Entradas etiquetadas como ‘cultura científica’

Bacterias, arañas, polillas: conoce a tus inseparables compañeros de piso

Por Mar Gulis (CSIC)

Si piensas que en tu casa solo vives tú o, como mucho, otras personas, te equivocas. Tu hogar está lleno de vida: multitud de especies, más o menos pequeñas o más o menos inofensivas, pueblan todos sus rincones, desde el recibidor a la cocina.

Hay compañía doméstica desde el momento en que pisas el domicilio, ya que en una suela de zapato suele haber unas 400.000 colonias de bacterias e incluso, a veces, pequeños artrópodos; seres a los que acabas de abrir la puerta de casa y, parte de los cuales, se instalarán en ella. Por esta razón, en algunas culturas se exige descalzarse para entrar en las viviendas, una costumbre cada vez más extendida por estos lares.

Este es solo uno de los datos que incluye Biodiversidad doméstica. Compañeros de piso, una exposición itinerante elaborada por el Museo Nacional de Ciencias Naturales del CSIC. La muestra realiza un recorrido por las distintas estancias de una casa y va arrojando datos sobre los seres vivos que podemos encontrar en cada una de ellas.

Cartel de la exposición Biodiversidad doméstica. Compañeros de piso

Supongamos que después de entrar a casa vamos al baño. Al contrario de lo que podría parecer, allí encontraremos más bacterias en el suelo que en la taza del retrete. Las especies más habituales en el primero serán las Rhodobacterias y las Rhizobacterias, mientras que las de los sanitarios serán del tipo Clostridium, relacionadas con el sistema digestivo.

En esta estancia probablemente también hallemos bacterias relacionadas con la piel, como Staphyloccocus y Streptococcus, y especies más grandes en tamaño pero totalmente inofensivas. Es el caso del pececillo de plata, que se pasea por suelos y rendijas, y los opiliones, animales parecidos a las arañas pero con patas extremadamente largas que deambulan por nuestra bañera o plato de ducha. ¿Hablamos del cepillo de dientes? De momento, quedémonos con la idea de que es mejor no compartirlo con otras personas.

Opilion, especie que frecuenta los baños

 

Ácaros durmientes

Vayamos ahora al dormitorio, a echar una pequeña siesta por ejemplo. En la cama nos esperará un nutrido cortejo de bacterias Streptococcus mutans y el rey de los colchones: el conocido ácaro del polvo (Dermatophagoides pteronyssinus), que suele estar presente también en otros elementos de la casa, como moquetas y sofás. Cuando nos durmamos, otra familia de ácaros se paseará por nuestra cara: se trata de Demodex folliculorum, un ser vivo con la fea costumbre de vivir dentro de nuestros folículos pilosos –justo por encima de la raíz del cabello– y salir al exterior durante estos periodos de reposo en los que nos encontramos en los brazos de Morfeo.

Demodex folliculorum saliendo del folículo piloso/Sciencephotolibrary

Pero la estancia con más vida de nuestro hogar es la cocina. Los suculentos restos de comida que permanecen allí por más que limpiemos son un fuerte atractivo para gran cantidad de especies. En el estropajo, por ejemplo, podemos encontrar hasta 20 familias diferentes de bacterias y en otras partes no nos sorprenderá ver organismos más grandes como hormigas, moscas y cucarachas. Las primeras no son peligrosas, pero no podemos decir lo mismo del resto. De hecho, las cucarachas, de las que existen en el mundo 3.500 especies, son uno de los organismos más resistentes que se conocen. Además pueden propagar enfermedades como la disentería o el cólera.

Otro organismo típico de la cocina con el que debemos tener cuidado es el moho, cuyas esporas se dispersan por el aire y pueden provocar reacciones alérgicas y problemas respiratorios, así como llegar a producir sustancias cancerígenas (como la aflatoxina).

 

El objeto más sucio de nuestro hogar

Tampoco estaremos solos o solas en el salón. Allí hay dos objetos que reúnen un gran número de especies: el mando a distancia y el teléfono. Numerosos estudios han puesto de manifiesto que el control remoto de la televisión es uno de los objetos más sucios de un hogar, un hotel o un hospital. Entre otras cosas, sobre él podemos encontrar restos de orina, de otros fluidos humanos y hasta de heces, todos ellos asociados a gran cantidad de bacterias y virus. Parece que eso de lavarse las manos después de visitar el baño no es una práctica tan habitual.

Estos son algunos ejemplos de la biodiversidad de nuestros hogares, pero no podemos olvidarnos de otros como las polillas, cuyas larvas se alimentan de nuestras prendas de ropa; los piojos, que pueden habitar en nuestros cabellos y de los que existen tres tipos de especies según prefieran vivir en nuestra cabeza, cuerpo o pubis; o las arañas, que a pesar del miedo que suscitan a algunas personas, pueden resultar beneficiosas porque se alimentan de otros insectos que sí serían nocivos o molestos.

No hay que asustarse, la mayoría de estas especies son inocuas y llevamos mucho tiempo conviviendo con ellas. Pero no viene mal tener buenos hábitos de higiene personal y una adecuada limpieza en las diferentes estancias de nuestro hogar. ¡Ah!, y si tienes pensado alojarte en algún hotel en tus próximas vacaciones, tal vez sea mejor disfrutar del entorno que coger ese mando a distancia que reposa sobre la mesa para ver la televisión.

 

La exposición Biodiversidad doméstica. Compañeros de piso es una idea original del Museo Nacional de Ciencias Naturales (MNCN) del CSIC y esta comisariada por A. Valdecasas, investigador del MNCN.

¡Sabandija! Humanos y animales unidos por la metáfora

Por Mar Gulis (CSIC)

Seguramente te han dicho alguna vez que eres un lince, o si hablas mucho te habrán llamado cotorra, y tú quizás hayas insultado a alguien llamándole burro… ¿Te has parado a pensar la cantidad de veces que utilizamos los nombres de animales para describir nuestro aspecto o comportamiento? Puede que los uses en tu día a día y probablemente no te hayas dado cuenta de que los animales se convierten en prototipos de los rasgos psicológicos de las personas. Además, con frecuencia las connotaciones negativas predominan sobre las positivas: por ejemplo, cuando tildamos a una mala persona de alimaña o de rata; o cuando interpretamos que los reptiles son desagradables y que los insectos son molestos, mientras que las aves cantan bien. Y nombres genéricos como animal o bestia se identifican de nuevo con rasgos negativos del ser humano. Sin embargo, la tendencia actual es usarlos en clave positiva junto a bicho o monstruo.

Portada del libro ¡Es un animal! La animalización de ser humano: historias de metáforas cotidianas, de José Luis Herrero Ingelmo

Un total de 320 nombres han sido analizados por José Luis Herrero Ingelmo, historiador de Lengua Española, en el libro ¡Es un animal! La animalización de ser humano: historias de metáforas cotidianas, de la Editorial CSIC. Para explicar nuestro propio mundo, los seres humanos recurrimos a la metáfora. Pero no se trata solo de una figura retórica. Como apunta el autor, este uso de los animales en nuestra lengua consiste en sustituir un adjetivo por un sustantivo para que el hablante pueda reflejar expresividad, intensidad o ironía. Por ejemplo, animales como el zorro son asociados a personas de dudosa moralidad (por no hablar de zorraver RAE). El buey o el toro sirven para denominar al cornudo, la vaca es la persona obesa y el búfalo alguien agresivo. El ciervo también mantiene relación con la infidelidad. Y si el asno o la mula apuntan a la escasez de entendimiento o la terquedad, los primates están relacionados con la fealdad y la brutalidad. Por su parte, el elefante remite al tamaño grande, lejos de cualquier connotación positiva.

Pero sin duda es el cerdo el animal que lo tiene todo: defectos físicos como la suciedad, psicológicos como la grosería y morales como la maldad. Además, al ser un nombre muy utilizado, está presente la sinonimia, ya que como destaca el autor se habla de puerco, marrano, cochino, cerdo, chancho, gorrino y guarro. En este breve repaso podemos ver que, si nos fijamos en el sentido metafórico de las expresiones que utilizamos, los mamíferos son los peor parados.

Reptiles como la sabandija o la víbora representan a las malas personas; y los gusanos, que se arrastran por la tierra, se relacionan con las “personas despreciables”, comenta el autor. Sin embargo, en el mundo de las aves ocurre todo lo contrario: valores positivos como el poderío o la audacia se ven reflejados en el águila, o en el gallo como alguien presuntuoso, pero también aquellas personas que cantan bien como el canario. En este menú de calificativos también está presente la torpeza, asociada al ganso o al pato, o la escasa altura de los pingüinos, el loro o el papagayo para las personas habladoras, el cuervo para alguien que se aprovecha, e incluso, la urraca para quien roba.

Por su parte, insectos como el abejorro o la mosca son molestos, y algunos como la cucaracha se utilizan para describir a las malas personas. Tampoco se libran los arácnidos ni los peces. Las arañas representan a los ladrones o cobardes. La sardina o el bacalao se asocian a la delgadez, y los necios al besugo. Los crustáceos siguen el mismo esquema: el caracol es una persona solitaria, lenta o cornuda. Y los anfibios como el sapo son feos.

La lista sería infinita. Incluso hay metáforas que comparten significados tanto negativos como positivos, según el ámbito geográfico en el que se utilicen. Por ejemplo, Herrero Ingelmo señala que el buey es la “persona tonta” en México mientras que en Puerto Rico se refiere al “amigo fiel”. Las asociaciones responden a prototipos de animales que representan distintos rasgos físicos o de personalidad.

El mundo animal ha estado muy presente a lo largo de nuestra historia, desde un sentido práctico en el mundo de la alimentación o la vestimenta, hasta el socio-afectivo en el caso de los animales de compañía. También en su relación con el pensamiento ético y simbólico, ya que han sido utilizados en el ámbito de las creencias, mitos, filosofía o literatura. Como hemos visto en este breve repaso de las metáforas que utilizamos frecuentemente con animales, también están presentes en nuestro lenguaje, y no solo lo enriquecen para bien o para mal, sino que los utilizamos para definirnos a nosotros mismos.

Te mostramos en un minuto las mejores imágenes científicas de FOTCIENCIA17

Por Mar Gulis (CSIC)

La extraordinaria anatomía de los caballitos de mar retratada a través de cuatro técnicas lumínicas, una imagen de microscopio que nos muestra los grandes ojos compuestos de los mosquitos o los surcos geométricos de un cultivo sostenible de cebada observados desde un dron. Estas son algunas de las siete propuestas seleccionadas en la 17ª edición de FOTCIENCIA, una iniciativa del Consejo Superior de Investigaciones Científicas (CSIC) y la Fundación Española para la Ciencia y la Tecnología (FECYT), con apoyo de la Fundación Jesús Serra, que trata de acercar la ciencia a la sociedad mediante la fotografía.

Las enormes antenas en forma de abanico que algunas luciérnagas de Brasil utilizan para detectar las feromonas del sexo opuesto o la asombrosa estructura del nanoplancton marino amenazado por el cambio climático en el Mediterráneo son otros de los fenómenos reflejados en las imágenes, que han sido escogidas por un comité compuesto por profesionales relacionados con la fotografía, la microscopía y la comunicación científica.

Las dos fotografías restantes llaman nuestra atención sobre los microplásticos que se encuentran en los organismos que constituyen la base de la cadena trófica marina y que llegan a los consumidores finales, los seres humanos, así como sobre el hecho de que la naturaleza es química y que la química está en la naturaleza. Puedes ver todas ellas en el vídeo que acompaña a este post.

Con estas imágenes y una selección más amplia de entre las cerca de 450 presentadas, próximamente se realizará una exposición itinerante y un catálogo.

Para saber más sobre las imágenes escogidas, pincha aquí.

En esta 17ª edición, FOTCIENCIA se ha sumado a los 17 Objetivos de Desarrollo Sostenible declarados por Naciones Unidas.

¿Sabías que la herrumbre (si es muy pequeña) tiene muchos usos médicos?

Por Fernando Herranz (CSIC)*

El tamaño sí que importa y lo cierto es que la herrumbre, el hierro oxidado que puede terminar apareciendo en piezas metálicas al estar tiempo sometidas a las condiciones atmosféricas, deja de ser una molestia si la empleamos a escala nanométrica. No solo eso, sino que cuando su tamaño es muy pequeño –justo antes de llegar al mundo de los átomos y las moléculas– algunos compuestos de la herrumbre –hidróxidos y óxidos de hierro– pueden utilizarse para diagnosticar enfermedades o tratar el cáncer.

Herrumbre

No hay duda de que a escala macroscópica la herrumbre constituye un serio problema, tanto a nivel estético –cuando afecta a superficies pintadas– como estructural ­–ya que, si penetra en profundidad, el metal presenta una resistencia mecánica mucho menor–. Esto explica la variedad de productos que se venden para evitar la formación de herrumbre o facilitar su eliminación.

Sin embargo, compuestos como la magnetita, uno de los óxidos más presentes en la herrumbre, tienen numerosas aplicaciones en el ámbito de la nanotecnología. Esta rama de la ciencia consiste en la producción y manipulación de materiales a escala nanométrica, es decir, que tienen al menos una dimensión de alrededor de 100 nanómetros (nm). A esta diminuta escala, empezamos a ver cosas muy curiosas que hacen que el óxido de hierro presente nuevas propiedades.

Pero, ¿qué ocurre cuando un material como la magnetita se forma a escala nanométrica para que sea tan distinto a cuando nos lo encontramos en el día a día? La magnetita macroscópica es fuertemente magnética, un imán, para entendernos. Cuando ese material se tiene en, por ejemplo, una esfera (una nanopartícula) de un diámetro de 10 nm, pasa a mostrar una propiedad llamada superparamagnetismo. De forma muy simple; todos los ‘pequeños imanes’ que constituyen el material están orientados en el mismo sentido dentro de la esfera. Debido a su tamaño, a temperatura ambiente, estas nanopartículas en agua no presentan magnetismo ya que cada esfera está dando vueltas al azar, sin una orientación definida. Sin embargo, cuando se acerca un imán, todas las nanopartículas se orientan y producen una respuesta magnética muy intensa. Esta propiedad de poder ‘enceder y apagar’ su magnetismo tiene múltiples aplicaciones.

Cabeza resonancia magnética

Imagen de una cabeza humana obtenida por resonancia magnética.

Por ejemplo, en medicina. Las nanopartículas basadas en magnetita, o materiales relacionados como la maghemita, se usan en imagen médica, en técnicas como la imagen por resonancia magnética o la imagen de partículas magnéticas. En esta aplicación las nanopartículas se dirigen, una vez inyectadas, a la enfermedad que se quiere diagnosticar y, una vez allí, es posible detectarlas por la señal que producen. En la imagen por resonancia magnética lo que hacen las nanopartículas es modificar el comportamiento magnético de las moléculas de agua de nuestros tejidos. Los dos hidrógenos de la molécula de agua (H2O) son los responsables de la señal en esa técnica de imagen. Las nanopartículas de magnetita modifican la señal que se obtiene de esos hidrógenos; de esa forma permiten saber dónde se han acumulado las nanopartículas y, por tanto, dónde se encuentra la enfermedad. Otra ventaja de las nanopartículas para imagen por resonancia es que, según las condiciones en las que se produzcan, pueden hacer que la señal sea más brillante o más oscura, lo que ayuda al diagnóstico de distintas enfermedades.

Brújulas vivientes

El comportamiento magnético de estas nanopartículas también explica otra de sus aplicaciones más interesantes en el tratamiento del cáncer. La técnica se llama ‘hipertermia magnética’ y consiste en acumular las nanopartículas en el tumor para, una vez allí, aplicar un campo magnético desde el exterior y producir un calentamiento de las células tumorales que acabe con ellas. Dicho calentamiento es posible gracias a las propiedades magnéticas de este nanomaterial.

Cadena de magnetosomas en el interior de la bacteria

Cadena de magnetosomas en el interior de la bacteria. / Alicia Muela; Estibaliz Etxebarria (UPV/EHU).

No solo el ser humano se ha dado cuenta de la utilidad de las nanopartículas de magnetita: ¡las bacterias también lo saben! Algunos de estos microorganismos producen en su interior pequeñas nanopartículas de magnetita (y también algunos otros compuestos relacionados) que se disponen de forma alineada a lo largo de la bacteria; son los llamados magnetosomas. Pero, ¿qué ganan con esto las bacterias? La respuesta es la magnetorrecepción: la capacidad de detectar las líneas del campo magnético terrestre y, de esa manera, orientarse. De hecho, los microorganismos que producen magnetosomas en el hemisferio norte se ven atraídos por el sur magnético, mientras que aquellos en el hemisferio sur se ven atraídos por el norte magnético (es decir, se sienten atraídos por el imán más potente que ‘sientan’). Las bacterias se convierten en minúsculas brújulas vivientes gracias a la nanotecnología.

En resumen, en nanotecnología, el tamaño importa, y mucho. Un mismo material que a escala macroscópica presenta pocas propiedades interesantes, cambia completamente cuando se presenta en la escala de los nanómetros.

 

* Fernando Herranz dirige el Grupo de Nanomedicina del Instituto de Química Médica del CSIC y colaborador habitual del blog DCIENCIA.

¿Cómo suena un agujero negro?

Por Enrique Pérez Montero (CSIC)*

La mayoría de las personas piensan que el sentido de la vista es imprescindible para estudiar los astros, dado que ninguno de los otros cuatro sirven para darnos información sobre ellos.

El gusto, el olfato y el tacto están basados en el contacto directo de nuestros receptores con moléculas y átomos, mientras que el oído requiere que las vibraciones que producen el sonido se transmitan a través de un medio material. Es imposible que una onda sonora sea capaz de surcar el vacío del medio interplanetario, interestelar o intergaláctico para traernos información sobre cuerpos que se encuentran a distancias difíciles de concebir. En cambio, la luz puede atravesar sin problemas ese vacío y traer con ella datos sobre el brillo y el color de las estrellas y las galaxias más lejanas.

agujero negro

Primera imagen real en la historia de un agujero negro. Se trata de un agujero supermasivo ubicado en el centro de la galaxia M87, presentado el 10 de abril de 2019 por el consorcio internacional Telescopio del horizonte de sucesos.

De lo que muchas personas no son conscientes es que la inmensa mayoría de la información que los astrónomos utilizamos para analizar los astros es invisible. Esto se explica en parte por la debilidad de la luz que nos llega del cosmos y que, solo parcialmente, logramos compensar con el uso de telescopios –que recolectan y concentran esa débil señal–, fotografías –que recogen en un tiempo extendido esa luz para su mayor definición– o de la espectroscopia –que ayuda a descomponer la luz por su contenido energético, algo que el ojo es incapaz de hacer por sí mismo más allá de la percepción de los colores–.

Pero es que además la mayoría de la radiación electromagnética emitida por los cuerpos luminosos que hay en el cosmos es imperceptible para el ojo humano, capaz únicamente de captar una estrecha franja de energía llamada luz óptica y que abarca los colores a los que estamos acostumbrados a ver. Afortunadamente, en el último siglo se han desarrollado un gran número de instrumentos para sondear el espacio –muchos de ellos en órbita alrededor de nuestro planeta– y recoger todas esas radiaciones, que van desde las ondas de radio hasta los rayos gamma.

Entonces, ¿cómo nos las apañamos los astrónomos para analizar esas imágenes si son invisibles? El truco está simplemente en que luego esa información puede traducirse a señales eléctricas que, a su vez, se traducen a un canal que sea perceptible para el científico que las analiza. Normalmente esa traducción se produce usando imágenes que representan esa información en colores y contrastes fácilmente reconocibles. De hecho, casi siempre esas imágenes se modifican para combinar distintos filtros o limpiarlas de otras señales que pueden alterar las medidas que se quieren tomar, o simplemente porque se quiere realzar su belleza, por lo que al final las imágenes no son completamente fieles a la realidad.

Por tanto, debemos siempre distinguir entre lo que los instrumentos precisos miden y la manera en que nosotros nos relacionamos con las medidas que esos instrumentos nos están mostrando: el hecho de ver en una imagen una exposición de una galaxia tomada en rayos X no quiere decir que seamos capaces de ver en rayos X.

En ese caso, ¿qué nos impide hacer esa misma traslación a algún otro canal que podamos percibir? Transformar en sonidos o, dicho de una manera más formal, sonificar los datos astronómicos no solo es posible, sino que en algunas ocasiones puede ser conveniente.

Un ejemplo muy claro lo constituye el poder enseñar conceptos astronómicos a personas con discapacidad visual, que pueden acceder a la información sobre el cosmos a través de los sonidos. En las actividades de divulgación que llevamos a cabo en el proyecto Astroaccesible, que tiene como fin explicar astronomía de una manera inclusiva, hemos enseñado a personas ciegas por vez primera una lluvia de estrellas fugaces, la caída de la noche con la aparición de miles de estrellas o el brillo de una aurora boreal.

De hecho, la sonificación ayuda a entender mejor a las personas que no tienen ningún problema de visión algunos procesos que tienen una variación temporal, como la caída de gas en un agujero negro (escucha el vídeo que aparece a continuación), la evolución de una estrella o la expansión del universo.

Todo esto hace de las sonificaciones un recurso muy inclusivo y rico en matices, ya que podemos usar las distintas características del sonido para transmitir diversos conceptos. Además, en el caso de los sonidos es más fácil darse cuenta de que la elección de los parámetros usados para codificar una señal eléctrica –básicamente, volumen, tono y timbre– es arbitraria y no hay reglas fijas en su utilización; al contrario de lo que ocurre en las imágenes, donde a veces se toman por ciertas muchas características arbitrarias que no están totalmente justificadas en la realidad. Esto hace que las sonificaciones redunden en un mejor juicio crítico con respecto a las medidas y representaciones visuales.

Por otro lado, la utilidad de los sonidos para el análisis de datos astronómicos no se limita solo a su uso con fines educativos o divulgativos. Este recurso está ayudando a algunos astrónomos ciegos de todo el mundo a analizar datos de manera directa. No solo eso, sino que la transformación en sonidos de ciertas medidas ayuda a otros astrónomos a detectar mejor ciertas variaciones dinámicas, así que es un recurso que empieza a extenderse entre los astrónomos que estudian astrosismología o participan en la búsqueda de planetas extrasolares a partir de los tránsitos u ocultaciones (escucha el vídeo que aparece a continuación).

Sin duda, en los próximos años veremos una mayor proliferación de este recurso y pronto nos acostumbraremos a ver las animaciones e imágenes que nos tratan de explicar cómo funciona el universo acompañadas de su correspondiente sonificación, que nos ayudará a entenderlo mejor.

Para saber más:

Proyecto Astroaccesible: http://astroaccesible.iaa.es

Proyecto Cosmonic de sonificación: http://rgb.iaa.es/cosmonic

 

* Enrique Pérez Montero es investigador del CSIC en el Instituto de Astrofísica de Andalucía (IAA).

¿Cuánto pesa un fantasma? Los aprietos de la ciencia para averiguar la masa del neutrino

Por Pablo Fernández de Salas*

Todo lo que podemos ver en el planeta Tierra, en nuestra galaxia o incluso más allá de sus límites se ha formado a partir de bloques pequeños. Como piezas de LEGO muy avanzadas, se combinan hasta dar forma a los objetos que existen en el mundo. Estos bloques son las partículas elementales, es decir, partículas indivisibles, las pequeñas piezas que ya no podemos separar más. Entre las partículas elementales más conocidas están los fotones (los constituyentes de la luz) y los electrones (los que permiten que haya corriente eléctrica). Los protones y neutrones, sin embargo, son en realidad partículas compuestas, formadas por la unión de tres partículas elementales llamadas quarks.

Todas las partículas elementales conocidas son diferentes. Algunas tienen carga eléctrica, otras no tienen masa, pero entre ellas hay una que ha fascinado especialmente a los físicos, incluso después de que se supiera su existencia. Se trata del neutrino. En realidad, neutrino no hay solo uno, sino tres tipos distintos que se diferencian según su forma de interactuar con las demás partículas. Pero esta interacción es tan débil que los neutrinos pueden atravesar fácilmente materiales muy densos, ¡incluso el planeta Tierra! Por este motivo, al neutrino a veces se lo conoce como la partícula fantasma.

Experimento KATRIN

Espectrómetro del experimento KATRIN, cuyo objetivo es descubrir la masa del neutrino, pasando por Eggenstein-Leopoldshafen, Alemania, en 2006 de camino al Instituto Tecnológico de Karlsruhe. / Karlsruhe Institute of Technology.

Los neutrinos son unas partículas elementales muy especiales, ya que no se comportan como las demás. En concreto, como vemos, su capacidad de interacción es inusualmente baja, pero lo que más sorprende a los físicos es que los neutrinos cambian de tipo según se mueven. Son, por así decirlo, como jugadores de fútbol que pasan continuamente de un equipo a otro, cambiando su chaqueta con un patrón oscilatorio, de ida y vuelta constante. Precisamente, el descubrimiento de esta propiedad, conocida como oscilación de los neutrinos, motivó la concesión del Premio Nobel de Física al físico japonés Takaaki Kajita y al físico canadiense Arthur B. McDonald en 2015.

La oscilación de los neutrinos es importante porque nos asegura que estas partículas elementales tienen masa. Podría no haber sido así. De hecho, el modelo estándar de física de partículas, la teoría que describe el comportamiento de todas las partículas elementales conocidas, predice que los neutrinos son partículas sin masa, al igual que los fotones. Pero, si este fuera el caso, ¡los neutrinos no cambiarían de tipo cuando se propagan! Este es otro motivo por el que la oscilación de los neutrinos es tan importante: nos indica que hay física por descubrir más allá del modelo estándar.

Modelo estándar

Conjunto de partículas elementales conocidas y que constituyen el denominado modelo estándar de la física de partículas.

Entonces, ahora que sabemos que los neutrinos tienen masa es cuando nos podemos hacer la pregunta: ¿cuánto pesa un neutrino? (o lo que es casi lo mismo: ¿cuánto pesa un fantasma?). La dificultad de esta tarea es obvia: no podemos atrapar un neutrino, que se mueve a velocidades muy, muy cercanas a la de la luz, y ponerlo en una balanza. Además, debido a la poca capacidad de interacción que tienen estas partículas, tampoco podemos aplicar las técnicas que fueron utilizadas para conocer el peso de los electrones, cuya manera de curvarse en un campo magnético depende del valor de su masa.

No puedes poner un neutrino en una balanza

A día de hoy, los físicos han ideado varias formas independientes de pesar los neutrinos, de las cuales destacan dos. La primera consiste en estudiar el efecto de la masa de estas partículas en el universo. Pero, ¿cómo puede una partícula tan pequeña afectar a todo el universo? La clave está en la exorbitante cantidad de neutrinos que surca el espacio desde los primeros instantes tras el Big Bang. Aproximadamente, el volumen de un vaso de agua contiene unos cien mil neutrinos cósmicos. ¡Imagina cuántos vasos de agua son necesarios para llenar no solo el planeta Tierra, sino todo el universo! La presencia de tal cantidad de neutrinos a lo largo de la historia del cosmos cambia, entre otras cosas, la manera en que las galaxias se distribuyen en el espacio. En especial, cuanto más ligeros son los neutrinos, más dispersa es la distribución de las galaxias, y eso es algo que podemos observar.

Distribución de galaxias locales generada con los datos del Sloan Digital Sky Survey (SDSS). Cada punto representa una galaxia. / SDSS

El segundo método consiste en estimar la masa de los neutrinos en el laboratorio. Como ya hemos mencionado, no podemos colocar un neutrino en una balanza, así, sin más. En lugar de ello, para pesar un neutrino en un laboratorio los científicos explotamos uno de los principios más básicos de la física: la conservación de la energía.

Uno de los procesos en los que se producen los neutrinos es en un tipo de desintegración radiactiva de los núcleos atómicos. Por ejemplo, cuando un neutrón que forma parte del núcleo se transforma en un protón. Como resultado de esta desintegración, el núcleo atómico produce un electrón (la conocida radiación beta) y un neutrino. De hecho, fue estudiando la energía de los electrones de la radiación beta como se supo en primer lugar que tenía que existir el neutrino, conclusión a la que llegó el físico Wolfgang Pauli en el año 1930.

Hoy en día, varios experimentos siguen estudiando la energía de dichos electrones, esta vez en busca del valor de la masa de los neutrinos. Cuando un átomo se desintegra emitiendo radiación beta, produce tanto un electrón como un neutrino, de modo que toda la energía que es radiada se distribuye entre estas dos partículas.

Si los neutrinos no tuvieran masa, podría ocurrir de vez en cuando que el electrón emitido adquiriera toda la energía liberada en el proceso. Sin embargo, como sabemos gracias a la famosa expresión E=mc² de Albert Einstein, crear cierta cantidad de masa cuesta una determinada cantidad de energía. Y los neutrinos tienen masa, algo que hemos aprendido al descubrir que oscilan al desplazarse. Por lo tanto, el electrón emitido en la radiación beta nunca podrá absorber toda la energía liberada en la desintegración atómica, ya que una parte es necesaria para crear la masa del neutrino, aunque este se produzca en reposo.

Uno de los experimentos más importantes que busca descubrir la masa del neutrino, basándose en la conservación de la energía en la radiación beta, es el experimento alemán KATRIN. Desafortunadamente, la masa del neutrino es tan pequeña que incluso la avanzada tecnología actual no nos ha permitido discernir todavía el peso de estas partículas. Sin embargo, los físicos podemos poner un límite superior al valor de su masa.

Recientemente, el equipo de investigadores que pertenecen al experimento KATRIN ha publicado sus primeros resultados, que nos dicen que el valor de la masa de los neutrinos tiene que ser inferior a dos millonésimas partes de la masa de un electrón. ¡Haría falta cerca de un cuatrillón (¡un uno seguido de veinticuatro ceros!) de neutrinos para alcanzar el peso de una minúscula mota de polvo! Por otro lado, el estudio de las propiedades cosmológicas de nuestro universo nos indica que los neutrinos podrían ser incluso diez veces más ligeros que el límite obtenido por KATRIN.

Con una masa tan pequeña y una capacidad de interacción casi nula, no es de extrañar que el neutrino sea conocido como la partícula fantasma.

 

* Pablo Fernández de Salas es investigador de la Universidad de Estocolmo. Hizo el doctorado en el Instituto de Física Corpuscular (IFIC), centro mixto del CSIC y la Universidad de Valencia.

¿Eres capaz de fotografiar la ciencia? Envía tus imágenes a FOTCIENCIA17

Por Mar Gulis (CSIC)

Si te gusta la fotografía, es el momento de enseñarnos cómo se ve la ciencia y la tecnología a través del objetivo de tu cámara… ¡o de tu microscopio! Ya está abierto el plazo para participar en la 17ª edición de FOTCIENCIA, una iniciativa que cada año elige las mejores fotografías científicas. Las imágenes seleccionadas formarán parte de un catálogo y de una exposición itinerante que recorrerá España durante 2020-21. Además, las mejores de cada modalidad recibirán una remuneración de hasta 1.500€.

El plazo de presentación es del 7 de noviembre al 16 de diciembre de 2019 (a las 12 del mediodía, hora española peninsular).

La luz, los fenómenos físicos, los organismos vivos o los objetos de la vida cotidiana pueden mirarse desde una perspectiva científica. Las opciones son prácticamente infinitas. Por eso no es necesario que te dediques a la ciencia para poder participar… Solo que seas capaz de ver, extraer o captar lo científico que hay en el mundo que nos rodea. Aquí puedes ver las imágenes seleccionadas en ediciones anteriores.

Las fotografías deberán presentarse en formato digital a través de un formulario disponible en la página web www.fotciencia.es, junto con un breve texto que permita interpretarlas. El jurado valorará tanto la imagen –su calidad técnica, originalidad y valor estético– como la claridad de la explicación aportada por el autor o autora.

Cualquier persona mayor de edad puede enviar fotografías propias que no hayan sido seleccionadas en procesos similares. Pero también hay una modalidad, ‘La ciencia en el aula’, dirigida al alumnado de Secundaria y Ciclos formativos, que puede participar a través de sus profesores y profesoras.

Las propuestas se podrán presentar en una de las siguientes modalidades:

  • Micro, cuando la dimensión real del objeto fotografiado sea menor o igual a 1 milímetro o la imagen haya sido obtenida mediante un instrumento de micrografía (óptica o electrónica) o técnicas de difracción.
  • General, cuando la dimensión real del objeto fotografiado sea mayor de 1 milímetro.

Además, los autores y autoras también pueden adscribir su imagen a otras modalidades específicas, como ‘Agricultura sostenible’ ‘Alimentación y nutrición’.

FOTCIENCIA es una iniciativa organizada por el Consejo Superior de Investigaciones Científicas (CSIC) y la Fundación Española para la Ciencia y la Tecnología (FECYT), con la colaboración de la Fundación Jesús Serra. En esta 17ª edición, FOTCIENCIA se suma a los 17 Objetivos de  Desarrollo Sostenible declarados por Naciones Unidas.

Toda la información y normas de participación están disponibles en www.fotciencia.es

¿Para qué sirve un láser?

Por José Vicente García Ramos (CSIC)*

Cuando se inventó, en 1960, el láser no servía para nada. De hecho, en aquellos tiempos algunos científicos se referían a él como “una solución en busca de problema”. Entonces, ¿para qué lo inventaron? Parece que querían probar, experimentalmente, que el mecanismo de amplificación de la luz por emisión estimulada, predicho por Einstein en 1917 y demostrado con microondas en 1954, podía extenderse a la luz visible.

Hoy, sin embargo, la situación es muy diferente y el láser ha encontrado tantas aplicaciones que nos resulta casi imposible enumerarlas. Las tres características que diferencian la luz de un láser de la luz del Sol o de la generada por una bombilla son que, en el caso del láser, se trata de un haz de luz monodireccional, monocromático y coherente.

Hoy día los láseres tienen numerosas y variadas aplicaciones. / Wikimedia Commons

Hoy día los láseres tienen numerosas y variadas aplicaciones. / Wikimedia Commons

Cualquier láser contiene al menos tres elementos fundamentales: un medio activo, un sistema de bombeo y una cavidad resonante. El medio activo es el material (sólido, líquido o gaseoso) que emite la luz. Para que este medio activo emita luz hay que excitarlo de alguna manera, del mismo modo que el filamento de una bombilla necesita una corriente eléctrica que pase por él. En el caso de un láser se trata del sistema de bombeo, que puede consistir en otro láser, una lámpara convencional o una corriente o descarga eléctrica. El medio activo se coloca entre dos espejos que forman una cavidad resonante donde la luz rebota entre ellos y ayuda a la amplificación, como lo que ocurre en la caja de resonancia de una guitarra que amplifica las ondas acústicas. Uno de los espejos es semirreflectante, por lo que parte de la luz amplificada sale de la cavidad resonante en forma de haz.

El volumen de información que transmite una onda electromagnética depende de su frecuencia; en este sentido, la luz de un rayo láser resulta idónea para la transmisión de señales. Por eso, entre sus aplicaciones más usadas está la lectura de discos compactos, la fabricación de circuitos integrados y la lectura de códigos de barras. En el ámbito de la medicina, la tecnología láser se aplica a los bisturís cauterizantes, ya que permite realizar cortes muy finos de gran precisión, evitar cualquier riesgo de contagio y cauterizar de manera inmediata, alejando el peligro de hemorragias.

Fibra óptica, impresoras o espionaje

Sin embargo, muchas de las aplicaciones del láser no dependen tanto de su capacidad para generar un rayo de luz como del hecho de que representa una concentración extremadamente intensa de energía. Basándonos en esta propiedad, podemos enumerar tres aplicaciones sumamente importantes en el terreno de la óptica. Una de ellas son las telecomunicaciones mediante fibra óptica. En este caso, las señales eléctricas que hasta hace poco tiempo se desplazaban a través de conductores metálicos han sido reemplazadas por pulsos ópticos que se transmiten a través de fibra de vidrio del grosor de un cabello. Como potente fuente de luz, el láser confiere a estas fibras una elevada capacidad de transmisión.

Espectáculo de luces con láseres. / kpr2 - Pixabay

Espectáculo de luces con láseres. / kpr2 – Pixabay

La segunda aplicación óptica importante está en la holografía, que es una técnica para crear imágenes tridimensionales, inventada en 1947 por el ingeniero eléctrico húngaro Dennis Gabor (1900-1979), que obtuvo por ello el Premio Nobel en 1971. Esta técnica se basa en la interferencia entre dos rayos de luz. Uno de los aspectos básicos del sistema es la necesidad de utilizar luz coherente, y cuando se inventó solo se disponía de fuentes relativamente débiles de este tipo de luz. La llegada del láser transformó la situación, porque la generación de una poderosa fuente de luz coherente es su esencia. Con el tiempo, la holografía llegó a hacerse muy familiar en una variedad de formas, como en la marca de seguridad de las tarjetas de crédito y en publicidad.

La tercera aplicación importante está en las impresoras de los ordenadores, donde, controlando un haz láser, se dibujan las palabras que se quieren imprimir.

También podemos destacar las aplicaciones que dependen de su capacidad para concentrar una gran cantidad de energía sobre una superficie muy pequeña (alrededor de un millón de vatios por centímetro cuadrado) durante un periodo de tiempo extremadamente breve. Algunas de las más importantes aplicaciones industriales de los láseres son fruto de esta capacidad: la perforación, la soldadura y el corte de distintos materiales.

Además, puesto que un rayo láser es muy fino y prácticamente no sufre divergencias, se puede usar para medir largas distancias con gran precisión. La técnica (semejante a la del radar) consiste en captar el rayo reflejado por el objeto distante y medir el tiempo transcurrido desde el envío de la señal hasta la recepción de su reflejo. Conociendo la velocidad de la luz, resulta fácil calcular la distancia. En los años setenta, este método se empleó para determinar con precisión la distancia de la Luna, utilizando los reflectores que habían instalado allí los astronautas norteamericanos.

Pero eso no es todo, también se han empleado láseres hasta para temas relacionados con el espionaje. En 1968 se descubrió que un láser puede detectar perfectamente desde el exterior las vibraciones del cristal de las ventanas producidas por las conversaciones en el interior de una casa. Vemos cómo el láser, que en un principio era como “un invento en busca de un empleo”, tiene en la actualidad un sinfín de variadas aplicaciones.

 

* José Vicente García Ramos es Vocal del Comité de Ética del CSIC y autor del libro Las moléculas: cuando la luz te ayuda a vibrar (Editorial CSIC-Los Libros de la Catarata). Hasta su jubilación en 2016 fue investigador en el Instituto de Estructura de la Materia del CSIC.

¿Yogur natural o edulcorado?: cómo afecta su consumo a tu salud

Por Mar Gulis (CSIC)

¿Alguna vez te has parado a pensar qué productos fermentados forman parte de tu dieta? Son alimentos en los que su procesamiento involucra el crecimiento de microorganismos. Generalmente son más ricos nutricionalmente que un alimento no fermentado, ya que resultan más digeribles, contienen compuestos biactivos producidos durante la fermentación y constituyen una fuente de microorganismos. Estas características hacen que los alimentos fermentados resulten beneficiosos para la salud.

“El consumo de lácteos fermentados se ha asociado con la prevención de la obesidad, la reducción del riesgo de trastornos metabólicos y patologías relacionadas con el sistema inmunitario”, destaca el investigador Miguel Gueimonde del Instituto de Productos Lácteos de Asturias (IPLA) del CSIC. Precisamente, los lácteos fueron este año los protagonistas del Día Nacional de la Nutrición (28 de mayo), como también lo han sido de un estudio en el que ha participado el investigador para determinar cómo impacta el consumo de productos lácteos fermentados en la microbiota intestinal y en la salud.

yogur

Fuente: Freepik

La microbiota intestinal es la comunidad microbiana que se encuentra en nuestro intestino y está compuesta por cientos de especies bacterianas diferentes, presentes en niveles muy elevados  –entre 0,1 y 1 billón de bacterias por gramo de contenido colónico–. Durante la última década, numerosos estudios han puesto de manifiesto la importancia de la microbiota intestinal para la salud y cómo algunas alteraciones en ella se relacionan con el incremento en el riesgo de sufrir diversas patologías. Por ello, indica el investigador, ha aumentado el interés sobre la relación existente entre la microbiota intestinal y las distintas funciones del organismo, desde la intestinal a la inmune e incluso la cognitiva, así como al estudio de los factores que determinan y modulan la composición de la microbiota. Y entre ellos, la dieta tiene un papel destacado. Así que presta atención la próxima vez que decidas en el supermercado: ¿yogur natural o edulcorado?; antes deberías saber qué efectos podría tener en tu salud.

Estos productos aportan nutrientes de gran calidad y contribuyen a la presencia de microorganismos beneficiosos. Así lo demuestra este estudio en el que 130 adultos han proporcionado información nutricional y de hábitos de vida, y en él se ha evaluado la ingesta de alimentos mediante un cuestionario con 26 productos lácteos fermentados. Los favoritos: el yogur natural, el yogur edulcorado y el queso curado o semi curado.

Entre los resultados, el más sorprendente, destaca el investigador, fue la observación de una asociación positiva entre el consumo de yogur natural y los niveles de microorganismos del género Akkermansia en el intestino, que tienen efectos beneficiosos sobre la obesidad y el síndrome metabólico. “Nuestro estudio indica que el consumo regular de yogur natural ayuda a mantener unos niveles elevados de este microorganismo”, explica, unos resultados que demuestran “los posibles efectos beneficiosos del consumo de yogur”.

Por el contrario, estos efectos no se observaron en los consumidores de yogur edulcorado ya que este consumo se asoció a niveles más bajos de Bacteroides. Y, de hecho, señala Gueimonde, los efectos pueden verse afectados por la adición de edulcorantes, lo que conllevaría además efectos diferentes sobre la microbiota intestinal, pero esto sería objeto de otro estudio.

Cómo nos puede ayudar la ciencia frente al despilfarro de alimentos

Por Ana Mª Veses (CSIC)*

El otro día fui a un restaurante con mi familia. En la mesa de al lado, un niño se puso a protestar porque no le gustaba la comida que le habían servido; inmediatamente, un camarero acudió para retirarle el plato.

Esta anécdota contrasta con la realidad que nos muestra la Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO): mientras cerca de 800 millones de personas sufren desnutrición en el mundo, según datos de 2017, aproximadamente un tercio de la producción mundial de alimentos se pierde o se desperdicia.

Además, este despilfarro produce graves consecuencias para el medioambiente. Tirar comida supone una notable pérdida de recursos naturales (tierra, agua y energía) y un incremento de emisiones de gases de efecto invernadero, para producir unos alimentos que finalmente nadie consumirá. Si ‘dilapidar comida’ fuera un país, sería el tercero con más emisiones de dióxido de carbono, detrás de China y EEUU. Asimismo, los alimentos que producimos pero luego no comemos consumen un volumen de agua equivalente al caudal anual del río Volga.

¿Por qué pasa esto? ¿Alguien se ha planteado hacer algo al respecto?

En los países industrializados principalmente se desperdician tantos alimentos porque la producción excede a la demanda, porque los supermercados imponen altos estándares estéticos a los productos frescos y descartan aquellos que son más feos, y porque se piensa que tirar es más cómodo que reutilizar.

En cambio, en países en vías de desarrollo, según indican estudios de la FAO, el desperdicio de alimentos por parte de los consumidores es mínimo. En estos países, sin embargo, son los inadecuados sistemas comerciales y las escasas y deficientes instalaciones de almacenamiento y procesamiento los que provocan grandes pérdidas de alimentos.

Desde las instituciones públicas se están desarrollando diversas estrategias y planes de actuación, a distintos niveles, para controlar y reducir estos desperdicios. Se han puesto en marcha planes de sensibilización cuya finalidad es modificar hábitos y modelos de consumo en las comunidades, como la difusión de buenas prácticas de conservación de productos en los hogares a través de los medios de comunicación o aplicaciones móviles para la sensibilización e innovación social o para la redistribución de excedentes.

Ciencia y tecnología para desperdiciar menos

Por otro lado, la ciencia y la tecnología contribuyen a generar herramientas que puedan disminuir el desperdicio de alimentos a lo largo de toda la cadena alimentaria. La creación de nuevas técnicas de conservación de alimentos, diseños de envases más resistentes, así como el uso de tecnologías limpias y la identificación de dónde se producen las pérdidas de producto son algunas de las alternativas que se investigan. Por ejemplo, ya se está trabajando en el desarrollo de envases más resistentes al transporte, que puedan volver a cerrarse fácilmente o divididos en porciones que aumenten la vida útil de los alimentos.

El catálogo de iniciativas nacionales e internacionales sobre el desperdicio alimentario realizado por la Agencia Española de Seguridad Alimentaria y Nutrición (AESAN) reúne iniciativas como un papel diseñado en 2010 (por la empresa Fenugreen) que consigue duplicar el tiempo de conservación de frutas y verduras frescas. Está impregnado con distintas especias que inhiben el crecimiento de hongos y bacterias y, además, contiene un determinado aroma que informa de si el sistema sigue siendo efectivo. Este papel, utilizado tanto en la agricultura como en hogares de todo el mundo, tiene una vida de tres semanas y después se puede aprovechar como abono.

Otras iniciativas aseguran la integridad del sellado en los envases mediante la selección de materiales de difícil perforación o desarrollan envases activos que evitan la entrada de sustancias indeseables al tiempo que liberan otras beneficiosas para la conservación del producto, como biocidas, antioxidantes o compuestos que absorben el oxígeno y la humedad.

Algunas líneas de investigación se basan en la reutilización y el reciclaje de subproductos industriales para evitar la disposición en vertedero, de manera que se puedan desarrollar nuevos productos a partir de los materiales excedentarios, recuperar compuestos de interés para utilizarlos como aditivos o ingredientes en otras industrias, así como obtener nuevos productos más saludables.

En el Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN) del CSIC, diversos grupos de investigación trabajan con residuos alimentarios procedentes de las industrias que usan productos vegetales y animales, con el objetivo de revalorizarlos. Uno de ellos es la okara, un subproducto de la soja que se obtiene tras extraer la fracción soluble para la producción de bebida de soja o tofu, y que antes era eliminado en las industrias de procesamiento. Al tratarla con altas presiones hidrostáticas y enzimas específicas, se consigue por un lado aumentar los carbohidratos solubles al doble de los valores iniciales y, por otro, incrementar sus capacidades prebióticas, favoreciendo el crecimiento de bacterias beneficiosas (Bifidobacterium y Lactobacillus) y la inhibición de otras potencialmente perjudiciales. Se ha comprobado que la okara tratada, suministrada a ratas que habían seguido una dieta grasa, frena la ganancia de peso, reduce los niveles de triglicéridos en plasma y aumenta la absorción mineral y la producción de ácidos grasos de cadena corta.

Estos ejemplos reflejan que se están empleando muchos recursos para frenar este problema y buscar soluciones. Pero no hay que olvidar el importante papel que tenemos los consumidores. Cada uno desde su posición, el personal investigador en sus laboratorios, los gobiernos en sus políticas y los consumidores en sus hogares, debemos colaborar para evitar que comida y productos válidos para el consumo sean desaprovechados, mientras en otra parte del mundo se pasa hambre.

* Ana Mª Veses es investigadora del Instituto de Ciencia y Tecnología de Alimentos y Nutrición del CSIC.