BLOGS
Ciencia para llevar Ciencia para llevar

CURIOSIDADES CIENTÍFICAS PARA COMPARTIR

Entradas etiquetadas como ‘cultura científica’

¿Es posible un ‘apocalipsis zombi’? Aquí, una perspectiva científica

Por Omar Flores (CSIC)*

Uno de los recursos más habituales de la ficción posapocalíptica son los zombis. Buena parte del público se ha preguntado alguna vez cómo actuaría en tal escenario; lo que, a su vez, lleva inevitablemente a la cuestión de si es realmente posible que existan los zombis y, de ser así, cómo serían. La ciencia, como siempre, acude para resolver nuestras dudas, incluso sobre no-muertos.

En primer lugar, vamos a desmentir una de las características más imposibles: los zombis como ‘máquinas de movimiento perpetuo’, que pase lo que pase nunca se detienen; cadáveres andantes que, encuentren o no comida, siguen caminando meses, años o toda la no-vida. Esto es totalmente imposible, pues, sin importar qué haya causado la zombificación, estas criaturas deben estar sujetas a los límites de la física. Ningún organismo, vivo o no-muerto, puede mantener su actividad sin recibir un aporte de energía que la sustente. Por tanto, los zombis desaparecerían por simple inanición.

Diferentes representaciones de zombies en las películas.  / AMC, Fox Searchlight y Screengems.

La siguiente cuestión es cómo se verían afectadas las capacidades físicas de los zombis al pasar a ese estado. En la ficción encontramos tres opciones básicas: zombis con fuerza o agilidad similares a las de los vivos (28 días después), con habilidades reducidas (The Walking Dead) o zombis con habilidades potenciadas, más fuertes y letales que en vida (Resident Evil). Desde el punto de vista científico, lo más probable es que los zombis tuvieran unas habilidades inferiores a las que tenían en vida, debido al deterioro físico de su organismo. Sería posible, aunque menos probable, que mantuvieran las mismas capacidades si, en vez de morir, solo perdieran su mente consciente, caso en el que podrían conservar su fuerza o agilidad siempre que consiguieran mantenerse bien alimentados. Lo que definitivamente no parece posible es que su fuerza se incrementase. Por tanto, parece evidente que podríamos enfrentarnos a los zombis y derrotarlos.

Otra idea tradicional del género es que los zombis se alimentan de cerebros. Sin embargo, no cabe esperar que los zombis sean selectivos con la comida. De hecho, las sagas más modernas ya presentan zombis que se alimentan de cualquier cosa para subsistir.

Tampoco parece muy razonable el comportamiento gregario por el cual los zombis tenderían a reconocerse y formar grupos. Sería más probable que se atacasen entre ellos, salvo que su carne no fuera útil para los propios zombis y que conservasen la capacidad de detectarse y descartarse mutuamente; algo complicado pero que podríamos aceptar. En cualquier caso, si así fuera, como mucho se ignorarían entre ellos.

Analizadas esas características secundarias (sobre las que podéis encontrar más detalles aquí), vamos por fin con la más importante de todas: ¿podrían existir realmente los zombis? Parece imposible que después de muertos algo nos vaya a hacer salir de las tumbas. En cambio, si aceptamos como zombis a aquellos cuerpos cuyo cerebro ha sido parcialmente destruido o anulado, dejando un organismo funcional pero reducido a un ente sin consciencia que solo busca satisfacer su impulso más básico de alimentarse, entonces sí podríamos llegar a enfrentarnos a una epidemia zombi. Para ello bastaría con que apareciese algún patógeno (virus, hongo o bacteria) que pudiese infectarnos, llegar a nuestro cerebro y dañarlo de esa manera. Otra posibilidad sería que un patógeno nos infectase en otra parte del cuerpo y que su actividad produjera una sustancia que llegase a nuestro cerebro y provocase esos síntomas, como si fuese una potente droga.

Pero si todo lo anterior es pura especulación, hay algo que es muy real, y es que, de hecho, ya existen zombis entre nosotros. Aunque solo en el caso de animales infectados por patógenos que los convierten en cierta clase de zombis.

El caso más simple sería el de la rabia, causada por un virus y cuyos síntomas se asemejan mucho a los de la ficción zombi (pérdida del control, agresividad, mordeduras y contagio a través de ellas), aunque los organismos infectados no son ‘muertos vivientes’.

Para encontrar animales cuyo comportamiento se aproxima más al de ‘muertos vivientes’ podríamos considerar el de los insectos que son hospedadores de parásitos como los gusanos nematomorfos (Nematomorpha o Gordiacea). Estos gusanos en su fase adulta viven en el agua (podemos encontrarlos incluso en charcos de lluvia), donde ponen sus huevos, que son ingeridos por los insectos. Los gusanos nacen en el cuerpo de su hospedador y se alimentan de él hasta que crecen lo suficiente para poder vivir libres. Cuando llega el momento de salir, el gusano toma cierto control del cuerpo del insecto y le provoca la necesidad autodestructiva de buscar agua y lanzarse dentro (Video de arriba).

A partir de ese momento, aunque el insecto se siga moviendo, ya es prácticamente un muerto viviente, pues no es dueño de sus acciones, y literalmente se suicida para que su parásito viva y continúe el ciclo.

El caso más extremo lo encontramos sin duda en el hongo Cordyceps unilateralis, que infecta a hormigas como las de la especie Camponotus leonardi. Las esporas de este hongo que alcanzan a las hormigas crecen dentro de ellas, comiéndoselas por dentro. En poco tiempo consiguen alterar el comportamiento de la hormiga, provocando que haga cosas extrañas como separarse del resto de hormigas, morder hojas y quedarse colgando de ellas, o lanzarse desde la vegetación al suelo. En este caso sí que podemos hablar de verdaderos ‘muertos vivientes’, ya que el hongo infecta completamente su cuerpo y su mente. Incluso llega a mover la mandíbula de la hormiga después de que esta haya muerto, lo que la convierte en una auténtica hormiga zombi. Al final el hongo desarrolla una seta que sale de la cabeza de la hormiga, para dispersar sus esporas e infectar a más hormigas. Esto sucede también con otros Cordyceps que infectan a otros insectos (como se puede ver también en este vídeo).

Hongo Cordyceps unilateralis en hormiga y representación humana (The Last of US). / Penn State y  Naughty Dog.

¿Podría pasar algo como eso en seres humanos? Ese es justo el argumento del videojuego The Last of Us, en el que una mutación de Cordyceps infecta a personas. Sin embargo, esta no parece una amenaza real, pues estos hongos han coevolucionado con los insectos, y no están adaptados para infectarnos (no bastaría una simple mutación para lograr que nos controlen como a las hormigas). En todo caso, podríamos especular sobre que en algún futuro llegase a aparecer (por evolución natural o de forma intencionada por nuestra intervención) una forma de patógeno que logre provocarnos una zombificación. Así que podemos concluir que, aun siendo poco probable, científicamente cabe la posibilidad de que lleguemos a convertirnos en zombis.

 

* Omar Flores es biólogo del CSIC en el Museo Nacional de Ciencias Naturales.

11 de febrero: un día para rescatar a nuestras inventoras del olvido

Por Eulalia Pérez Sedeño (CSIC) *

El próximo domingo 11 de febrero de 2018 se celebra el Día Internacional de la Mujer y la Niña en la Ciencia con el objetivo de romper las barreras de género en el ámbito científico. Una de esas barreras es la poca visibilidad de las científicas y la existencia de estereotipos que hacen que las niñas se interesen menos que los niños por algunas disciplinas como la física y las ingenierías, y que producen sesgos involuntarios en la evaluación de los méritos de las investigadoras.

Entre las muchas mujeres invisibilizadas en la historia de la ciencia y la tecnología, también se encuentran las inventoras y, entre ellas, cómo no, las inventoras españolas.

Ángela Ruiz Robles, con su enciclpedia mecánica.

En una ocasión dijo Voltaire que había conocido muchas mujeres ‘científicas’ muy inteligentes, pero ninguna inventora. Parecía así negarles capacidad inventiva, algo que se ha perpetuado en la falsa creencia de la incapacidad de las mujeres para la ingeniería. Los hechos históricos nos demuestran lo erróneo de esa idea: Josephine Cochran (lavavajillas), Mary Anderson (limpiaparabrisas), Rachel Fuller Brown y Elizabeth Lee Hazen (el antibiótico nistatina), Gertrude Ellion (los fármacos Inmuran y Zovirax, entre otros), Hedy Lamarr (cifrado de comunicaciones y más) o Stephanie Kwolek (fibra Kevlar) son algunos ejemplos significativos.

También aquí hemos tenido y tenemos inventoras desde hace mucho tiempo. La primera mujer en registrar un invento fue Fermina Orduña, quien en 1865 patentó un carro especial para vender en la calle leche de burra, vaca o cabra. Pero quiero traer aquí el caso de dos inventos que, al igual que sus inventoras, siguieron suertes muy distintas: la fregona y el libro mecánico.

Se suele señalar a Manuel Jalón, en 1964, como el inventor español de la fregona (había habido una patente semejante en EEUU en 1901). Pero Julia Montoussé Frages (de origen francés, aunque avilesina de adopción) y su hija Julia (Julita) Rodríguez-Montussé obtuvieron, en 1953, una patente muchos años antes que el mecánico de aviones. La patente de modelo de utilidad nº 34.262 se denominaba “dispositivo acoplable a toda clase de recipientes tal como baldes, cubos, calderos y similares, para facilitar el fregado, lavado y secado de pisos, suelos, pasillos, zócalos y locales en general”. ¡Un nombre mucho más difícil de recordar que el sencillo ‘fregona’! Desde luego, si examinamos los planos que figuran en la solicitud, no cabe duda de que se trata de una auténtica fregona.

Poco se sabe de estas mujeres, más allá de su parentesco y de la fecha de sus muertes: la madre en 1971 y la hija en 2005; o que eran de familia acomodada y sin estudios superiores, lo que muestra que la creatividad, inventiva y preocupación por situaciones humanas (el hecho de que las mujeres tuvieran que fregar los suelos de rodillas, día tras día) puede ser un buen acicate para encontrar soluciones.

La otra mujer que quiero sacar a la luz es Ángela Ruiz Robles (1895-1975), una leonesa de familia acomodada, con estudios superiores de magisterio, de gran capacidad innovadora y creativa, y siempre preocupada por mejorar la educación de sus compatriotas. Autora prolífica (dieciséis libros de texto), sus inventos fueron muchos y variados, pero quizás el más interesante fuera el del libro mecánico.

Extracto de la patente presentada por Julia Montoussé Frages y Julia Rodríguez-Montoussé.

En 1949 registró la patente nº 190.968, titulada “Procedimiento mecánico, eléctrico y a presión de aire para lectura de libros”. Las lecciones de cada asignatura estaban separadas en diversas hojas. Cuando se apretaban unos pulsadores, subían mecánicamente o por aire comprimido y el o la alumna podía ver la lección. Además, se podía aumentar el tamaño e incluso iluminar.

Posteriormente, Ángela Ruiz Robles perfeccionó el libro mecánico creando la Enciclopedia Mecánica, un dispositivo para mejorar las enciclopedias que usaban los escolares. La patentó en 1962 (nº 276.346), pero aunque se construyó un prototipo en bronce, madera y zinc, nunca llegó a comercializarse. En 1970 recibió una oferta de EEUU para explotarla en ese país, pero ella quería que los beneficios fueran especialmente para los españoles. Aunque hubo alguna empresa española que se interesó por la comercialización, la cantidad de dinero que tenía que aportar la inventora lo hizo inviable. No obstante, Ángela fue muy reconocida en su época y recibió un montón de distinciones y premios en diversos certámenes de inventores y exposiciones nacionales e internacionales.

Son dos casos muy distintos los de estas mujeres. Las primeras, Julia Montoussé y Julia Rodríguez-Montussé, han quedado ocultas como muchas otras mujeres en la historia, siendo reemplazadas, como tantas veces, por un varón. La última fue reconocida en su época, pero sus logros también han quedado oscurecidos, aunque ahora se la reconoce, al menos en nuestro país, como la precursora del libro electrónico. Así, una de las salas de trabajo del Museo Nacional de Ciencia y Tecnología lleva su nombre.

 

* Eulalia Pérez Sedeño es investigadora del CSIC en el Instituto de Historia y co-autora del libro Las ‘mentiras’ científicas sobre las mujeres (Catarata).

William R. Hamilton: el niño prodigio que emuló a Arquímedes

Por Sergio Barbero (CSIC) *

No es usual que un adolescente de 17 años se sienta interpelado a ocupar un lugar destacado en la historia de la ciencia. Y menos aún que semejante sentimiento acabe convirtiéndose en realidad, haciendo veraz el viejo aforismo de que sólo quien persigue con ahínco sus sueños es capaz de alcanzarlos. Esta es la historia de William Rowan Hamilton (1805-1865).

Retrato de Hamilton. Imagen de dominio público.

Hamilton fue educado por su tío James, un erudito en lenguas clásicas graduado en el Trinity College de Dublín. No es de extrañar, pues, que la educación del joven William tuviese un especial énfasis en el aprendizaje de idiomas. A muy temprana edad quedó patente la increíble capacidad de William: a los diez años –según su padre Archibald– conocía y hablaba, en mayor o menor grado, hebreo, persa, árabe, sánscrito, caldeo, siriaco, indostano, malayo, bengalí, griego, latín y varias lenguas europeas modernas. Dado el don de su hijo, Archibald aspiraba a que en el futuro William hiciese carrera con la prestigiosa Compañía Británica de las Indias Orientales. Sin embargo, la aritmética se interpuso a los deseos del padre. William descubrió que estaba dotado no sólo para aprender lenguas sino también para los cálculos aritméticos.

Su tío empezó a preparar a William para su entrada en el Trinity College. Allí, a pesar de las reticencias de James, Hamilton comenzó a estudiar distintas ramas de las matemáticas y mostró un interés especial por la aplicación de la geometría al estudio de la propagación de la luz. Desde tiempos de Euclides se había utilizado un modelo geométrico de la luz que postulaba que ésta se propagaba como una familia de líneas rectas, denominadas rayos de luz.

Hamilton no se limitaba a estudiar lo que se conocía sobre la geometría de la luz sino que, a pesar de su juventud (17 años), aspiraba a crear algo nuevo. Era plenamente consciente de su valía intelectual y prefería las ciencias naturales a los estudios humanísticos, porque, según escribió: “¿Quién no preferiría tener más la fama de Arquímedes que la de su conquistador Marcelo, o la de cualquier erudito de los clásicos, cuya máxima ambición fuese estar familiarizados con los pensamientos de otros hombres? […] Las mentes poderosas de todos los tiempos se han unido para encumbrar el vasto y hermoso templo de la Ciencia, inscribiendo sus nombres en caracteres imperecederos; pero el edificio no está finalizado: no es aún demasiado tarde para añadir un nuevo pilar u ornamento. No he llegado apenas a los pies de este templo, pero aspiro, un día, a alcanzar su cima.” Tal postura no implicaba que Hamilton despreciase las humanidades. De hecho siempre amó la poesía, a la que veía como fruto del mismo espíritu creativo del que emana la ciencia.

Sus estudios sobre óptica fructificaron. En 1823 escribía a su primo: “En óptica he hecho un descubrimiento muy curioso”. Tan sólo un año después, Hamilton mandaba su primer artículo científico –titulado ‘Sobre las cáusticas’– a la Royal Irish Academy.  Durante los siguientes años Hamilton establecería una teoría completamente original sobre la óptica geométrica basada en un nuevo principio determinante que  descubrió y denominó “Principio de acción constante”. Se sabía que una familia de rayos de luz siempre tiene asociada una superficie ortogonal a todos ellos que se denomina frente de onda. Étienne-Louis Malus (1775-1812) demostró que una familia de rayos con un frente de onda asociado seguía manteniéndolo a pesar de que esos rayos sufriesen una reflexión en un espejo o un cambio de medio (lo que se llama refracción). Pues bien, el principio de acción constante de Hamilton establecía que esa misma familia de rayos, al propagarse por un sistema de lentes o espejos, cumple la propiedad de que todos los rayos llegan a la superficie del frente de onda al mismo tiempo. La figura 2 muestra un esquema ilustrativo de este principio. La familia de rayos asociada al frente de onda W al refractarse en la superficie R se transforma en una nueva familia de rayos con el frente de onda W’. El principio que descubrió Hamilton establece que los rayos A, B, C de W llegan a los puntos A’, B’, C’ pertenecientes a W’ invirtiendo para ello el mismo tiempo. Esto tiene unas implicaciones muy profundas y prácticas en el ámbito de la óptica geométrica y por ende en el diseño de sistemas ópticos, como cámaras, telescopios, etc.

Esquema explicativo del Principio de acción constante.

Además, Hamilton se dio cuenta de que el formalismo que había creado para la óptica geométrica era válido para reformular la mecánica newtoniana. Así lo expuso en el que se convertiría en su más importante artículo científico: ‘Sobre un método general de la dinámica’ (1834). Allí definía una función, el denominado concepto Hamiltoniano, que describía por completo la evolución de un sistema mecánico. Paradójicamente, a pesar de que Hamilton ideó su teoría matemática para describir la mecánica clásica, su formulación alcanzaría su clímax precisamente con la crisis de esta misma mecánica clásica y la aparición de la mecánica cuántica, para la cual estaba especialmente adaptada. Tal fue así que Erwin Schrödinger (1887-1961), creador de la mecánica cuántica ondulatoria, diría de él: “El Principio Hamiltoniano se ha convertido en la piedra angular de la física moderna […] Su famosa analogía entre la mecánica y la óptica prácticamente anticipó la mecánica ondulatoria, que no tuvo que añadir mucho a sus ideas sino simplemente tomarlas en serio. Por lo tanto Hamilton es uno de los más grandes hombres de ciencia que el mundo ha creado”.

Hamilton consiguió su sueño: labrar para siempre su nombre en el templo sagrado de la ciencia. El Hamiltoniano es hoy en día, como afirmó Schrödinger, uno de los conceptos cruciales de la física moderna.

 

*Sergio Barbero Briones es investigador del CSIC en el Instituto de Óptica (CSIC).

 

¿Quieres ver las mejores imágenes científicas de 2017? Estas son las seleccionadas en FOTCIENCIA 15

Por Mar Gulis (CSIC)

‘Morir para seguir viviendo’ es el título de una de las fotos seleccionadas en la 15ª edición de FOTCIENCIA. La imagen muestra una hoja de tabaco que, al recibir luz ultravioleta, nos permite ver cómo un gen provoca la senescencia de algunas de sus células. Un azul intenso refleja la degradación de la clorofila en las zonas más dañadas, y contrasta con el rojo que predomina en el resto de la hoja.

Al observar ‘Con flotador de serie’, otra de las fotografías escogidas, ¿qué atrae nuestra mirada? Vemos una copa de agua con una naranja en su interior. La imagen pretende demostrar el principio de flotabilidad: gracias a la cáscara de la naranja, cuya estructura porosa alberga burbujas de aire, la fruta no  se hunde. Pero si le retiramos la piel… La naranja se sumerge hasta el fondo del recipiente. Ambas fotografías, y otras cinco más, forman parte de la selección realizada por el jurado.

Mira el vídeo y descubrirás un ‘paisaje nano’ que se asemeja a las pirámides de Egipto, la ingeniería natural que encierran las alas de una libélula, la interacción entre dos microorganismos, los conidios que genera un hongo para resistir al ataque de bacterias, o una original representación de las neuronas realizada por estudiantes de Educación Infantil.

Estas imágenes, junto a otras que se escogerán entre las 729 presentadas, serán incluidas en el catálogo de FOTCIENCIA 15. Como en años anteriores, las fotografías formarán parte de una exposición que recorrerá diferentes museos y centros de España a lo largo de 2018. Además, dos copias de esta muestra itinerante estarán disponibles para su préstamo gratuito.

FOTCIENCIA es una iniciativa de ámbito nacional organizada por el Consejo Superior de Investigaciones Científicas (CSIC) y la Fundación Española para la Ciencia y la Tecnología (FECYT), con la colaboración de la Fundación Jesús Serra. Su objetivo es acercar la ciencia a la ciudadanía a través de fotografías que abordan cuestiones científicas desde una perspectiva artística y estética. Cada imagen va acompañada de un comentario escrito por su autor/a en el que se ofrece una explicación científica de lo que ilustra la fotografía.

Toda la información relativa a FOTCIENCIA está disponible en la web www.fotciencia.es

¿Te inspiran la fotografía y la ciencia? Participa en #FOTCIENCIA

Por Mar Gulis (CSIC)

¿Te gusta la fotografía? ¿La ciencia y la tecnología disparan tu creatividad? Pues estamos esperando tus propuestas. FOTCIENCIA es una iniciativa que celebra su 15ª edición y que seleccionará las mejores imágenes de ciencia del año para conformar un catálogo y una exposición itinerante. La muestra resultante recorrerá una veintena de museos y centros culturales de España en 2018. Las fotografías pueden presentarse hasta el próximo 14 de diciembre de 2017 a las 14:00 horas.

Las imágenes deben estar relacionadas con la investigación científica o sus aplicaciones, y pueden reflejar aspectos como el objeto de estudio de la investigación, las personas que la realizan, su instrumentación e instalaciones, los resultados del avance científico, etc. Para participar es necesario presentar las fotografías en formato digital a través de un formulario disponible en la página web www.fotciencia.es, junto con un texto que permita interpretarlas. El jurado valorará tanto la imagen –su calidad técnica, originalidad y valor estético– como la claridad de la explicación aportada por el autor o autora.

En esta iniciativa puede participar cualquier persona mayor de edad que presente fotografías propias que no hayan sido seleccionadas en procesos similares. Pero también hay una modalidad, ‘La ciencia en el aula’, dirigida al alumnado de centros educativos y de formación profesional, que pueden participar a través de sus profesores y profesoras.

 

Vídeo con las imágenes seleccionadas en la pasada edición de FOTCIENCIA (2016).

 

Las propuestas se pueden presentar a una de las siguientes modalidades:

  • Micro, cuando la dimensión real del objeto fotografiado sea menor o igual a 1 milímetro o la imagen haya sido obtenida mediante un instrumento de micrografía (óptica o electrónica) o técnicas de difracción.
  • General, cuando la dimensión real del objeto fotografiado sea mayor de 1 milímetro.

Además, los autores y autoras también pueden adscribir su imagen a otras modalidades específicas, como ‘Agricultura sostenible’ ‘Alimentación y nutrición’, que cuentan con el apoyo de dos centros del CSIC: el Instituto de Agricultura Sostenible (IAS) y el Instituto de Agroquímica y Tecnología de Alimentos (IATA).

Las dos mejores imágenes de la categoría General y las dos mejores imágenes de la categoría Micro, según los criterios mencionados anteriormente, serán remuneradas con una cantidad de 1.500€ cada una. En las demás modalidades, se seleccionará una foto que recibirá 600€.

La organización hará una selección adicional de fotografías para incluirlas en el catálogo y en la exposición itinerante, que se prestará gratuitamente a las entidades que la soliciten. Todas las fotos presentadas pasarán a formar parte de la galería de imágenes de la web de FOTCIENCIA.

FOTCIENCIA es una iniciativa organizada por el Consejo Superior de Investigaciones Científicas (CSIC) y la Fundación Española para la Ciencia y la Tecnología (FECYT), con la colaboración de la Fundación Jesús Serra.

Toda la información y normas de participación están disponibles en www.fotciencia.es

 

Semana de la Ciencia del CSIC: viajar al pasado, hacer catas científicas y más

Por Mar Gulis (CSIC)

Viajar al pasado a través de los restos orgánicos de un yacimiento navarro (Instituto de Ciencias de la Vid y el Vino), aprender sobre los caballitos de mar (Instituto de Investigaciones Marinas) o realizar catas catas de queso para conocer sus propiedades nutricionales (Instituto de Productos Lácteos de Asturias) son tres de las 331 actividades con las que el CSIC abre este año la Semana de la Ciencia. A través de los más de 81 centros de investigación participantes, esta iniciativa, organizada con apoyo de la Fundación Española para la Ciencia y la Tecnología (FECYT), ofrecerá propuestas para todos los públicos en torno a diversas áreas del conocimiento.

Muchas de las actividades de la Semana de la Ciencia del CSIC han sido diseñadas para que el público asuma un papel activo e interactúe con el personal investigador.

Las actividades, gratuitas y dirigidas al público general, se presentan en formatos clásicos, como exposiciones, rutas científicas o conferencias, y en otros más novedosos, como degustaciones, cafés científicos, concursos o los innumerables talleres diseñados para que el público interactúe con la ciencia. Así, ‘Convierte tu móvil en un microscopio’, organizada por el Instituto de Recursos Naturales y Agrobiología de Sevilla, el taller ‘Experimenta con partículas’, del Centro Nacional de Aceleradores, o ‘Iluminación estroboscópica’, una iniciativa del Laboratorio de Investigación en Fluidodinámica y Tecnologías de la Combustión, reflejan la vertiente práctica de la Semana de la Ciencia.

En esta edición, el CSIC estrena ‘Ciencia de Tomo y Lomo’, una aventura conjunta entre investigación y librerías en Madrid. Además, el consejo también ha incorporado la ciencia ciudadana a su programación, a través de iniciativas como ‘Plásticos 0 en la playa’, un taller del Instituto Mediterráneo de Estudios Avanzados. El objetivo en este caso es que la propia sociedad recabe datos valiosos para evaluar los efectos de los residuos marinos sobre los ecosistemas costeros.

El pasado 2 de noviembre arrancó la cita anual con la divulgación científica en muchas comunidades autónomas. En la mayoría de ellas, la Semana de la Ciencia se prolongará hasta finales de mes. ¡Consulta la programación y participa!

Las legumbres, aliadas en la lucha contra el cambio climático

Por Mar Gulis

Las legumbres son un alimento muy popular en nuestro país por su alto valor nutricional (pese a que su consumo está decayendo en los últimos años). Quizás menos conocido es que con ellas se producen harinas como sustituto del cacao, como el algarrobo, o que sus raíces se utilizan como especias (por ejemplo, el regaliz). Muchas legumbres se emplean además como alimento para animales (alfalfa, veza y trébol) o para la producción de principios activos medicinales, aceites, tinturas y fibras, entre otros productos. Como consecuencia, las leguminosas se encuentran entre los cultivos más importantes a nivel mundial, solo detrás de los cereales. Pero además las legumbres pueden ser aliadas en la lucha contra el cambio climático. Tal y como cuentan los autores del libro de divulgación Las legumbres (CSIC-Catarata), la clave está en que ayudan a fijar el nitrógeno orgánico, uno de los nutrientes, después del agua, más necesarios para el crecimiento de las plantas.

Cartel de la FAO realizado con motivo del Año Internacional de las Legumbres 2016.

En agricultura es muy habitual el uso de abonos nitrogenados. Sin embargo, además de su elevado coste, estos abonos tienen consecuencias medioambientales, ya que una cantidad significativa de ellos son emitidos al aire como óxido de nitrógeno, uno de los gases causantes del efecto invernadero y que, mezclado con el vapor de agua, produce la lluvia ácida. Su sustitución no es baladí si recordamos que, según el Panel Intergubernamental de Expertos sobre el Cambio Climático de la ONU, la agricultura es responsable de cerca del 14% de las emisiones globales de gases de efecto invernadero, un volumen similar al originado por el transporte.

El nitrógeno atmosférico es la forma más abundante de nitrógeno. Los únicos organismos capaces de transformarlo en nitrógeno orgánico son aquellos que poseen la enzima nitrogenasa. Estos organismos pueden realizar la transformación en solitario o en asociación con otros organismos, principalmente con plantas. En este sentido, la asociación simbiótica más importante se da entre unas bacterias del suelo denominadas rizobios y plantas de la familia leguminosae, de las que forman parte las legumbres. Su unión aporta cerca del 80% del total del nitrógeno atmosférico fijado de forma biológica.

La interacción leguminosa-bacteria y el establecimiento de la simbiosis son procesos de gran complejidad en los que intervienen numerosos factores estructurales, bioquímicos y genéticos. El establecimiento de la simbiosis comienza con el reconocimiento entre un rizobio determinado y su planta hospedadora, que consiste en un intercambio de señales químicas que activan recíprocamente programas genéticos específicos. El resultado exitoso de esta interacción es la formación de un órgano nuevo en la planta, el nódulo, donde se lleva a cabo la fijación biológica del nitrógeno atmosférico. La Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO) calcula que las leguminosas pueden llegar a fijar entre 72 y 350 kilos de nitrógeno por hectárea y año.

Este proceso, además de ayudar al crecimiento de la planta, mejora la calidad nutricional de los suelos. Ese suelo queda ‘abonado’ y sigue siendo útil para cultivos posteriores, lo que permitirá a su vez reducir el uso de fertilizantes nitrogenados.

Además de enriquecer los suelos, incluir legumbres en los cultivos reduce el riesgo de erosión y aumenta su potencial de absorción de carbono. Igualmente, las leguminosas soportan mejor los climas extremos y son más resistentes que otros cultivos. Por su amplia diversidad genética permiten obtener variedades mejoradas capaces de adaptarse mejor a condiciones climáticas adversas. ¿Se les puede pedir más?

Mucho más sobre estas plantas en el libro Las legumbres  (CSIC – Catarata), coordinado por Alfonso Clemente y Antonio M. de Ron, de la Estación Experimental del Zaidín del CSIC y la Misión Biológica de Galicia del CSIC, respectivamente.

Matrix acústico: una habitación donde el sonido nunca vuelve

Mar Gulis (CSIC)

Quizá recordéis la mítica escena de Matrix (1999) en la que Morfeo (Laurence Fishburne) y Neo (Keanu Reeves) aparecen en una habitación en blanco, que resulta ser un programa en el que pueden simular la realidad. “¿Esto no es real?”, pregunta Neo tocando un sillón. “¿Qué es real? ¿Cómo defines real?… Si hablas de lo que puedes sentir, de lo que puedes oler, probar y ver… lo real son impulsos eléctricos que tu cerebro interpreta”, le contesta el Guía al Elegido. Bien, en esta ocasión vamos a hablar de lo que puedes oír y de una habitación como la de Matrix, pero ubicada en el Instituto de Tecnologías Físicas y de la Información Leonardo Torres Quevedo (ITEFI) del CSIC, en Madrid.

Al cruzar la puerta, una tiene la impresión de entrar en un espacio muy peculiar. La sensación acústica es “la de estar colgado de un globo a 1.000 metros de altura”, explica el físico del CSIC del Grupo de Acústica Ambiental Francisco Simón. Y es así, todo sonido emitido en esta habitación nunca vuelve, queda absorbido por unas paredes, suelo y techo de grandes cuñas de lana de vidrio.

Cámara anecoica del Instituto Leonardo Torres Quevedo / CSIC Divulga.

Esta cámara anecoica (sin eco ni reverberación) de 220 metros cúbicos sirve para crear campos acústicos virtuales que, como en la habitación de Matrix, simulen una realidad sonora. Esto es muy útil para el diseño de salas de música, dado que pueden reproducir cómo sonaría un violín, por ejemplo, en un espacio antes de construir el recinto, para simuladores de juego, que intentan que te des la vuelta con el sonido de un libro que se cae detrás de ti, para el cine… Los primeros en usar este tipo de tecnología fueron los militares con simuladores de vuelo y la industria del automóvil, que tiene muy en cuenta cuál es el sonido que quiere que emitan sus vehículos.

Cuando se construyeron estas cámaras, en los ’70, esta instalación era absolutamente pionera. Ahora empresas como Google, Microsoft o Telefónica tienen sus cámaras anecoicas. En ellas, las compañías prueban las características acústicas de sus dispositivos, como la potencia o cantidad del sonido que emite cualquiera de sus aparatos, y la directividad, es decir, en qué dirección lo hacen.

Y aquí, ¿podríamos escuchar el silencio total? “Tendríamos que congelarnos del todo para hacerlo”, bromea Simón. “Aquí está nuestro cuerpo, escuchamos el aire salir y entrar de los pulmones, nuestras tripas; si nos calláramos, escucharíamos nuestro corazón”, concreta.

Cámara reverberante del Instituto Leonardo Torres Quevedo / CSIC Divulga.

Cerca de esta cámara encontramos su opuesta: la habitación reverberante, un espacio en el que se busca que el sonido se expanda por todo el espacio y reverbere en todas direcciones. Para ello, hay colgados unos grandes paneles de metacrilato que producen el máximo número posible de reflexiones del sonido. Este espacio de 210 metros cúbicos se usa para sumergir en él materiales de construcción y caracterizarlos. Así, cuando un sonido llega a un material para edificación podemos ver si “rebota”, entra dentro y se disipa o lo traspasa y llega al otro lado. Por eso, aquí se realizan mediciones de absorción acústica de materiales y objetos de mobiliario.

En esta sala, solo escuchamos reverberación, no eco. La diferencia entre el eco y la reverberación es cuestión solo de tiempo: si el sonido tarda en volver menos de 50 milisegundos, lo percibimos como un sonido continuado, si tarda más, escuchamos dos sonidos; se produce el eco.

De hecho, ya en los años 60 y 70 se realizaron en este centro muchos estudios sobre aislamiento en la edificación: aislamiento al ruido aéreo de puertas, ventanas, barreras acústicas, suelos, techo, etc. No se trata de una cuestión baladí: una diferencia de 3 decibelios supone el doble de energía en el sonido que estábamos escuchando.

Por cierto, este mismo mes de octubre se cumplen diez años de la publicación de las condiciones acústicas exigidas en el Código Técnico de Edificación con las que se endurecieron las prestaciones acústicas que deben satisfacer los edificios, ofreciendo a constructores, administración y usuarios herramientas para que las viviendas que se construyen hoy día planteen menos problemas a sus habitantes y proporcionen un nivel de confort adecuado.

 

¿Qué son las misteriosas luces que aparecen a veces con los terremotos?

Por Arantza Ugalde (CSIC)*

El suelo de México no ha parado de temblar en los últimos días con fatales consecuencias. Durante el pasado 8 de septiembre muchas personas presenciaron la aparición de extraños fenómenos luminosos en el cielo nocturno durante el terremoto de magnitud 8.1 que afectó México. Fotografías y vídeos de estas luces, tiñendo las nubes de diferentes colores al paso de las ondas sísmicas, circularon por las redes sociales y medios de comunicación. No era la primera vez que los habitantes de Ciudad de México observaban este raro fenómeno. Con ocasión de los terremotos de Petatlán en 1979 (7.2) y de Michoacán en 1985 (8.0) también se observaron fuertes variaciones en la luminosidad del cielo.

Estos fenómenos componen lo que se denomina luminescencia sísmica. Las apariciones de estas ‘luces de terremoto’ o EQL (Earth Quake Lights en inglés) cerca del suelo durante un seísmo aparecen descritas desde la Antigüedad. Sus características son muy variadas: desde brillos difusos, destellos y resplandores, hasta objetos luminosos esféricos o lineales. Se observan principalmente durante el terremoto, aunque también en los instantes previos y posteriores a él. Su localización también varía, pudiendo producirse desde en la zona del epicentro hasta a cientos de kilómetros de ella, en la tierra o en el mar. El rango de magnitudes en el que se observa este fenómeno es también amplio, aunque normalmente ocurre en los terremotos de magnitud superior a 5. A pesar de esto, las EQL no acompañan a todos los terremotos y ocurren en muy raras ocasiones.

Imágenes de CCTV con EQL. / Municipalidad de Miraflores (Perú)

El irlandés Robert Mallet, considerado el padre de la sismología, publicó a mediados del siglo XIX un catálogo de observaciones sísmicas luminosas que cubrían testimonios desde el año 1606 a.C. hasta el 1842 d.C.  A principios del siglo XX, el sacerdote y naturalista italiano Ignazio Galli compiló un catálogo de seísmos relacionados con diferentes tipos de luminiscencia, ocurridos entre el año 89 a.C. y 1910. Las descripciones de los fenómenos luminosos incluían en muchas ocasiones elementos fantásticos y religiosos asociados a interpretaciones y tradiciones culturales de la época y el lugar.

Debido a la falta de datos comprobables, no ha sido hasta tiempos recientes cuando el fenómeno de la luminiscencia sísmica ha despertado el interés científico. Hace poco más de 50 años,  T. Kuribayashi, un fotógrafo amateur, captaba por primera vez con su cámara las imágenes de unos fenómenos luminosos inusuales que aparecieron en la zona sísmica de los terremotos ocurridos en Matsushiro (Japón) de 1965 a 1967. Desde entonces, ha continuado la recopilación de testimonios gráficos de estos fenómenos coincidentes con terremotos en diversas partes del mundo como Taskent, Uzbekistán (1966); Santa Rosa, California (1969); Haicheng, China (1975); Vrancea, Rumanía (1977); Saguenay, Canadá (1988); Izmit, Turquía (1999); Pisco, Perú (2007); o L’Aquila, Italia (2009).

Imágenes de T. Koribayashi de las EQL. / Arantza Ugalde

Las observaciones son numerosas, pero examinadas individualmente algunas pueden resultar cuestionables. Así, algunos fenómenos luminosos con esas mismas características también han podido ocurrir en la misma zona sin coincidir con ningún terremoto.

La luminiscencia puede explicarse en muchos de los casos como auroras polares, otros fenómenos ionosféricos (dínamo ionosférica electrochorro ecuatorial), nubes noctiluentes (compuestas de cristales de agua helada), relámpagos, etc. En el caso del reciente terremoto de Pijijiapan (México), las luces observadas en el cielo nocturno pudieron deberse a cortocircuitos y pequeñas explosiones en los transformadores de la red eléctrica. Para otros casos, sin embargo, no se ha encontrado una explicación satisfactoria.

Actualmente no existe ninguna teoría que aclare completamente el fenómeno, que continúa siendo un tema controvertido a nivel científico. No obstante, se han publicado posibles explicaciones sobre la relación entre los terremotos y las EQL en revistas científicas cuyas teorías incluyen, entre otras, oscilaciones violentas del aire que provocan descargas eléctricas entre las capas bajas de la atmósfera y el suelo en condiciones geológicas favorables; el efecto piezoeléctrico (generación de electricidad por presión) en las rocas, la liberación de gas radón a la atmósfera, o las reacciones quimioluminiscentes debido a la emisión de gases inflamables de forma espontánea.

Quedan todavía muchas preguntas sin respuesta: ¿por qué la luminiscencia se manifiesta de formas tan diferentes?, ¿tiene relación con el proceso físico que generan los terremotos? Y, si es así, ¿cuál es? Será la ciencia la que deberá arrojar luz sobre este, aún, oscuro fenómeno.

 

* Arantza Ugalde es doctora en Ciencias Físicas e investigadora en el Instituto de Ciencias de la Tierra ‘Jaume Almera’ de Barcelona, del CSIC, y una de las autoras del libro Terremotos. Cuando la Tierra tiembla de la colección Divulgación.

 

¿Qué es la marea roja que afecta a algunas playas?

Por Elena Ibáñez y Miguel Herrero (CSIC)*

En La Jolla (San Diego, California), el mar adquiere un tono rojizo debido a las proliferaciones algales / Alejandro Díaz.

A veces, el mar cambia su tonalidad azul hacia el verde, el marrón, el rojo o el blanco. Este episodio, conocido como marea roja, se debe al crecimiento masi­vo de unas algas microscópicas: el fitoplancton. La proliferación masiva de las algas se produce cuando se dan condiciones ambientales favora­bles de luz, temperatura, salinidad y disponibilidad de nu­trientes. Bajo estas circunstancias, algunas algas pueden crecer y alcanzar concentraciones muy elevadas (del orden de miles o millones de células por litro) en comparación a su concentración natural en el ambiente (decenas o centenas de células por litro). A este suceso se le denomina prolife­ración algal y su color (si lo posee) dependerá del tipo de pigmento predominante del alga, así como de su concentración.

Muchas proliferaciones algales son beneficio­sas, ya que proporcionan alimento a peces y organismos marinos; sin embargo, algunas algas con características nocivas para otros seres vivos generan proliferaciones algales nocivas (PAN) o algal Bloom. Estas especies perjudiciales pueden impactar negativamente en la salud tanto del ser humano como de animales debido a la producción de potentes toxinas naturales y/o provocar graves pérdidas económicas y ecológicas. De entre las 5.000 especies descritas de fito­plancton marino, unas 300 son susceptibles de provocar proliferaciones capaces de cambiar el color del mar, y solo unas 60 pueden pro­ducir toxinas, algunas de ellas con un elevado potencial tóxico.

Los impactos de las PAN son diversos. Las algal Bloom asociadas a un elevado contenido en bio­masa suelen implicar la reducción del oxígeno disponible en el fondo de las aguas. Cuando la proliferación llega a su fin, las algas se hunden y son las bacterias quienes las descomponen y consumen todo el oxí­geno disponible en el agua, por lo que los peces y otros organismos no pueden respirar. Si las concentraciones de biomasa son tan grandes que las podemos ver a simple vista, la luz no podrá penetrar en la columna de agua, alcanzando solo la su­perficie. Esto provoca que otras plantas, fuente de alimento para muchos peces, no puedan crecer y se altere el hábitat natural.

Las algal bloom, también presentes en agua dulce, pueden ser una amenaza para los seres vivos que habitan en las aguas afectadas / Lamiot.

También existen especies que producen PAN con bajas concentraciones de biomasa y que pueden ser nocivas debido a la producción de biotoxinas paralizantes, diarreicas, amnésicas, etc., que provocan un envenenamiento con efectos sobre el sistema nervioso y digestivo de mejillones, almejas, navajas y otros organismos que se alimentan de fitoplancton. Por tanto, las toxinas pueden llegar a afectar al ser humano por ingesta de marisco contaminado.

Aunque los organismos responsables de las PAN existen desde hace siglos, ahora se observa una mayor actividad de los mismos. Esto puede ser debido, en parte, a que disponemos de mejores métodos de detección e identifica­ción de toxinas y más observadores pendientes de estos sucesos. Al mismo tiempo, la mayor parte de la comuni­dad científica cree que la polución y la actividad humana son responsables del aumento de las PAN. Sin embargo, no siempre existe una relación directa. En muchos casos, la introducción inicial de las especies tó­xicas se ha debido a corrientes oceánicas u otros fenómenos naturales como los huracanes. No obstante, no podemos obviar la relación entre un aumento en los nutrientes de las aguas costeras con la proliferación de algas que pueden originar los blooms. Algunos investigadores argumentan que los nutrientes que llegan a las aguas coste­ras, producto de las actividades humanas, son tan distintos a los que habría de forma natural que solo algunos grupos de algas ven favorecido su crecimiento, por su mejor capacidad de adaptación. Entre estos grupos se encuentran algunas de las especies responsables de las PAN, como el dinoflagelado Pfiesteria, cuya proliferación se ve fa­vorecida en aguas contaminadas.

También las crecientes áreas de recreo cos­teras (playas con espigones o puertos deportivos) dan lugar a zonas donde la tasa de renovación del agua es baja, una de las condiciones para que los blooms se desarrollen. Otro factor importante es la dispersión geográfica de especies tóxicas mediante embarcaciones de recreo, residuos de plásticos flo­tantes, etc. Pero tampoco hay que caer en el alarmismo. Aunque parece que las PAN son cada vez más comunes en nuestras playas, la mayoría de estas proliferaciones no son tóxicas y sólo producen un cambio de coloración en el agua. Esto puede resultar desagradable, pero no peligroso.

 

* Elena Ibáñez y Miguel Herrero trabajan en el Instituto de Investigación en Ciencias de la Alimentación (CSIC) y son autores del libro Las algas que comemos (CSIC-Catarata).