ilustración científica y naturalista del Consejo Superior de Investigaciones Científicas (CSIC) y la Asociación Catalana de Comunicación Científica (ACCC).

En este post te presentamos las siete obras ganadoras de su décima edición, seleccionadas entre las más de 500 que se presentaron. Infografías, ilustraciones digitales, acuarelas, dibujos a tinta o a lápiz… las propuestas escogidas por el jurado y el público son una muestra clara de que cualquier medio puede resultar útil para transmitir el conocimiento científico. Si después de verlas, te quedas con ganas de más, en la web del certamen puedes ver las cuarenta imágenes que formarán parte de la exposición Illustraciencia 10, que se inaugura el próximo 30 de junio en el Museo Nacional de Ciencias Naturales.

Neuronas

Diversidad morfológica de las neuronas humanas. / Maddi Astigarraga Bergara (España)

Las formas de las neuronas humanas

Premio Año Cajal

Las neuronas del sistema nervioso humano tienen formas muy variadas. Este dibujo realizado a lápiz y ordenador representa algunas de estas células sin la mielina que las recubre, para que así se las pueda apreciar mejor. Algunas de las neuronas que vemos son multipolares, es decir, que de su cuerpo celular o soma salen múltiples ramificaciones denominadas dendritas. Estas neuronas se diferencian entre sí por la longitud de su axón, la prolongación que conduce el impulso nervioso. Las de axón largo incluyen las neuronas motoras (a) y las piramidales (b); y las de axón corto, las células en cesta (c) y las granulosas (d). También existen las neuronas bipolares como las de la retina (e), con dos prolongaciones: un axón y una dendrita, y las neuronas pseudounipolares, que tienen una única prolongación que se divide en dos a muy corta distancia del cuerpo celular, como la neurona ganglionar (f). Otras neuronas reflejadas en la imagen son los conos (g) y bastones (h), que son unipolares, las células de Purkinge (i) y las células amacrinas (j).

Dormice of Europe (Gliridae). / Denitsa Peneva (Bulgaria)

Los lirones de Europa

Premio Ilustración Naturalista

La imagen representa a las cinco especies de lirones que se encuentran en Europa: el lirón colipelado (Myomimus roachi), el muscardino balcánico (Dryomys nitedula), el lirón gris (Glis glis), el lirón enano (Muscardinus avellanarius) y el lirón careto o común (Eliomys quercinus). Cada uno aparece sobre una planta que es típica de su hábitat o de su dieta. Además, el lirón común, que es carnívoro, se muestra junto a un caracol. La ilustración se realizó en acuarela y carboncillo para la 11ª Conferencia Internacional del Lirón, celebrada el año pasado en Svilengrad, Bulgaria, donde recientemente ha sido redescubierta una gran población endémica de lirón colipelado.

El solsticio de invierno en los dólmenes de Sedano y Las Loras. / Marina Lezcano Herrera (España)

El solsticio de invierno en los dólmenes neolíticos

Premio Ilustración Científica

Esta infografía muestra la incidencia de la luz en los túmulos neolíticos del norte de la provincia de Burgos durante el amanecer del solsticio de invierno, cuando los rayos del sol alcanzan el interior de la cámara funeraria gracias a una orientación precisa del corredor de acceso. Se trata de un fenómeno que se repite en las construcciones megalíticas de otras regiones y que refleja la importancia de los ciclos naturales para las sociedades prehistóricas. La reconstrucción está basada en el dolmen de Las Arnillas, que fue utilizado como lugar de enterramiento y, posiblemente, de rituales desde el Neolítico hasta bien entrada la Edad del Bronce.

Conectomas de un corte coronal. / Daniel Casanova Martínez (Chile)

Un cerebro interconectado

Mención especial Año Cajal

Al cortar el cerebro, las fibras de conexión, denominadas sustancia blanca, no se aprecian de forma definida. Este dibujo realizado con tinta y plumilla sobre papel negro representa de forma “anatomo-artística” cómo las fibras conectan diferentes regiones cerebrales. La técnica elegida recrea la forma en que Ramón y Cajal plasmaba en el papel sus observaciones y teorías. La información en la que se basa la ilustración procede de la tractografía, una de las más recientes técnicas de imagen utilizadas en el estudio de las conexiones cerebrales.

Victoria cruziana

Victoria cruziana’. / Juan Luis Castillo Gorroño (España)

Una planta acuática que ‘devora’ escarabajos

Mención especial Ilustración Naturalista

Victoria cruziana es una planta acuática originaria de Sudamérica, donde frecuenta remansos de agua en las cuencas de los ríos Paraná y Paraguay.
Como se refleja en esta imagen digital, tiene grandes hojas circulares de hasta dos metros y medio de diámetro que flotan en el agua. La flor, con un aroma similar a la piña, florece durante la noche y solo durante dos días. La primera noche la flor, femenina y de color blanco, eleva su temperatura mediante una reacción termoquímica que favorece la difusión de su aroma y atrae a polinizadores como el escarabajo Cyclocepahala castanea. Este queda atrapado cuando la flor cierra sus pétalos al amanecer.

Procnias: el género de aves más ruidoso del mundo. / Jaime de la Torre Naharro (España)

Las aves más ruidosas del mundo

Mención especial Ilustración Científica

Cuando ‘cantan’, las procinas emiten un ruido de hasta 125 decibelios, superior al de un concierto de música o al que genera un tren en marcha. Este género de aves es nativo de la América tropical e incluye las cuatro especies retratadas en esta composición digital: Procnias albus (1-2.a), Procnias tricarunculatus (1-2.b), Procnias averano (1-2.c) y Procnias nudicollis (1-2.d). La clave de su potencia sonora es la siringe, un órgano exclusivo de las aves ubicado en el extremo inferior de la tráquea (figura 3) y modulado por una serie de músculos (figura 4) que permiten la variación del sonido y los tonos del canto.

Andreaea nivalis

‘Andreaea nivalis’. / Manuel Sánchez Villegas (España)

Un musgo de alta montaña

Premio especial del público

En la península ibérica habitan las poblaciones más meridionales de Europa de Andreaea nivalis, un musgo acostumbrado a la nieve que crece en la alta montaña. El ejemplar representado en esta lámina proviene de una de las escasas poblaciones de la sierra de Gredos, las únicas conocidas en la península que se reproducen sexualmente. El aumento de las temperaturas y la escasez de agua provocada por el cambio climático amenazan la supervivencia de esta especie en nuestro territorio. En el Libro Rojo de los Briófitos Amenazados de España está catalogada como vulnerable según los criterios de la Unión Internacional para la Conservación de la Naturaleza (IUCN, por sus siglas en inglés).

La explicación que acompaña a cada imagen ha sido elaborada a partir del texto facilitado por su autor o autora en el momento de inscribirse en el certamen.