BLOGS
Ciencia para llevar Ciencia para llevar

CURIOSIDADES CIENTÍFICAS PARA COMPARTIR

Entradas etiquetadas como ‘cultura científica’

Estas vacaciones llévate la ciencia en el móvil con las apps del CSIC

Por Mar Gulis (CSIC)

Reconocer árboles que encuentres en la naturaleza, poner a prueba tus conocimientos científicos en un juego de preguntas y respuestas o participar en la lucha contra mosquitos que transmiten enfermedades. Las apps del CSIC te proponen diferentes formas de acercarte a la ciencia, aprender e incluso colaborar con proyectos de investigación a través de tu móvil o tablet. Estos días de descanso, tiempo libre y paseos por la naturaleza ofrecen una excelente oportunidad para descubrirlas. Aquí te presentamos cinco de ellas:

ArbolappArbolapp Canarias yArbolapp Canarias. El verano es una época muy propicia para visitar espacios naturales. Si en tus excursiones no logras identificar los árboles que encuentras a tu paso, estas dos aplicaciones, que en conjunto suman ya cerca de 750.000 usuarios y usuarias, te serán de gran ayuda. Con Arbolapp podrás reconocer los árboles silvestres –es decir, los que crecen de forma natural– de la península ibérica y las Islas Baleares; y con Arbolapp Canarias, los del archipiélago canario. Para ello, tienes a tu disposición dos sistemas de búsqueda (guiada y abierta) y fichas de todas las especies autóctonas y las no autóctonas que se asilvestran con más frecuencia en cada territorio. Arbolapp y Arbolapp Canarias cuentan además con numerosas fotografías e ilustraciones que facilitan su uso y, una vez descargadas, no necesitan conexión a internet, por lo que podrás utilizarlas en lugares a los que no llegan los datos a través de la red móvil.

Hi Score SciemceHi Score Science. ¿Cómo hacer más entretenidos los largos viajes o las horas de la siesta, cuando el calor no deja más opción que refugiarse a la sombra? Con esta aplicación puedes alternar las lecturas veraniegas, los crucigramas o los juegos de cartas poniendo a prueba tus conocimientos científicos. “¿Cómo se llama el cambio de estado sólido a líquido? ¿Cuál es el metal más ligero de la tabla periódica? ¿Cuál es el pH normal de la sangre?” Hi Score Science es un juego de preguntas y respuestas sobre química y materiales elaboradas por personal investigador del CSIC al que puedes jugar por tu cuenta o en compañía. Si además estudias ESO o Bachillerato, podrás participar en concursos proponiendo nuevas preguntas para que se incluyan en la aplicación.

polinizappPolinizapp. En los tiempos muertos veraniegos también puedes ponerte en la piel de insectos polinizadores como la abeja, el abejorro o la mosca, y aprender de paso sobre la polinización, un proceso vital para la biodiversidad vegetal de nuestro planeta y para nuestra propia supervivencia. En este juego de simulación tendrás que obtener polen y néctar de las flores para conseguir alimento y generar semillas en distintos escenarios (montaña, ciudad, cultivos, etc.). Además, deberás hacer frente a amenazas varias, como especies invasoras, predadores y pesticidas, que podrán debilitarte o incluso causar tu muerte.

Mosquito alert

Mosquito Alert. Este proyecto de ciencia ciudadana conecta a ciudadanía, comunidad científica y personal gestor en salud pública y medio ambiente para luchar contra la expansión del mosquito tigre y el mosquito de la fiebre amarilla, dos especies invasoras que son vectores de enfermedades como zika, dengue o chikungunya. Con la aplicación de Mosquito Alert podrás avisar y enviar fotos si en alguno de tus paseos veraniegos encuentras alguna de estas especies o sus lugares de cría, y también validar fotos de otros participantes o ponerte en contacto con los responsables del proyecto. Gracias a esta iniciativa, ya se han registrado más de 10.000 observaciones de mosquito tigre en España y se ha detectado por primera vez la presencia en España de un nuevo mosquito invasor de origen asiático.

NatusferaNatusfera. La ciencia ciudadana también inspira este proyecto, que invita a cualquier persona con un móvil a tomar fotografías, recoger datos y geolocalizar los seres vivos que encuentre a su paso. Los datos son compartidos en la web de Natusfera, validados por los responsables y colaboradores de la iniciativa y posteriormente serán incluidos en la base de datos GBIF, la Infraestructura Mundial de Información en Biodiversidad, para que estén a disposición de toda la comunidad científica. En este proceso, si has subido una foto y no tienes claro de qué especie se trata, recibirás los comentarios y ayudas de otros participantes. Si te gusta observar y hacer fotos de otros seres vivos, no lo dudes: a partir de este verano puedes compartir tus imágenes con todo el mundo a través de Natusfera.

Todas estas aplicaciones, que pueden descargarse de forma completamente gratuita en Google Play y Apple Store, aúnan el rigor científico con un lenguaje sencillo y directo y son el fruto de la colaboración de centros del CSIC con otras entidades. En concreto, las cuatro primeras han recibido fondos de la Fundación Española para la Ciencia y la Tecnología, adscrita el Ministerio de Ciencia, Innovación y Universidades.

Illustraciencia VI anuncia sus premios: descubre las mejores ilustraciones científicas del año

Por Mar Gulis (CSIC)

El certamen internacional Illustraciencia, organizado por la Asociación Catalana de Comunicación Científica y el Museo Nacional de Ciencias Naturales (MNCN) del CSIC, ha dado a conocer las ilustraciones premiadas en su sexta edición. ¡No te las pierdas!

Ciervo Volante

Ciervo volante, de Rita Cortês de Matos (Portugal)
Ganadora de la categoría de ilustración científica

El ciervo volante (Lucanus cervus), el coleóptero más grande de Europa, es bien conocido por las largas mandíbulas de los machos. Las larvas se alimentan de madera podrida y tardan entre 4 y 6 años en llegar al estadio de su metamorfosis conocido como pupa. Los adultos emergen de la tierra en verano para aparearse y viven tan solo unas pocas semanas. En la península ibérica el ciervo volante se alimenta de árboles de hoja caduca como robles (Quercus) y castaños (Castanea sativa). Esta especie se encuentra protegida en Europa porque la actividad humana está provocando la desaparición de su hábitat. En particular, Lucanus cervus se ve afectado por las malas prácticas de gestión forestal, en las que se tiende a retirar la madera muerta de los bosques.

Siberian taiga

Siberian taiga, de Julia y Eugene Porotov (Rusia)
Ganadora de la categoría de ilustración naturalista

Este trabajo ilustra el entorno y las principales especies animales y vegetales que habitan en la taiga siberiana. Sus autores, que han crecido en Siberia, conocen perfectamente el ambiente y han avistado repetidas veces y dibujado directamente del natural a todos sus habitantes. Además, han tomado apuntes de su comportamiento y sus diferentes estrategias de supervivencia. En esta ilustración, han utilizado programas de dibujo digital.

Sudan

Sudán, el último rinoceronte macho blanco, de Larissa Ribeiro Lourenço Fernandes (Brasil)
Premio del público

Sudán fue el último rinoceronte macho blanco del mundo. Tras su fallecimiento, solo quedan dos miembros vivos de su especie: la hija y la nieta de Sudán. Para la autora de esta ilustración, que necesitó cuatro días para su elaboración, Sudán es “un símbolo de las especies en peligro de extinción y una señal de que si la forma en la que consumimos no cambia, tarde o temprano destruiremos el planeta y el proceso ecológico del cual dependemos los humanos”.

Hetermorphic

Heteromorphic Ammonoids of the Matanuska Formation, Turonian, Alaska, de Kate LoMedico Marriott (Estados Unidos)
Mención especial

La imagen es una reconstrucción de dos cefalópodos extintos que vivieron en el Cretácico Superior –época que se extendió desde hace 100 a 66 millones de años atrás–, y cuyas conchas son endémicas de los estratos de ese periodo hallados en algunas zonas de Alaska y Japón: Eubostrychoceras japonicum (izquierda) y Muramotoceras matsumoto.

RamphastosRamphastos, diversidad de picos del Neotrópico, de Santiago Forero Avellaneda (Colombia)
Mención especial

El género Ramphastos es uno de los cinco que componen la familia de los tucanes (Ramphastidae). Este género está compuesto por ocho especies de grandes y coloridos picos que se encuentran distribuidas a lo largo de las selvas de Centroamérica y Sudamérica.

Papagaios

Papagaios, de Wilma Ander (Brasil)
Mención especial

El papagayo del Amazonas o papagayo verdadero es un ave típica de Brasil muy apreciada como animal de compañía por su capacidad de hablar. Eso hace que muchos ejemplares sean capturados y comercializados clandestinamente. Habita en bosques, palmeras e incluso en áreas de cultivo de árboles; aunque es cada vez más común encontrarlo en áreas urbanas. En la naturaleza, evita a los depredadores quedándose inmóvil y callado.

megasoma

Megasoma elephas, de Carlos Ortega Contreras (México)
Mención especial

Megasoma elephas es un escarabajo que habita los bosques tropicales de México. Su ciclo de vida es largo: de 2 a 3 años en la etapa larval, que transcurre en árboles en descomposición y estiércol; y otros tantos en la vida adulta.

Illustraciencia, un proyecto creado por Connecta Ciència que cuenta con el apoyo de la Fundación Española para la Ciencia y la Tecnología, premia y divulga la ilustración científica y naturalista desde 2009. En la última edición se presentaron más de 500 obras.

Si te han gustado estas imágenes, en la web de Illustraciencia puedes encontrar las 40 que compondrán la exposición itinerante del certamen. La muestra se inaugurará el 4 de octubre en el MNCN y estará acompañada por actividades paralelas, como talleres infantiles y encuentros profesionales.

¿Qué nos dicen los anillos de los árboles sobre el calentamiento global?

Por Elena Granda (Universitat de Lleida) *

Una de las características más increíbles de los árboles es su longevidad; son seres vivos capaces de vivir muchísimos años. Sin ir muy lejos, en el Pirineo se pueden encontrar pinos de alta montaña que tienen más de 800 años y que, por tanto, germinaron en el siglo XIII. Incluso se han encontrado en Estados Unidos árboles con unos 5.000 años. Dado que los árboles son capaces de almacenar información (ecológica, histórica y climática) en cada año de crecimiento, encontrar un árbol viejo es como descubrir un archivo muy antiguo repleto de información. La dendroecología (rama de la biología especializada en el estudio de la ecología de los árboles a través del análisis de los anillos de crecimiento) se encarga de recopilar esa información para responder preguntas de ecología general y abordar problemas relacionados con los cambios ambientales a nivel local y global.

Para poder acceder a dicha información se obtiene un testigo de madera (o core en inglés), ”pinchando” el tronco con una barrena desde la corteza hasta el centro del árbol (médula). Así, se extrae un cilindro de madera en el que se ven todos los anillos de crecimiento. El estudio de estos cilindros ayuda a desvelar cómo ha sido el funcionamiento de distintos individuos y especies durante toda su vida.

De estos análisis se obtiene una valiosísima información que nos ayuda a comprender a qué peligros están expuestos actualmente nuestros bosques, cómo han actuado en el pasado ante factores de estrés y qué peligro corren en el futuro si no conseguimos reducir sus principales amenazas, como las emisiones de gases de efecto invernadero a la atmósfera, los incendios provocados, las especies invasoras o la desaparición de sus hábitats.

Gracias a la dendroecología podemos estudiar las causas de la mortalidad de los árboles, como el pino albar de las siguientes fotografías, a través de la comparación de árboles muertos (primera imagen) con aquellos vivos, mediante la extracción y posterior análisis de los anillos de crecimiento que se pueden observar en los testigos de madera (segunda imagen).

 

Los beneficios que aportan las plantas terrestres son incontables: dan cobijo a los animales, absorben contaminantes, favorecen las características del suelo, evitan la erosión, etc. Pero, sobre todo, son las responsables de generar gran parte del oxígeno (O2) que respiramos y de absorber de la atmósfera el dióxido de carbono (CO2), que es uno de los principales causantes del calentamiento global. Y, en el caso particular de las plantas leñosas, árboles y arbustos, su importancia radica en que son perennes; es decir, que no mueren tras la estación de crecimiento y reproducción. Esto implica que la cantidad de CO2 que pueden captar es muy grande y que este queda almacenado en los bosques, retenido en la madera, raíces, ramas y hojas durante mucho tiempo.

Durante las últimas décadas, y debido al aumento de gases de efecto invernadero en la atmósfera como el CO2 , se han producido alteraciones de la temperatura y las precipitaciones a nivel global. En países de clima mediterráneo, por ejemplo, se han registrado aumentos de temperatura en torno a 1,3 grados centígrados desde la revolución industrial, cuando se aceleró la emisión de estos gases a la atmósfera. Además han aumentado recientemente las condiciones extremas de sequía y hay mayor riesgo de incendios y lluvias torrenciales.

Cabría pensar que un aumento de CO2 atmosférico podría ser beneficioso para los árboles, ya que son organismos que se alimentan de dióxido de carbono. Sin embargo, esto normalmente no ocurre porque el aumento de CO2 está asociado a la sequía y al calentamiento global, y estos son factores que pueden producir estrés en las plantas. Dicho estrés da lugar al cierre de los estomas (poros que hay en las hojas por donde entran y salen moléculas de CO2 y agua) y, como consecuencia, no pueden aprovechar esa mayor cantidad de alimento. Si lo comparamos con los humanos, sería como si nos encontráramos ante una mesa llena de comida pero tuviéramos la boca cerrada y no pudiésemos comer nada. Dado que el cambio climático y la alteración de la atmósfera pueden perjudicar al funcionamiento de las especies leñosas, se esperan cambios en la composición de los bosques como los conocemos en la actualidad.

Por eso es importante conocer qué árboles están estresados, las causas y consecuencias, así como la forma en la que actúan ante ese estrés. Con el fin de predecir qué va a pasar en el futuro con nuestros bosques para poder minimizar las consecuencias del cambio climático, es de gran utilidad el estudio del crecimiento de los árboles a lo largo del tiempo: cuánto carbono han consumido y utilizado cada año, cómo han influido en ellos los cambios de temperaturas, las plagas, las sequías o los incendios, de manera que podamos desarrollar modelos de evolución de los futuros bosques.

Ilustración que representa las distintas fases en el estudio de los anillos de crecimiento: extracción del testigo de madera con una barrena (a); datación de los anillos para saber a qué año corresponde cada uno (b) y análisis de la información contenida en los mismos (c)

Gracias a la dendroecología podemos estudiar las causas de la mortalidad de los árboles, como el pino albar en la fotografía, a través de la comparación de árboles muertos (a) con aquellos vivos (b), mediante la extracción y posterior análisis de los anillos de crecimiento que se pueden observar en los testigos de madera.

 

Elena Granda es investigadora postdoctoral de la Universitat de Lleida y colaboradora del Instituto Pirenaico de Ecología (CSIC).

 

Organismos a la fuga: ¿escapan los seres vivos de la contaminación?

Por Ignacio Moreno-Garrido y Cristiano Venicius de Matos Araujo (CSIC)*

Pez cebra / Flickr-Photo-by-Lynn-Ketchum

Pez cebra / Flickr-Lynn Ketchum

Faraones, reyes, emperadores y nobles de tiempos pretéritos descubrieron, hace ya siglos, cómo funcionaban los ensayos de toxicidad. Ya que siempre hay gente interesada en cambiar unos gobernantes por otros, y dado que la mayor parte de los venenos preferidos por los asesinos actuaban por vía digestiva, era frecuente que los pretendientes al trono o sus aliados añadieran algunos simpáticos polvitos a las comidas de estos dirigentes con la aviesa intención de allanarles el camino a sus correspondientes sepulturas. Como el problema es que todo el mundo conoce el manual, estos gobernantes hacían probar la comida a sus sirvientes, y si estos ponían mala cara, mudaban el color epidérmico a tonos más verdosos y, acto seguido, se morían, aquellos solían pasar directamente a los postres obviando los segundos platos. Por supuesto, tales ensayos adolecían de rigor científico (aunque algunos tuvieran rigor mortis), y bastaba con procurarse un veneno de efecto retardado para solucionar el ligero inconveniente (y si no, que se lo cuenten al pobre emperador Claudio, por ejemplo).

Como quiera que sea, la base de los ensayos de toxicidad estaba servida: para conocer cómo de tóxica es una sustancia casi no nos queda otra que exponer material biológico a distintas concentraciones de tal sustancia, y observar qué pasa. Estos materiales biológicos, hoy día, pueden ser simples enzimas, cultivos celulares, tejidos, organismos, conjuntos de organismos o incluso ecosistemas, más o menos complejos. Sin embargo, los ensayos de toxicidad “clásicos” casi siempre se han centrado en la mortalidad (en el caso de organismos superiores) o en la inhibición del crecimiento (en el caso de poblaciones de microorganismos).

Pero, ¿qué pasa si los organismos, a concentraciones más bajas de las que les producen un efecto nocivo, detectan la contaminación y se fugan a sitios más limpios? Desde el punto de vista de la ecología, la fuga de los organismos de una zona equivale a su extinción, de modo que tal vez hayamos subestimado los efectos tóxicos de los contaminantes durante todos estos años.

Sistema lineal para estudiar el desplazamiento de los organismos / ICMAN-CSIC

Sistema lineal para estudiar el desplazamiento de los organismos / Cristiano Araújo

El primer paso que nos permite evaluar la capacidad de los organismos para huir de los contaminantes consiste en ponerlos en condiciones de elegir entre diferentes ambientes. En el Instituto de Ciencias Marinas de Andalucía (CSIC), miembros del grupo de investigación EEBAS (Ecotoxicología, Ecofisiología y Biodiversidad de Sistemas Acuáticos) estamos desarrollando dispositivos que simulan gradientes o manchas de contaminación en sistemas que permiten el libre desplazamiento de los organismos entre sus compartimentos, tanto en diseños lineales como en pequeños laberintos, como muestran las imágenes.

Con estos sistemas hemos realizado en el grupo de investigación diversos estudios que involucraban diferentes organismos. Ya se han llevado a cabo ensayos sobre microalgas (como la diatomea bentónica Cylindrotheca closterium), crustáceos (como el camarón Atyaephyra desmaresti o el anostráceo Artemia salina), peces (como Danio rerio –pez cebra– o Poecilia reticulata –guppy–) y renacuajos de tres especies de anfibios (Leptodactylus latrans, Lithobates catesbeianus y Pelophylax perezi). Los resultados, algunos ya publicados en revistas de ámbito internacional (Chemosphere, Environment International, Science of the Total Environment, Aquatic Toxicology o Plos One) muestran de manera inequívoca que prácticamente todos los organismos ensayados detectan la mayoría de los contaminantes y buscan las zonas menos contaminadas.

Sistema de laberinto / ICMAN-CSIC

Sistema de laberinto / Cristiano Araújo

Estos estudios de selección de hábitats también indican que, a pesar de ser la contaminación un factor capaz de expulsar organismos de una zona, la presencia de potenciales competidores en los tramos limpios o la presencia de comida en la zona contaminada pueden variar en gran medida la decisión, por parte de los organismos expuestos, de evitar o no los tramos con mayores cargas de contaminantes.

Este novedoso enfoque de estudio, que simula gradientes o manchas de contaminación, nos ha permitido incluir un nuevo concepto en los estudios medioambientales: la fragmentación química de los hábitats, basada en los efectos que un vertido contaminado puede tener impidiendo el paso de los organismos entre dos zonas limpias.

En resumen, nuestros resultados indican que los estudios sobre los efectos de los contaminantes no deberían estar exclusivamente enfocados en evaluar cómo los contaminantes dañan los organismos, ya que se ha puesto de manifiesto que el potencial “repelente” de las sustancias contaminantes, incluso a concentraciones muy por debajo de los valores letales, puede acarrear serias consecuencias para la estructura y dinámica de los ecosistemas, así como para la distribución espacial de los organismos.

* Ignacio Moreno-Garrido y Cristiano Venicius de Matos Araujo son investigadores en el Instituto de Ciencias Marinas de Andalucía (CSIC).

Cerebros de plastilina: ¿es posible conseguir una “supermemoria”?

Por Sandra Jurado Sánchez (CSIC)*

Ilustración de Silvia Jurado Sánchez

       Ilustración de Silvia Jurado Sánchez

En estas fechas de junio ya casi se pueden tocar las tan ansiadas vacaciones… Durante este mes, miles de estudiantes se han tenido que enfrentar a los exámenes de fin de curso, a la temida EBAU (antes Selectividad o PAU) o incluso a los exámenes de recuperación. En estas semanas el alumnado pone a prueba su templanza, pero sobre todo su memoria y conocimiento. Algunos demuestran una excelente capacidad de retención de manera innata (o, más probablemente, producto del trabajo continuado durante el curso), mientras que otros creen “conveniente” mejorar sus posibilidades con la ayuda de suplementos alimenticios. También hay quienes, dudando de su propia capacidad, se dedican al diseño de complejas formas de outsourcing intelectual o “chuletas” de última generación.

En estos momentos de incertidumbre, qué no daríamos por conocer los secretos de la memoria: ¿cómo aprendemos?, ¿cómo se forman nuestras memorias y recuerdos? Y sobre todo, ¿cómo podemos potenciar estas capacidades y generar una “supermemoria”? El cerebro guarda la clave de estos misterios, y la neurociencia, la ciencia encargada de estudiar el funcionamiento cerebral, trabaja sin descanso para entenderlos.

El desarrollo temprano durante la infancia es un momento crítico para el aprendizaje, pero las personas adultas seguimos aprendiendo y formando recuerdos sin que se produzcan cambios significativos en nuestro volumen cerebral. Una posible estrategia del cerebro adulto para codificar nueva información implicaría remodelar las conexiones neuronales ya existentes en función de su frecuencia de uso. Por ejemplo, consideremos el aprendizaje de un instrumento musical principalmente adquirido a través de constante repetición. Aquellos contactos neuronales o sinapsis que comienzan a emplearse con mayor frecuencia podrían verse potenciados, mientras que si abandonamos el entrenamiento, estos contactos o conexiones podrían comenzar a debilitarse, llegando incluso a desaparecer. Los puntos de contacto entre neuronas, o sinapsis, son regiones extremadamente flexibles que tienen la capacidad de responder a distintas necesidades según los estímulos que reciben, potenciándose o debilitándose en función de la frecuencia de uso durante un proceso conocido  como plasticidad sináptica.

El concepto del cerebro como una estructura plástica se introduce por primera vez en el siglo XIX por el psicólogo estadounidense William James, y posteriormente es asimilado por los padres de la neurociencia moderna, con su máximo exponente en la figura de Santiago Ramón y Cajal. Meticulosas observaciones de las redes neuronales en cerebros embrionarios convencieron a Cajal de que el tejido neuronal era lo suficientemente flexible como para permitir la formación y desaparición de conexiones dependiendo del momento del desarrollo, y que posiblemente esta flexibilidad se encontrara en la base de la formación de memorias y recuerdos en el cerebro adulto.

Dibujo de corteza cerebelosa realizado por Santiago Ramón y Cajal en 1904. / Ministerio de Ciencia, Innovación y Universidades

Dibujo de corteza cerebelosa realizado por Santiago Ramón y Cajal en 1904. / Ministerio de Ciencia, Innovación y Universidades

Aunque plausible e interesante, la plasticidad cerebral acabó siendo un concepto puramente teórico. Habría que esperar hasta principios de los años setenta para que los investigadores Timothy Bliss y Terje Lømo, de la Universidad de Oslo, detectaran por primera vez un fenómeno de plasticidad sináptica. Así, lograron demostrar que en respuesta a un aumento de la frecuencia de estimulación, la fuerza de las sinapsis en el hipocampo, una región cerebral importante para la memoria y afectada severamente en la enfermedad de Alzheimer, aumentaba muy rápidamente: ¡en cuestión de segundos podía aumentar hasta un 200%! Lo más importante era que estas conexiones permanecían potenciadas durante horas. Este aumento en la frecuencia de estimulación en el laboratorio mediante técnicas de electrofisiología in vivo pretendía mimetizar el aumento de la actividad de determinadas conexiones durante el proceso de aprendizaje. El resultado fue que estas conexiones eran capaces de adaptarse muy rápidamente y facilitarse tal y como se venía especulando desde el siglo XIX.

Este hallazgo revolucionó la neurociencia, ya que proporcionaba evidencias experimentales para el concepto de plasticidad cerebral, que hasta entonces era una mera hipótesis. En los años sucesivos, numerosos laboratorios profundizaron en el estudio de la plasticidad sináptica y, gracias al avance de las técnicas de biología molecular, electrofisiología y microscopía, se pudieron identificar diferentes moléculas claves para este fenómeno neuronal.

La identificación de estas moléculas abre la puerta al diseño de nuevas estrategias y fármacos destinados a potenciar los procesos cognitivos, principalmente en individuos afectados por patologías que afectan a la memoria, como las enfermedades neurodegenerativas. Aunque la tan ansiada “píldora de la memoria” aún está fuera de nuestro alcance, es intrigante pensar qué efectos podrían provocar estos fármacos en individuos sanos. Intuitivamente podríamos imaginar la aparición de una “supermemoria”. Sin embargo, es probable que llegar a obtenerla no sea tan sencillo. Consideremos que el efecto de estos fármacos, aún en vías de desarrollo, podría ser diferente en un cerebro sano y en un cerebro afectado por neurodegeneración, en donde el entorno neuronal se ve profundamente alterado con la aparición de agregados moleculares inexistentes en situaciones normales. En este escenario, es esperable que el uso de fármacos que modulan moléculas cuyo efecto es predominante en el cerebro enfermo no tendría por qué afectar positivamente a las capacidades de memoria de un cerebro saludable que carece de estas dianas.

Todas estas cuestiones han de ser analizadas meticulosamente, incluyendo la reflexión acerca de si es necesario desarrollar una “píldora para la memoria” en un mundo en donde gran parte de nuestros recuerdos se almacenan de manera digital. Tal vez mucha memoria no suponga ya una ventaja pues, como dijo Nietzsche, “la buena memoria es a veces un obstáculo al buen pensamiento”.

* Sandra Jurado Sánchez es investigadora en el Instituto de Neurociencias de Alicante, del CSIC y la Universidad Miguel Hernández. Más sobre su trabajo en: https://www.juradolab.com/

Transgénicos, ondas gravitacionales y mercurio: la ciencia llega a la Feria del Libro de Madrid

Por Mar Gulis (CSIC)

Cada primavera el Parque de El Retiro de Madrid se llena de textos y de lectores con ganas de descubrir novedades editoriales. Las casetas de la Feria del Libro ofrecen múltiples formatos y temáticas y, entre ese amplio abanico de lecturas posibles, también aparece la ciencia contada de forma cercana y accesible. Si pasas por la feria la semana que viene, te invitamos a dar una vuelta por el Pabellón de actividades culturales, donde la Editorial CSIC y Los Libros de la Catarata (cuyas casetas en la feria son la 18 y la 138 respectivamente) presentarán los últimos títulos de las colecciones ¿Qué sabemos de? y Divulgación. Ambas colecciones están escritas por investigadoras e investigadores del Consejo Superior de Investigaciones Científicas (CSIC) para acercar al público general temas de actualidad científica. Los falsos mitos de la alimentación, cómo se fabrica un medicamento o dónde habitan y para qué sirven los hongos son algunos de los temas que se tratan en los últimos números.

Las presentaciones se realizarán los días 6 y 8 de junio y contaremos con la directora de Indagando TV, Graziella Almendral, y el presentador de Fallo de sistema de Radio 3 (RNE3), Santiago Bustamante, quienes se encargarán de presentar a autores, autoras y libros en estas dos mañanas de feria dedicadas a la divulgación científica.

La primera cita es el próximo miércoles 6 de junio a las 12:30 horas. Haremos un viaje por el tiempo y el espacio para conocer los hongos que habitan en lugares recónditos. La investigadora del Real Jardín Botánico Teresa Tellería presenta su libro Donde habitan los dragones: los hongos en ambientes extremos o poco explorados, de la colección Divulgación. A lo largo de sus páginas, cuidadosamente ilustradas, la autora reivindica la importancia de estos organismos eucariotas que parecen ser los más numerosos, a la vez que ostentan el récord de los menos conocidos. “Se han encargado de limpiar y reciclar los residuos que la naturaleza genera, han ejercido de parásitos y patógenos, y protagonizado alianzas fundamentales con muchos grupos de organismos; así, han contribuido a que nuestro planeta sea tal y como lo conocemos”, explica la autora.

De organismos desconocidos pasamos a otros que han sido modificados mediante ingeniería genética. Cultivos transgénicos, de la colección ¿Qué sabemos de?, explica cómo se fabrica una planta transgénica y el papel de la ingeniería genética para mejorar las cosechas y aumentar la producción de alimentos. El investigador José Pío Beltrán expone en el texto los avances que se han producido en el conocimiento científico como consecuencia de la irrupción de las técnicas de genética reversa y aborda cuestiones como el desafío de la seguridad alimentaria. Según Pío Beltrán, “el papel de las técnicas de mejora genética y los cultivos transgénicos parece indispensable para producir comida destinada tanto a seres humanos como a animales en un mundo cada vez más poblado”.

De la misma colección ¿Qué sabemos de? sale el título La gravedad, escrito por el investigador Carlos Barceló Serón. El autor aborda en el texto la teoría general de la relatividad con cuestiones como las ondas gravitacionales, los navegadores GPS o los agujeros negros. Formulada en 1915 por Albert Einstein, en los últimos cien años la relatividad general y su concepto de espaciotiempo han ocasionado una enorme revolución. Barceló propone un recorrido por un siglo lleno de descubrimientos y demostraciones trascendentes en el “territorio gravedad”.

Medicamentos, alimentación y mercurio

Diez años y mil millones de euros. Este es el tiempo y el coste medio para que un medicamento complete el proceso que va desde su descubrimiento inicial hasta estar a la venta en una farmacia. Teniendo en cuenta estos datos, no es difícil imaginar la fabricación de un fármaco como una carrera de obstáculos en la que solo unas pocas moléculas llegan a la meta. El viernes 8 de junio a las 12:30 horas, las investigadoras María del Carmen Fernández y Nuria E. Campillo narran en su libro Cómo se fabrica un medicamento. Del laboratorio a la farmacia este largo y costoso proceso. “Queríamos acercar al público un mundo en general desconocido, pero que tiene un gran impacto en su calidad de vida, ya que las enfermedades conviven con nosotros, y es importante ser conscientes del trabajo, limitaciones y retos que hay detrás de la búsqueda de nuevas sustancias para su tratamiento”, afirman las autoras.

¿La nueva moda de no comer gluten, incluso no siendo celíaco, está justificada? ¿Por qué las dietas detox no son tan milagrosas como cuentan? Y el aceite de palma, ¿qué hay de verdad en la información que nos llega? El científico Miguel Herrero se ha propuesto desmentir con conocimiento científico algunas creencias sobre los efectos de lo que comemos en el libro Los falsos mitos de la alimentación. El último título de la colección ¿Qué sabemos de? habla de las últimas modas alimenticias, de superalimentos y, sobre todo, del uso de datos y estudios científicos para avalar ciertas tendencias y productos que en ocasiones llevan a conclusiones erróneas.

Las fuentes de emisión, usos e impactos del mercurio, también conocido como “plata líquida” o “azogue”, protagonizan el libro coordinado por las investigadoras María Antonia López Antón y María Rosa Martínez Tarazona. El mercurio explica, entre otras cuestiones, el comportamiento y toxicidad de este metal presente hasta hace poco en objetos de uso cotidiano como los termómetros o la mercromina. Este título cierra las presentaciones de este día.

Las presentaciones se realizarán en el Pabellón Bankia de actividades culturales. Puedes consultar aquí la programación detallada. Además, los autores y autoras de las colecciones firmarán sus libros en las casetas de la Editorial CSIC (número 18) y de la editorial Los Libros de la Catarata (número 138).

El altramuz, de humilde aperitivo a “superalimento”

Por José Carlos Jiménez-López (CSIC)*

Altramuces en el mercado. / Tamorlan - Wikimedia Commons

Altramuces en el mercado. / Tamorlan – Wikimedia Commons

El altramuz (Lupinus albus) es una legumbre conocida popularmente por ser una planta ornamental en jardines rurales, con bellas y coloridas flores. Su semilla es denominada con varios términos como altramuces, lupín, lupinos, tremosos, así como “chochos” en determinadas localidades de la geografía española, concretamente en Andalucía. Es difícil que en algún momento, tomando una cerveza en el bar, no nos hayan puesto un cuenco de altramuces para picar.

Los altramuces se han consumido tradicionalmente en toda la región mediterránea durante miles de años. En España, las semillas del altramuz se convirtieron en un bien bastante preciado, y casi el único sustento que muchas familias tenían para “llevarse a la boca” tras la guerra civil. Hoy, 28 de mayo, se celebra el Día Nacional de la Nutrición (DNN), que este año está dedicado a promover el consumo de legumbres. Es un buen contexto para destacar los excelentes valores nutricionales de esta leguminosa que suele pasar inadvertida.

Las semillas del altramuz son consumidas típicamente como aperitivo en salmuera. Su harina se usa para la fabricación de horneados como pizza, pan, y repostería. Además de ser un buen acompañamiento en ensaladas, también es utilizado en la elaboración de humus, patés, quesos vegetales, y como integrantes principales de platos más elaborados, dignos de restaurantes renombrados con estrella Michelín. Numerosos productos basados en semillas de lupino están siendo actualmente introducidos comercialmente en tiendas de alimentación como alimentos fermentados, bebidas energéticas, snacks, leche, yogurt, productos de repostería, alimentación vegana, tofu, sustitutos de carnes, salsas, tempe, pastas y como base en dietas de adelgazamiento.

Pese a ello, el altramuz está infravalorado, siendo una legumbre que no está “de moda”, al contrario que otros alimentos como la soja, la quinoa o la chía, con un mayor auge debido a un marketing publicitario agresivo, haciéndolos llegar al consumidor de manera apetecible, para introducirlos en la dieta como productos saludables. Sin embargo, y respecto a beneficios para la salud y aporte nutricional, el altramuz no tiene nada que envidiar a estos alimentos tan publicitados, por ello se le puede adjudicar igualmente el término acuñado como “superalimento”, que puede ser sinónimo de alimento funcional, cuyo consumo proporciona beneficios para la salud más allá de los puramente nutricionales. Hay muchas razones por las cuales se puede incluir el altramuz en esa lista privilegiada, empezando porque es una fuente muy importante de proteínas, aproximadamente el 40%, lo que equivale al doble del contenido en proteínas que los garbanzos, y cuatro veces más que el trigo.

Plantas de lupino. /José Carlos Jiménez-López

Plantas de altramuz (Lupinus). /José Carlos Jiménez-López

Su contenido en fibra dietética es del 34%, que actúa como fibra soluble (como la de la avena) e insoluble (como la del salvado de trigo), incrementando la saciedad, reduciendo la ingesta calórica para un mejor control del peso corporal y ayudando además a la reducción del colesterol y la prevención de dislipemia (altos niveles de lípidos). Posee bajos niveles de grasa (menos de un 6%) y abundantes ácidos grasos insaturados, sobre todo omega-6 y omega-9. El 24% de su contenido es un tipo de hidratos de carbono que favorecen un índice glucémico más bajo que otros granos comúnmente consumidos, ayudando a equilibrar el nivel de glucosa en sangre y, de este modo, a prevenir la hiperglicemia, lo que está especialmente indicado para personas que padecen diabetes tipo 2.

El altramuz es una legumbre naturalmente libre de gluten, por lo que es un alimento apto para personas con intolerancia al mismo (celiaquía). Por otro lado, son una excelente fuente de minerales (hierro, calcio, magnesio, fósforo y zinc), vitaminas B1, B2, B3, B6, B9 (ácido fólico) y Vitamina C, además de contener todos los aminoácidos esenciales, indicado para una correcta actividad intelectual y del sistema inmune. La semilla del altramuz también tiene entre sus componentes compuestos prebióticos, que ayudan al crecimiento de microflora bacteriana beneficiosa para una correcta salud intestinal. Estas semillas son también una de las mejores fuentes naturales del aminoácido arginina, el cual mejora la funcionalidad de los vasos sanguíneos y ayuda a la disminución de la presión sanguínea. Al contrario que otras legumbres como la soja, su contenido en fitoestrógenos (componentes similares a las hormonas) es insignificante, lo que evita problemas potenciales asociados a ellos.

Son abundantes los estudios científicos realizados en los últimos cinco años que demuestran el valor de algunos componentes de estas semillas en la lucha contra enfermedades consideradas como las nuevas epidemias del siglo XXI. Algunos de estos estudios se han realizado en nuestro grupo de investigación de la Estación Experimental del Zaidín (EEZ-CSIC, Granada), donde proteínas denominadas beta-conglutinas podrían ser utilizadas para la prevención y tratamiento de la diabetes tipo 2. Se ha demostrado que estas proteínas favorecen la activación de la ruta de señalización de la insulina, con la consiguiente captación de glucosa por los tejidos (disminución de la glicemia), así como la reversión del estado de resistencia a la insulina por sus tejidos diana, todo ello favoreciendo que el organismo recupere un estado similar a una persona no diabética. Además, numerosas pruebas experimentales han indicado que estas mismas proteínas son capaces de disminuir el estado de inflamación de pacientes diabéticos. Debido a que determinadas enfermedades, cuyo progreso cursa mediante un estado inflamatorio crónico sostenido (síndrome metabólico, obesidad, diabetes, enfermedades cardiovasculares), los altramuces, y concretamente las proteínas beta-conglutinas, constituyen un componente funcional que puede jugar un papel crucial como una nueva opción terapéutica para la prevención y tratamiento de estas enfermedades que tienen una base inflamatoria.

Seguro que a partir de ahora y con todos estos argumentos, recuperaréis el buen hábito de “coger un puñado de altramuces para llevároslos a la boca”, o prepararéis sabrosos platos que sorprenderán incluso a los paladares más exigentes.

 

*José Carlos Jiménez-López es investigador en la Estación Experimental del Zaidín (CSIC) y actualmente desarrolla una línea de investigación sobre las propiedades potencialmente beneficiosas del consumo de altramuces.

‘Operación polinizador’: el imprescindible trabajo de los insectos para el futuro de la agricultura

Por Alberto Fereres (CSIC) *

Trichodes octopunctatus (Familia Cleridae) / Alberto Fereres

Trichodes octopunctatus (Familia Cleridae) / Alberto Fereres

Con la llegada de la primavera, en plena ‘operación polinización’, esta imagen se repite cada año en campos, parques y jardines. Insecto y planta cooperan para obtener un beneficio mutuo, fenómeno que en biología se llama simbiosis. Estas interacciones, de crucial importancia en los ecosistemas naturales y en los agrícolas, se iniciaron hace más de 200 millones de años, en el Jurásico.

Las primeras angiospermas, plantas con flor, dependían del viento para asegurar su reproducción, igual que las gimnospermas, pinos y especies relacionadas. El ovario producía una secreción pegajosa llamada exudado para atrapar los granos de polen que llegaban a él. Este exudado contenía proteínas y azúcares y servía de alimento a los insectos, que empezaron a transportar de manera accidental el polen de una flor a otra. Así comenzó la polinización.

Se ha estimado que este gesto, en apariencia insignificante, representa la nada desdeñable cifra del 9,5% del valor de la producción agrícola dedicada al consumo humano, lo que a nivel europeo supone un total de 5.000 millones de euros al año. Atendiendo a estos datos, no cabe duda de que el servicio ecológico que ofrecen los polinizadores posee una enorme repercusión ambiental, social y económica en nuestro planeta.

La biodiversidad de los insectos que actúan como potenciales polinizadores es muy elevada. El 20% de estos organismos, unas 200.000 especies, visitan las flores. Hay familias de insectos polinizadores importantes entre los coleópteros (escarabajos), dípteros (moscas) y lepidópteros (mariposas) entre otros órdenes, pero los polinizadores por excelencia son los himenópteros: las abejas y abejorros de la superfamilia Apoidea. Son especies en las que el polen se adhiere a sus característicos pelos corporales. Además, pueden disponer de adaptaciones para facilitar su transporte, como las corbículas o cestillos de las patas traseras. En el campo agrícola, las especies que destacan por su importancia son la abeja común Apis mellifera L., los abejorros del género Bombus sp. y otras abejas menos conocidas que son las llamadas abejas solitarias.

Apis mellifera (Familia Apidae) / Alberto Fereres

Apis mellifera (Familia Apidae) / Alberto Fereres

La abeja común produce miel, jalea real, propóleo, cera, y poliniza un amplio espectro de flora silvestre. Es vital para algunos cultivos como los frutales, ya que asegura la polinización cuando otros insectos están ausentes. Su ‘transferencia de polen’ garantiza una tasa elevada de cuajado de frutos, mayor resistencia a las heladas y mejor calidad en los mismos. Esta especie de abeja común, natural de Europa, Asia y África, incluye 26 subespecies agrupadas en cuatro linajes.

Por su parte, los Bombus o abejorros han supuesto una enorme revolución para el sector de la horticultura, especialmente bajo invernadero. A partir de 1987 se empezaron a usar en la polinización de tomate y otras hortícolas. En la actualidad se emplean en más de 40 países. Se conocen más de 240 especies de abejorros a nivel mundial, y la mitad de ellas viven en la región Paleártica (Europa y Norte de Asia). La especie que más se cría para su uso en agricultura es el Bombus terrestris L., ampliamente distribuida por casi toda la zona Paleártica. En España tenemos una especie endémica de las Islas Canarias, B. canariensis Pérez.

A pesar de su papel imprescindible, la población de polinizadores está en declive en todo el mundo. Entre los factores que han contribuido a esta situación, destacan las técnicas agrícolas de producción intensiva que han conducido a la desaparición de hábitats, lo que ha modificado notablemente la estructura del paisaje y ha llevado a la eliminación de recursos alimenticios y refugios esenciales para este importante grupo de artrópodos beneficiosos.

Para intentar compensar esta disminución, las investigaciones en este ámbito apuestan por el uso de márgenes florales, es decir, plantar setos y vegetación entre las parcelas de cultivo que permitan el incremento de los insectos polinizadores y otros artrópodos, a la vez que consiguen preservar y mejorar la biodiversidad en las zonas agrarias. Además de favorecer la polinización, los márgenes florales suavizan el rigor de los elementos climáticos protegiendo los cultivos contra las heladas y la insolación; mantienen la humedad y funcionan como cortavientos; protegen contra la erosión y también aportan valor paisajístico y cultural.

Entre otras iniciativas, desde el Instituto de Ciencias Agrarias del CSIC hemos desarrollado un protocolo para el establecimiento de márgenes y lindes de especies herbáceas con flores que atraen estos insectos beneficiosos y que están bien adaptados a los suelos y condiciones de cultivo de la zona Centro de la Península Ibérica.

 

* Alberto Fereres Castiel es investigador del Instituto de Ciencias Agrarias del CSIC. Junto a investigadores/as de la Universidad Politécnica de Madrid y la empresa Syngenta ha trabajado en el proyecto ‘Operación polinizador’.

¿Te apuntas a un ‘biomaratón’? Fotografía la naturaleza de tu ciudad en el City Nature Challenge 2018

Por Mar Gulis (CSIC)

Si te gusta la naturaleza urbana, entre el viernes 27 y el lunes 30 de abril tienes una cita clave. Durante estos cuatro días, cerca de 70 ciudades de todo el mundo competirán de forma amistosa en el City Nature Challenge 2018, un ‘biomaratón’ que invita a la ciudadanía a hacer la mayor cantidad posible de observaciones de seres vivos y publicarlas en internet. Cualquier persona con acceso a la red y un teléfono o cámara de fotos puede ayudar a que su ciudad sea la ganadora.

Impulsada desde 2016 por la Academia de las Ciencias de California y el Museo de Historia Natural del Condado de Los Ángeles, la competición se celebra este año por primera vez a escala internacional. En nuestro país, varios centros y proyectos vinculados al CSIC promueven la iniciativa, a la que se han sumado tres ciudades españolas y sus respectivas áreas metropolitanas: Madrid (con 28 municipios), Barcelona (con 36) y Cádiz (con 6).

CNC

¿Quieres participar? Es muy sencillo: durante los días que dure la competición haz fotografías o grabaciones sonoras de todo tipo de organismos (desde bacterias hasta árboles monumentales) que encuentres en alguna de estas zonas y luego súbelas a la plataforma de ciencia ciudadana NatuSfera. Ten presente que puedes hacer las observaciones por tu cuenta o acudir a alguno de los maratones convocados, como los organizados en Madrid por el Real Jardín Botánico y el Museo Nacional de Ciencias Naturales, o los que en Barcelona coordinan el Instituto de Ciencias del Mar y el Centro de Investigación Ecológica y Aplicaciones Forestales.

Tus observaciones podrán identificarse y validarse hasta el 3 de mayo gracias a un sistema de identificación colaborativa y quedarán disponibles para todo el mundo en NatuSfera, una herramienta creada por varios centros y proyectos vinculados al CSIC que funciona como un cuaderno de campo para el móvil, una red social naturalista y una plataforma de seguimiento de la biodiversidad.

Gráfica

Sistema de identificación colaborativa incorporado en NatuSfera, que permite identificar y/o validar un gran número de observaciones en un período de tiempo muy corto (como el requerido en la biomaratón).

Además, las observaciones validadas pasarán posteriormente a formar parte de la base de datos de GBIF, la Infraestructura Mundial de Información en Biodiversidad (por sus siglas en inglés), que con casi 1.000 millones de registros constituye la mayor red mundial de datos de biodiversidad.

Las ciudades ganadoras serán las que obtengan el mayor número de observaciones, especies observadas y participantes, pero el verdadero premio será aumentar el conocimiento de la biodiversidad urbana. Así, la información aportada por la ciudadanía proporcionará una ‘instantánea’ en tiempo real que permitirá hacer un seguimiento de cómo cambia la distribución o la presencia de las especies en las ciudades.

Por eso, todas las especies cuentan, sean o no nativas y con independencia de su abundancia o rareza. Y todas las observaciones sirven, aunque no puedas identificar la especie retratada o hayas fotografiado la misma especie en lugares distintos. Con esta metodología, el primer City Nature Challenge, que se celebró solo en San Francisco y Los Ángeles, alcanzó más de 20.000 observaciones, 1.000 participantes y 1.600 especies clasificadas, entre las que se incluían nuevas citas de especies que no se habían visto nunca en estas dos ciudades.

Observación

Jaume Piera, investigador del Instituto de Ciencias del Mar del CSIC, explica que “el objetivo principal de las biomaratones es crear y fortalecer una red de observadores a nivel local que aporten el conocimiento de la biodiversidad de sus respectivas áreas. Esta información, una vez integrada en bases de datos, servirá para obtener un conocimiento actualizado del estado de la biodiversidad a gran escala”. Y añade: “para lograrlo necesitamos datos de todos los lugares y en todo momento, y esto tan sólo lo podemos conseguir con la participación y el conocimiento local de la gente”.

¿Cómo participar?

  1. Inscríbete en el siguiente formulario.
  2. Visita natusfera.gbif.es o bájate la aplicación desde Google Play o AppStore.
  3. Regístrate y/o inicia la sesión.
  4. Haz y sube tus observaciones entre el 27 y el 30 de abril para que sumen al contador de tu ciudad.

¡Anímate y participa en el City Nature Callenge 2018! Tus observaciones serán útiles para la ciencia y para favorecer la conservación de la naturaleza de nuestras ciudades.

Gabriella Morreale, la investigadora del CSIC que introdujo la prueba del talón en España

Gabriella Morreale

Gabriella Morreale siguió trabajando en su laboratorio hasta pasados los 80 años.

Por María Jesús Obregón* y Mar Gulis

Un pequeño pinchazo en el talón a las pocas horas de nacer: quien haya nacido en España a partir de los primeros años 80 no se ha ‘librado’ de esta práctica médica hoy conocida como la prueba del talón. Gracias a ella es posible detectar de manera temprana algunas enfermedades congénitas que pueden generar serios problemas de salud y que, de otro modo, pasarían inadvertidas.

En nuestro país, debemos la introducción de esta prueba a Gabriella Morreale de Escobar, que falleció el pasado mes de diciembre. Nacida en Milán en 1930, hija de padre diplomático y madre bióloga, a los 11 años se afincó con su familia en Málaga. Estudió Química y realizó la tesis doctoral en la Universidad de Granada. Desde entonces su carrera científica estuvo estrechamente vinculada a la de su marido, el médico Francisco Escobar del Rey. Ambos realizaron una estancia postdoctoral en la Universidad de Leiden (Holanda) y se convirtieron en investigadores del Consejo Superior de Investigaciones Científicas (CSIC) en 1958. Más tarde contribuirían a la creación del Instituto de Investigaciones Biomédicas, centro mixto del CSIC y la Universidad Autónoma de Madrid (UAM), donde Morreale desarrolló su actividad hasta pasados los 80 años, mucho tiempo después de su edad de jubilación.

A lo largo de su vida, está investigadora realizó importantes contribuciones científicas que tuvieron un gran impacto sobre la salud pública en nuestro país. Entre otras cosas, luchó por la introducción de la sal yodada en España para la prevención del bocio, introdujo la mencionada prueba del talón y demostró la importancia de las hormonas tiroideas maternas en el desarrollo del cerebro del feto.

Morreale, junto a varias colaboradoras, en los años 60.

Ya durante su tesis doctoral, realizada bajo la dirección del químico Emilio Gutiérrez Ríos y como becaria del médico Emilio Ortiz de Landázuri, probó que en la Alpujarra granadina, al igual que en otras muchas regiones españolas, la carencia de yodo era la causante del bocio endémico, un aumento de la glándula tiroides que origina un bulto en el cuello y a veces hipotiroidismo y discapacidad intelectual. Morreale también demostró que este trastorno podía prevenirse dando sal yodada a la población, una campaña que resultó muy eficaz.

Estos estudios continuaron en Las Hurdes a partir de 1967 con resultados similares. Pese a ello, la administración de yodo añadido a la sal común no fue adoptada en España hasta 1983; y tampoco se ha logrado la yodación universal de la sal, como sí ocurre en otros países.

En 1976, Morreale inició un estudio piloto para la detección del hipotiroidismo congénito, una enfermedad que se caracteriza por la ausencia de tiroides y que puede derivar en casos de discapacidad intelectual y retardos en el crecimiento. A partir del análisis de la sangre del talón de los recién nacidos, estableció un programa que hacía posible el diagnóstico eficaz y precoz de la enfermedad, lo que a su vez permitía tratar a los afectados con hormona tiroidea y evitar así que desarrollaran los otros trastornos.

Prueba del talón

En España, la prueba del talón ha permitido prevenir unos 6.500 casos de discapacidad intelectual y cretinismo.

En pocos años, el programa fue adoptado por todas las comunidades autónomas, algo que ha permitido prevenir unos 6500 casos de discapacidad intelectual y cretinismo hasta la fecha. Por esta contribución, en 1983 Morreale y Escobar recibieron junto a su equipo el I Premio Reina Sofía de Prevención de la Subnormalidad (hoy conocido como Premio Reina Sofía de Prevención de la Discapacidad).

Otra de sus líneas de investigación fue la importancia de las hormonas tiroideas maternas para el desarrollo del feto y, sobre todo, del cerebro fetal. Morreale fue una pionera a nivel mundial al demostrar que las hormonas tiroideas maternas protegen el desarrollo fetal, una conclusión que llevó a promover el control médico de la función tiroidea (hipotiroxinemia) en las mujeres gestantes, especialmente en las áreas de deficiencia de yodo, así como a la vigilancia de los niños prematuros.

Cuando se repasa la trayectoria de científicos y científicas es habitual destacar imágenes de la última etapa de su vida: normalmente, fotografías de una persona ya entrada en años a la que no le faltan reconocimiento ni galardones. Este también podría ser el caso de Gabriella Morreale, merecedora de innumerables premios, entre los que además del mencionado Premio Reina Sofía destacan el Premio Nacional de Medicina, el Severo Ochoa y el Jaime I.

Mañana, martes 24 de abril, el CSIC y la UAM han organizado un acto de homenaje a su figura, en el que se hablará de sus importantes aportaciones científicas, pero también de su infancia y juventud, de la pasión por el conocimiento que transmitió a las varias generaciones de investigadores e investigadoras a las que formó, así como su carácter afable y de su penetrante inteligencia, siempre acompañada de una gran sencillez.

 

* María Jesús Obregón ha sido investigadora del CSIC y discípula de Gabriella Morreale en el Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM).