Archivo de la categoría ‘Sin categoría’

Ciencia en casa: 10 sencillas propuestas para hacer experimentos con agua

Por Mar Gulis (CSIC)

¿Te atreves a construir tu propio acuífero? ¿Quieres coger un hielo sin tocarlo? ¿Te animas a ‘fabricar’ escarcha? Estos son solo algunos de los 10 experimentos que complementan la exposición La esfera del agua (CSIC-Aqualogy) y cuyas fichas, disponibles online de forma gratuita, te lo pondrán muy fácil para convertir tu casa en un entretenido laboratorio.

Todos ellos pueden realizarse con materiales económicos y de uso cotidiano, y se adaptan al público de diferentes edades. Si estos días de confinamiento quieres que tus hijos e hijas a partir de tres años conozcan las peculiares propiedades del agua mientras pasan un buen rato o eres una persona adulta que no ha perdido la curiosidad científica, no lo dudes y ponte manos a la obra.

Huevo en un vaso de agua

Hacerlo es tan sencillo como coger un vaso con agua, un huevo y un puñado de sal. Con estos elementos y la ficha ‘El huevo que flota’ podrás entender de manera muy sencilla y explicar a quienes te rodean conceptos complejos como la densidad, el peso o el volumen. El objetivo del experimento es precisamente que cualquiera pueda comprender estos fenómenos y tratar de dar sentido a sus definiciones abstractas –por ejemplo, la que establece que la densidad es “una magnitud escalar referida a la cantidad de masa en un determinado volumen de una sustancia o un objeto sólido” –.

Veamos otro caso. Coge una moneda y echa, poco a poco, gotas de agua sobre ella con un gotero, una jeringuilla o algo similar. ¿Eres capaz de adivinar cuántas gotas se quedarán sostenidas sobre la moneda? Si lo pruebas, te sorprenderás y seguramente lograrás familiarizarte con otro concepto: el de tensión superficial. ¿Y qué pasaría si añadimos un poco de detergente al agua y volvemos a contar cuántas gotas caben? Solo tienes que probar para descubrirlo.

Gotas de lluvia horneadas

Gotas de lluvia horneadas en el experimento de la ficha nº 5.

También encontrarás propuestas para recordar estos días de cuarentena, como la que te invita a guardar gotas de lluvia de un día concreto. Basta con sacar por la ventana un recipiente con harina mientras llueve y dejar que varias gotas caigan sobre él. Si las horneas un poco como si de un bizcocho se tratase, podrás guardarlas como testimonio de estos días tan especiales. ¿Te apetece luego pintarlas o realizar con ellas un cuadro?

Poner a prueba tu habilidad es otro de los desafíos que te esperan. ¿Crees que puedes coger un hielo sin tocarlo? Pues con agua, hielo, un vaso, sal y un hilo o una cuerda, lo lograrás. Esta experiencia te permitirá conocer en qué consiste el denominado descenso crioscópico, es decir, el descenso de la temperatura por debajo de los cero grados centígrados, y cómo cambia la temperatura del agua o el hielo cuando añadimos un poco de sal.

Las fichas te ayudarán a llevar a cabo todos los experimentos con éxito. Cada una recoge los materiales necesarios, el procedimiento que debes seguir dividido en sencillos y concisos pasos y una explicación adaptada a distintas edades (Educación Infantil y Primaria, por un lado; y Educación Secundaria y público adulto, por otro). También incluye un apartado final de curiosidades e imágenes que te servirán para entender mejor todo el proceso.

La exposición La esfera del agua y sus fichas de experimentos son recursos elaborados por el Consejo Superior de Investigaciones Científicas (CSIC) y Aqualogy en el marco del Año internacional de la cooperación en la esfera del Agua 2013. La muestra, cuyos paneles también pueden descargarse, introduce al público en el mundo del agua, desde sus propiedades químicas hasta su papel en la historia y la civilización humana.

Si quieres conocer más recursos del CSIC para aprender ciencia desde casa, pincha aquí.

¿Qué animal aparece en esta imagen? Una pista: no es ni una lombriz, ni una serpiente

Por Diego San Mauro (UCM) y Rafael Zardoya (CSIC)*

Si echas un vistazo a esta imagen probablemente pensarás que en ella aparece una lombriz, una serpiente pequeñita, o incluso una anguila. En ese caso sentimos decirte que te has confundido de bicho, porque se trata de una cecilia. Estos animales ‘saborean’ su entorno para orientarse, son capaces de detectar cantidades ínfimas de luz y algunas de sus especies alimentan a sus crías con su propia piel. Os invitamos a saber más sobre las características y curiosos comportamientos de estos anfibios.

Cecilia de la especie Ichthyophis cf. longicephalus de la India./ Ramachandran Kotharambath

Comencemos por su nombre científico. Pertenecen al orden Gymnophiona, que en griego significa serpiente desnuda. Las cecilias se llaman así porque se asemejan a estos reptiles, pero se distinguen fácilmente porque carecen de escamas aparentes como ellas. Constituyen uno de los tres órdenes de anfibios vivos junto a ranas y salamandras.

Todas viven en regiones tropicales húmedas de África, India, Sudeste Asiático, Seychelles y América Central y del Sur. La mayor parte son de hábitos subterráneos o habitan bajo la hojarasca y solo salen a la superficie durante la noche, pero también hay una familia acuática que vive en ríos y pantanos. Actualmente existen 214 especies reconocidas.

Algunas especies miden apenas unos centímetros y otras pueden superar el metro y medio de longitud. En la imagen, la Ichthyophis tricolor de la India que puede legar a medir más de 30 centímetros./ Ramachandran Kotharambath

Si atendemos al tamaño, algunas especies son relativamente pequeñas, como Idiocranium russeli de Camerún, de unos 10 centímetros de largo, mientras que otras, como Caecilia thompsoni de Sudamérica, pueden superar el metro y medio de longitud. Las cecilias son carnívoras y depredadoras fundamentalmente de lombrices, termitas y otros pequeños invertebrados del suelo o el agua en el caso de las especies acuáticas. Las especies de mayor tamaño pueden alimentarse en ocasiones de pequeños vertebrados como ranas, peces, lagartijas y serpientes.

Como todos los anfibios, tienen una piel lisa y húmeda con multitud de glándulas que la humedecen y lubrican, así como otras que secretan sustancias defensivas. En el caso de las cecilias, estas sustancias pueden ser tóxicas y antimicrobianas y tienen un gran potencial para la industria farmacéutica.

Vivir bajo tierra ha producido ciertos cambios adaptativos en su cráneo, muy osificado y reforzado, y en su visión. Sus ojos son muy pequeños y muchas veces están cubiertos por piel e incluso hueso. Están adaptados para detectar intensidades de luz ínfimas, tal y como ocurre en otros vertebrados de hábitos cavernícolas o en peces abisales. Las cecilias no pueden ver en color, pero esta falta de visión se ve compensada por un órgano formado por dos tentáculos extensibles situados entre el ojo y la apertura nasal, a ambos lados de la cabeza. Esta estructura sensorial les permite ‘saborear’ el entorno y detectar las sustancias químicas del medio.

Cecilia de la especie Scolecomorphus kirkii de Malawi mostrando los tentáculos que tiene a ambos lados del hocico./ Hendrik Müller

Comedoras de piel materna

A la hora de reproducirse también son bastante diversas. A diferencia de otros anfibios (excepto algunas salamandras), los machos poseen un órgano copulador y la fecundación es siempre interna. Hay especies ovíparas que ponen huevos de los que salen larvas de vida acuática y que sufrirán la metamorfosis para convertirse en adultos terrestres. Otras especies ovíparas son de desarrollo directo, es decir, los juveniles salen del huevo como individuos ya formados. Finalmente, hay especies vivíparas en las que la madre da a luz individuos juveniles ya formados.

Las especies ovíparas normalmente ponen los huevos en nidos subterráneos cerca del agua y las madres suelen protegerlos enrollándose alrededor. Grandisonia sechellensis de las Islas Seychelles./David J. Gower

Y cuando algunas de esas crías nacen, tienen un menú un tanto peculiar. En algunas especies ovíparas de desarrollo directo, la piel de la madre se llena de lípidos para servir de alimento a los juveniles. Las ‘cecilias juveniles’ poseen unos dientes especializados que usan para desgarrar la piel de la madre y alimentarse de ella. En las especies vivíparas, los fetos también poseen estos dientes especializados que les permiten raspar la pared del oviducto materno, revestido de lípidos para proporcionarles comida. Estudios recientes han sugerido que la dermatofagia materna, que es como se llama a este comportamiento, podría haber servido como precursor del viviparismo en las cecilias.

Juveniles de Boulengerula taitanus comiendo la piel de su madre./ Alexander Kupfer

Su registro fósil es escaso y las relaciones evolutivas entre las especies actuales, así como de estas con los otros grupos de anfibios y vertebrados, se han deducido recientemente mediante la comparación de su ADN. Estos estudios han permitido establecer las relaciones de parentesco entre las diez familias actualmente reconocidas, así como entre la práctica totalidad de géneros de cecilias. Sin embargo, aún queda por esclarecer una buena parte de las relaciones a nivel de especie, lo que hace que la investigación en este campo sea especialmente interesante y activa. De hecho, al ser el linaje hermano del grupo que contiene las ranas y las salamandras, las cecilias constituyen una importante clave para inferir las características que pudo tener el antepasado de los anfibios actuales, así como para comprender la colonización del medio terrestre por los vertebrados y los cambios y adaptaciones que ocurrieron hace 360 millones de años.

 

*Diego San Mauro y Rafael Zardoya son investigadores de la Universidad Complutense de Madrid y del Museo Nacional de Ciencias Naturales (MNCN-CSIC), respectivamente. Este texto es un extracto del artículo ‘Las cecilias, los anfibios desconocidos’ publicado en la revista Naturalmente.

Radio cognitiva, la tecnología que hará más eficientes nuestros móviles

José M. de la Rosa (CSIC)*

Nos encontramos en los albores de la mayor revolución tecnológica que ha conocido la humanidad. Las primeras décadas del siglo XXI serán recordadas por la expansión de las tecnologías de la información y las comunicaciones (TIC) y de dispositivos como los teléfonos móviles, las tablets y los ordenadores personales. Gracias a ellos podemos acceder a la información a través de internet de una forma ubicua y con velocidades de conexión cada vez mayores.

Este desarrollo sin precedentes se debe en gran medida a la microelectrónica y los chips. Estos microingenios han evolucionado en los últimos 50 años de manera exponencial según la ley de Moore, y contienen miles de componentes en unos pocos nanómetros. Una de las consecuencias de este escalado es la integración de la microelectrónica en objetos de uso cotidiano, que ha dado lugar al denominado Internet de las cosas, IoT por sus siglas en inglés.

La computación neuronal artificial ya se ha comenzado a utilizar en algunos dispositivos comerciales

IoT comprende la interconexión de miles de millones de entidades ciberfísicas con una estructura híbrida software/hardware capaces de comunicarse entre ellas sin necesidad de intervención humana. La educación a través de plataformas de enseñanza virtual, la teleasistencia sanitaria personalizada, las operaciones bursátiles automatizadas, las redes energéticas inteligentes, la robotización en procesos industriales y redes de transporte, o los vehículos autónomos, son solo algunos ejemplos del sinfín de aplicaciones de IoT, cada vez más presente en nuestras vidas.

Para una implementación adecuada del Internet de las cosas se requiere el desarrollo de dispositivos electrónicos seguros y eficientes, tanto en coste como en consumo de energía. Tales dispositivos deben estar dotados de una cierta inteligencia y autonomía para poder tomar decisiones en tiempo real y ser robustos frente a las condiciones del medio en que se van a desenvolver. Y para que esto ocurra es necesario desarrollar tecnologías que hagan viable la construcción de un puente sólido entre el medio físico (real) y su versión virtualizada (digital).

Del 1G al 5G

Microfotografía de un chip del Instituto de Microelectrónica de Sevilla/ IMSE (CSIC-US)

Una de esas tecnologías para ‘construir puentes’ son las comunicaciones móviles. Hace poco más de un par de décadas, los terminales móviles eran simplemente teléfonos inalámbricos, cuya única funcionalidad era la transmisión de voz (primera generación o 1G), a la que se añadió posteriormente la transmisión de SMS en la segunda generación (2G), con velocidades de transmisión de unos pocos de kilobits por segundo. Con el desarrollo del 3G, los móviles pasaron a ofrecer servicios multimedia y conexión a internet de banda ancha con velocidades de acceso de varios Megabits/s (Mb/s). En la actualidad, la mayoría de las redes operan con terminales móviles de cuarta generación (4G), que permiten alcanzar velocidades de hasta centenares de Mb/s, y ya se empieza a implantar la red 5G, con velocidades de Gigabits/s (Gb/s).

Sin embargo, las comunicaciones móviles tienen un problema: las bandas del espectro electromagnético por donde se propagan las ondas radioeléctricas con la información transmitida por muchos aparatos electrónicos se pueden saturar y convertirse en un cuello de botella para la implementación práctica de IoT. Esto ha motivado la investigación y desarrollo de tecnologías para hacer un uso más eficiente y sostenible del espectro electromagnético. Una de ellas es la denominada radio cognitiva o CR por sus siglas en inglés.

En esencia, la radio cognitiva se basa en la convergencia de tecnologías de comunicación y de computación que permiten ajustar de forma autónoma y transparente para el usuario los parámetros de transmisión y recepción de los dispositivos electrónicos en función de la información que detectan del entorno radioeléctrico donde se utilizan. Para ello, dichos dispositivos han de incluir sistemas de comunicaciones en los que la digitalización (transformación digital de las señales que portan la información) se realice lo más cerca posible de la antena (tanto en el receptor como en el transmisor). Así, el procesamiento de la información se hace mediante software y puede ejecutarse en un microprocesador digital. Esto aumenta significativamente el grado de programabilidad y adaptabilidad de los terminales móviles a diferentes modos o estándares de comunicación.

Inteligencia artificial en nuestros móviles

Además de un sistema de comunicación basado en software, la radio cognitiva requiere del uso de algoritmos de inteligencia artificial (IA) para identificar de forma automática la banda óptima del espectro electromagnético en la que se pueda transmitir mejor la información. Con la inteligencia artificial se maximiza la cobertura, se minimiza el efecto de las interferencias y se incrementa la durabilidad y la vida útil de la batería, entre otras muchas ventajas.

Sin embargo, los microprocesadores empleados en dispositivos convencionales resultan ineficientes para realizar las tareas de inteligencia artificial requeridas en sistemas de radio cognitiva. Al llevarlas a cabo, estos dispositivos consumen mucha energía y reducen la durabilidad de la batería. Esto ha motivado la investigación de alternativas como los procesadores neuromórficos, los cuales realizan el tratamiento de la información inspirándose en el cerebro humano.

Esquema de funcionamiento de un procesador neuromórfico/ José M. de la Rosa

Hay tareas computacionales, como el cálculo, en las que los procesadores convencionales son más eficientes que el cerebro, pero otras, como el reconocimiento de patrones, son ejecutadas mejor por los sistemas neuronales. Es lo que ocurre, por ejemplo, en el reconocimiento facial, que el ojo y el cerebro humanos realizan de forma mucho más eficaz en términos de velocidad, precisión y consumo energético. En el caso de la radio cognitiva, los procesadores neuromórficos deben encargarse de reconocer patrones de señales radioeléctricas, que son las que transmiten la información en la telefonía móvil.

De hecho, la computación neuronal artificial ya se ha comenzado a utilizar en algunos dispositivos comerciales. Por ejemplo, la compañía Apple incorpora módulos neuronales de aprendizaje automático (o Machine learning) en sus procesadores más recientes incluidos en los últimos modelos de iPhone. Estos dispositivos contienen 8.500 millones de transistores integrados en una tecnología de 7 nanómetros. Otras compañías como Intel y Qualcom han desarrollado procesadores neuromórficos fabricados también en tecnologías nanométricas.

Aunque aún se está lejos de desarrollar ordenadores completamente basados en procesamiento neuronal, hay un interés creciente por integrar la inteligencia artificial en el hardware de los dispositivos. Esta es una de las líneas de investigación en las que se trabaja en el Instituto de Microelectrónica de Sevilla (CSIC-US). En un futuro, se espera poder incorporar procesamiento neuromórfico en chips de comunicaciones que hagan posible la realización de dispositivos IoT/5G más eficientes gracias al uso de la radio cognitiva.

*José M. de la Rosa es investigador del Instituto de Microelectrónica de Sevilla, centro mixto del CSIC y la Universidad de Sevilla.

¿Eres capaz de fotografiar la ciencia? Envía tus imágenes a FOTCIENCIA17

Por Mar Gulis (CSIC)

Si te gusta la fotografía, es el momento de enseñarnos cómo se ve la ciencia y la tecnología a través del objetivo de tu cámara… ¡o de tu microscopio! Ya está abierto el plazo para participar en la 17ª edición de FOTCIENCIA, una iniciativa que cada año elige las mejores fotografías científicas. Las imágenes seleccionadas formarán parte de un catálogo y de una exposición itinerante que recorrerá España durante 2020-21. Además, las mejores de cada modalidad recibirán una remuneración de hasta 1.500€.

El plazo de presentación es del 7 de noviembre al 16 de diciembre de 2019 (a las 12 del mediodía, hora española peninsular).

La luz, los fenómenos físicos, los organismos vivos o los objetos de la vida cotidiana pueden mirarse desde una perspectiva científica. Las opciones son prácticamente infinitas. Por eso no es necesario que te dediques a la ciencia para poder participar… Solo que seas capaz de ver, extraer o captar lo científico que hay en el mundo que nos rodea. Aquí puedes ver las imágenes seleccionadas en ediciones anteriores.

Las fotografías deberán presentarse en formato digital a través de un formulario disponible en la página web www.fotciencia.es, junto con un breve texto que permita interpretarlas. El jurado valorará tanto la imagen –su calidad técnica, originalidad y valor estético– como la claridad de la explicación aportada por el autor o autora.

Cualquier persona mayor de edad puede enviar fotografías propias que no hayan sido seleccionadas en procesos similares. Pero también hay una modalidad, ‘La ciencia en el aula’, dirigida al alumnado de Secundaria y Ciclos formativos, que puede participar a través de sus profesores y profesoras.

Las propuestas se podrán presentar en una de las siguientes modalidades:

  • Micro, cuando la dimensión real del objeto fotografiado sea menor o igual a 1 milímetro o la imagen haya sido obtenida mediante un instrumento de micrografía (óptica o electrónica) o técnicas de difracción.
  • General, cuando la dimensión real del objeto fotografiado sea mayor de 1 milímetro.

Además, los autores y autoras también pueden adscribir su imagen a otras modalidades específicas, como ‘Agricultura sostenible’ ‘Alimentación y nutrición’.

FOTCIENCIA es una iniciativa organizada por el Consejo Superior de Investigaciones Científicas (CSIC) y la Fundación Española para la Ciencia y la Tecnología (FECYT), con la colaboración de la Fundación Jesús Serra. En esta 17ª edición, FOTCIENCIA se suma a los 17 Objetivos de  Desarrollo Sostenible declarados por Naciones Unidas.

Toda la información y normas de participación están disponibles en www.fotciencia.es

¿Para qué sirve un láser?

Por José Vicente García Ramos (CSIC)*

Cuando se inventó, en 1960, el láser no servía para nada. De hecho, en aquellos tiempos algunos científicos se referían a él como “una solución en busca de problema”. Entonces, ¿para qué lo inventaron? Parece que querían probar, experimentalmente, que el mecanismo de amplificación de la luz por emisión estimulada, predicho por Einstein en 1917 y demostrado con microondas en 1954, podía extenderse a la luz visible.

Hoy, sin embargo, la situación es muy diferente y el láser ha encontrado tantas aplicaciones que nos resulta casi imposible enumerarlas. Las tres características que diferencian la luz de un láser de la luz del Sol o de la generada por una bombilla son que, en el caso del láser, se trata de un haz de luz monodireccional, monocromático y coherente.

Hoy día los láseres tienen numerosas y variadas aplicaciones. / Wikimedia Commons

Hoy día los láseres tienen numerosas y variadas aplicaciones. / Wikimedia Commons

Cualquier láser contiene al menos tres elementos fundamentales: un medio activo, un sistema de bombeo y una cavidad resonante. El medio activo es el material (sólido, líquido o gaseoso) que emite la luz. Para que este medio activo emita luz hay que excitarlo de alguna manera, del mismo modo que el filamento de una bombilla necesita una corriente eléctrica que pase por él. En el caso de un láser se trata del sistema de bombeo, que puede consistir en otro láser, una lámpara convencional o una corriente o descarga eléctrica. El medio activo se coloca entre dos espejos que forman una cavidad resonante donde la luz rebota entre ellos y ayuda a la amplificación, como lo que ocurre en la caja de resonancia de una guitarra que amplifica las ondas acústicas. Uno de los espejos es semirreflectante, por lo que parte de la luz amplificada sale de la cavidad resonante en forma de haz.

El volumen de información que transmite una onda electromagnética depende de su frecuencia; en este sentido, la luz de un rayo láser resulta idónea para la transmisión de señales. Por eso, entre sus aplicaciones más usadas está la lectura de discos compactos, la fabricación de circuitos integrados y la lectura de códigos de barras. En el ámbito de la medicina, la tecnología láser se aplica a los bisturís cauterizantes, ya que permite realizar cortes muy finos de gran precisión, evitar cualquier riesgo de contagio y cauterizar de manera inmediata, alejando el peligro de hemorragias.

Fibra óptica, impresoras o espionaje

Sin embargo, muchas de las aplicaciones del láser no dependen tanto de su capacidad para generar un rayo de luz como del hecho de que representa una concentración extremadamente intensa de energía. Basándonos en esta propiedad, podemos enumerar tres aplicaciones sumamente importantes en el terreno de la óptica. Una de ellas son las telecomunicaciones mediante fibra óptica. En este caso, las señales eléctricas que hasta hace poco tiempo se desplazaban a través de conductores metálicos han sido reemplazadas por pulsos ópticos que se transmiten a través de fibra de vidrio del grosor de un cabello. Como potente fuente de luz, el láser confiere a estas fibras una elevada capacidad de transmisión.

Espectáculo de luces con láseres. / kpr2 - Pixabay

Espectáculo de luces con láseres. / kpr2 – Pixabay

La segunda aplicación óptica importante está en la holografía, que es una técnica para crear imágenes tridimensionales, inventada en 1947 por el ingeniero eléctrico húngaro Dennis Gabor (1900-1979), que obtuvo por ello el Premio Nobel en 1971. Esta técnica se basa en la interferencia entre dos rayos de luz. Uno de los aspectos básicos del sistema es la necesidad de utilizar luz coherente, y cuando se inventó solo se disponía de fuentes relativamente débiles de este tipo de luz. La llegada del láser transformó la situación, porque la generación de una poderosa fuente de luz coherente es su esencia. Con el tiempo, la holografía llegó a hacerse muy familiar en una variedad de formas, como en la marca de seguridad de las tarjetas de crédito y en publicidad.

La tercera aplicación importante está en las impresoras de los ordenadores, donde, controlando un haz láser, se dibujan las palabras que se quieren imprimir.

También podemos destacar las aplicaciones que dependen de su capacidad para concentrar una gran cantidad de energía sobre una superficie muy pequeña (alrededor de un millón de vatios por centímetro cuadrado) durante un periodo de tiempo extremadamente breve. Algunas de las más importantes aplicaciones industriales de los láseres son fruto de esta capacidad: la perforación, la soldadura y el corte de distintos materiales.

Además, puesto que un rayo láser es muy fino y prácticamente no sufre divergencias, se puede usar para medir largas distancias con gran precisión. La técnica (semejante a la del radar) consiste en captar el rayo reflejado por el objeto distante y medir el tiempo transcurrido desde el envío de la señal hasta la recepción de su reflejo. Conociendo la velocidad de la luz, resulta fácil calcular la distancia. En los años setenta, este método se empleó para determinar con precisión la distancia de la Luna, utilizando los reflectores que habían instalado allí los astronautas norteamericanos.

Pero eso no es todo, también se han empleado láseres hasta para temas relacionados con el espionaje. En 1968 se descubrió que un láser puede detectar perfectamente desde el exterior las vibraciones del cristal de las ventanas producidas por las conversaciones en el interior de una casa. Vemos cómo el láser, que en un principio era como “un invento en busca de un empleo”, tiene en la actualidad un sinfín de variadas aplicaciones.

 

* José Vicente García Ramos es Vocal del Comité de Ética del CSIC y autor del libro Las moléculas: cuando la luz te ayuda a vibrar (Editorial CSIC-Los Libros de la Catarata). Hasta su jubilación en 2016 fue investigador en el Instituto de Estructura de la Materia del CSIC.

La mineralogía salva la vida a Iron Man

Por Carlos M. Pina (CSIC-UCM) y Carlos Pimentel (UPM, UCM)*

[Contiene spoilers] Han pasado ya casi 6 meses desde que los Vengadores nos salvaron por última vez. Después de que Thanos asesinase a la mitad de los seres vivos del Universo utilizando las Gemas del Infinito, estas fueron utilizadas por Bruce Banner (Hulk) para devolverles a la vida. Tras ello, los ejércitos de Thanos se enfrentaron a los Vengadores y sus aliados en una cruenta batalla. Para detenerla, Tony Stark (Iron Man) utilizó el Guantelete del Infinito, con el que logró destruir a Thanos y sus ejércitos. Sin embargo, las heridas producidas por el poder de las gemas también causaron su muerte. ¿Fue el sacrificio de Tony Stark en vano?

Miremos detenidamente el Guantelete del Infinito. Está compuesto por 6 gemas con distintos poderes y colores, que juntas tienen un poder inimaginable. Pero lo que todos podemos apreciar es su color, no su poder, incluido Thanos por muy titán que sea. ¿Qué hubiese ocurrido si los Vengadores hubiesen sabido algo de mineralogía? Podrían haberle dado el cambiazo a Thanos y haber sustituido las Gemas del Infinito por gemas iguales pero que careciesen de poderes, como la amatista (morado), el rubí (rojo), el zafiro (azul), el crisoberilo (amarillo), el topacio (naranja) y la esmeralda (verde); gemas muy comunes y mucho más baratas que cualquier armadura de Iron Man. Así, los Vengadores hubiesen ganado la Guerra del Infinito antes de comenzar, Tony Stark seguiría vivo y Steve Rogers continuaría siendo el Capitán América.

Partiendo de la idea de que los minerales que aparecen en la ciencia ficción y la fantasía (por ejemplo, Star Wars, Star Trek, Mundodisco o X-men) hemos escrito una Pequeña guía de minerales inexistentes (Ediciones Complutense, 2019) y organizado una exposición con el mismo nombre en Madrid, que podrá visitarse en la Biblioteca María Zambrano de la UCM hasta el 6 de noviembre. En ellos presentamos 16 minerales ficticios, indicando su origen, sus imposibles propiedades y aplicaciones, e incluso información sobre sus imposibles estructuras y composiciones químicas. El libro también describe minerales o materiales similares reales que muestran propiedades análogas.

¿Hay algún mineral tan radiactivo como la kryptonita que aparece en Superman? En la naturaleza existen algunos minerales altamente radiactivos, como por ejemplo, la uraninita, la pechblenda (variedad impura de la uraninita) y la becquerelita. Sin embargo, ninguno de estos minerales sería capaz de derrotar a Superman, para decepción de Lex Luthor.

¿Existe algún material tan duro como el adamantium que recubre los huesos de Lobezno? Sí, aunque sin su increíble dureza. Se trata de la widia, un metal que se usa, por ejemplo, en las brocas de los taladros.

¿Qué minerales se han usado para comerciar como el tiberium del popular videojuego Command & Conquer? Los metales preciosos, las gemas, la sal común (que es un mineral llamado halita) han sido utilizados históricamente como moneda de cambio.

Tiberium realizado con impresora 3D y que forma parte de la exposición.

¿Podemos pensar en algún mineral como los cristales de adegan de Star Wars? Por supuesto. El rubí fue el mineral con el que se fabricaron los primeros láseres, aunque no sirve para hacer sables láser como los de las películas (una lástima para los frikis).

¿Algún mineral mágico como el octirón de Mundodisco? Por supuesto que no, ya que los minerales no tienen propiedades mágicas. Por más que en muchas tiendas de minerales se les atribuyan ciertos poderes, esto es completamente falso.

¿Y por qué es importante saber de minerales? No es sólo para saber cómo salvar a nuestros personajes de cómics, películas o videojuegos preferidos. Los minerales también son esenciales en nuestra vida diaria. Para fabricar el móvil o la tablet en la que estás leyendo esta noticia se han utilizado al menos 13 minerales distintos, la electricidad llega a tu casa a través de cables de cobre que se extraen de minerales y hay minerales y rocas en tu cocina, como la sal o la encimera de granito. Además, los minerales nos cuentan, a geólogos y mineralogistas, cómo fue la Tierra en épocas pasadas. Gracias a su estudio, se ha podido determinar, por ejemplo, cómo era el clima en la época de los dinosaurios o cómo era la Tierra en el pasado.

La exposición podrá visitarse en la Biblioteca María Zambrano de la UCM hasta el 6 de noviembre. El 16 de octubre a las 18:00 habrá un acto de presentación tanto de la exposición como de la guía de minerales inexistentes.

* Carlos M. Pina es profesor titular de Cristalografía y Mineralogía en la Facultad de Ciencias Geológicas de la Universidad Complutense de Madrid e investigador del Instituto de Geociencias (IGEO, CSIC-UCM). Carlos Pimentel es investigador en la E.T.S.I. de Montes, Forestal y del Medio Natural de la Universidad Politécnica de Madrid y colaborador honorífico del Departamento de Mineralogía y Petrología de la Facultad de Ciencias Geológicas de la Universidad Complutense.

¡Atención! Depredadores de la ciencia. Te contamos por qué son peligrosos y cómo combatirlos

Por Mariano Campoy Quiles (CSIC)*

Todas las personas que nos dedicamos a la ciencia recibimos diariamente correos electrónicos invitándonos a supuestos congresos científicos o a escribir artículos en revistas de reciente creación y editorial de dudosa fiabilidad. En mi caso, recibo literalmente entre 40 y 50 invitaciones de este tipo a la semana. Estos mails no reflejan en ningún caso la calidad de la investigación que se lleva a cabo en mi grupo, ni siquiera hacen referencia a mi área de estudio.  Se trata de invitaciones realizadas por editoriales y entidades conocidas como depredadoras, cuyo objetivo no es el avance de la ciencia, sino, única y exclusivamente, el lucro. Estas revistas y congresos ‘depredadores’ surgen de la actual situación de altísima competencia para conseguir becas y plazas en el sistema científico internacional, unida al cambio gradual hacia revistas de acceso abierto en las cuales paga el que escribe, no el que lee. Hasta hace poco simplemente borraba los correos sin darle mayor importancia, pero estas prácticas pueden resultar mucho más dañinas que un simple spam, por eso conviene saber identificarlas e intentar combatirlas. Comparto algunas claves que pueden ser útiles.

Investigadores e investigadoras emplean mucho tiempo en filtrar y eliminar mensajes engañosos sobre congresos y revistas que se anuncian como científicos pero, en realidad, no buscan el avance de la ciencia sino el lucro de los organizadores. / Alejandro Santos.

¿Cómo reconocer a los depredadores científicos?

  • Usan vocabulario pomposo en textos llenos de faltas ortográficas. Los depredadores utilizan un vocabulario muy rimbombante en sus invitaciones, elogiando en exceso a los investigadores. Sin embargo, los correos y las webs suelen tener un estilo muy pobre, con faltas de ortografía, diseño poco profesional, y textos que muestran desconocimiento de cómo funcionan las revistas y congresos. Además, suelen usar estrategias comerciales incluyendo expresiones como “oferta de lanzamiento de la revista X”, “gratis para artículos publicados este año” o “descuento si te registras esta semana”.
  • Piden dinero cuando no toca. El pago por hacer un artículo de acceso abierto se hace siempre una vez aceptado el artículo, más o menos cuando se están gestando las pruebas de imprenta, nunca antes. En los congresos hay un Early birth registration y una inscripción normal abierta hasta en el mismo sitio del congreso. Si te piden dinero antes, sospecha. Los depredadores solicitan un pago antes de saber si tu contribución está aceptada, o para poder enviar el abstract, o incluso piden pagar unos supuestos “gastos de gestión” para que un artículo vaya a revisión por pares. No conozco ningún congreso legítimo que utilice estas prácticas.
  • Los responsables de la organización no son entidades científicas ni universidades. La invitación a estas actividades te llega de un supuesto “gestor” del congreso o revista, normalmente con nombre un poco raro, tipo Snowy Wang, Sofía Loren, etc. No hay un investigador que firme el mensaje como parte del comité organizador, ni una universidad o asociación profesional que lo respalde, ni un comité científico que asegure su calidad. A veces hay comités inventados en los cuales no conoces a nadie, porque se usa un mismo comité para cientos de revistas/congresos a la vez. Tampoco puedes hablar directamente con ellos, ya que en la web o en el mail no hay una dirección postal o un teléfono.
  • Anuncian lugares idílicos sin especificar el alojamiento. Los congresos se organizan en lugares peculiares, como cruceros, playas o ciudades emblemáticas. Si bien esto no es malo de por sí, sí que podría ser un indicio de que ofrecen un destino en vez de un contenido científico. A veces te confirman la ciudad, y te dicen que el hotel será revelado cuando te registres.

Los correos de eventos/revistas depredadoras oscilan diariamente entre el 10 % y el 30 % de los correos útiles. Esta gráfica muestra el número de correos electrónicos recibidos en mi cuenta durante dos semanas elegidas de forma aleatoria. En azul están los correos útiles, después de quitar los correos de congresos y revistas depredadoras (en rojo), así como spam genérico y publicidad. / Mariano Campoy

¿Por qué hay que combatirlos?

  • Porque son un timo. Estas revistas y congresos son creadas por entidades privadas, que lanzan decenas de miles de títulos simultáneamente inventando comités científicos o utilizando los nombres de los científicos sin su permiso. En cuanto a las revistas, normalmente no están indexadas, o literalmente se inventan su factor de impacto. A pesar de lo que aseguran, está demostrado que no revisan los artículos por pares, y desvirtúan el concepto de acceso abierto al hacer del escritor su cliente: como no se paga por leer, no es necesario que la revista sea de calidad, ni siquiera que se lea. Los congresos son también un fraude. Copian los nombres de congresos oficiales y organizan eventos que, bajo el paraguas de ser multidisciplinares, incluyen un grupo de científicos que hablan de temas totalmente distintos.
  • Porque nos hacen perder tiempo, dinero y oportunidades. Si tienes la mala suerte de que te consigan embaucar, perderás varios cientos de euros en un congreso que no te reportará ningún beneficio científico, o en un artículo en una revista que nadie leerá jamás. Pero aún si no te engañan, cuestan dinero, porque hay que dedicar un tiempo, bastante elevado si hacemos los cálculos anualmente, a filtrar y eliminar este tipo de mensajes. Tiempo que deberíamos usar para investigar, no para huir de estafadores. Además, te pueden llevar a borrar por error invitaciones legítimas.
  • Porque hacen tambalear los cimientos del sistema científico. El avance científico se basa en la diseminación de resultados y el intercambio fructífero de conocimiento en revistas y congresos. Si no se asegura el sistema de revisión por pares y de selección por comisiones y asociaciones especializadas, se acabarán desvirtuando las actividades mismas que hacen posible el sistema científico. Por ejemplo, bajo la gran presión que hay actualmente en el mundo académico, habrá quien embellezca su currículum a base de pagar por publicar o por que le inviten a dar una charla en un congreso de pega.

 ¿Cómo luchar contra los depredadores científicos?

  • Que todo el mundo lo sepa. Existen listas de congresos y revistas depredadoras donde informar de estas prácticas.
  • Hacer spam back. Un punto débil de las empresas detrás de estas editoriales y gestoras de congresos es que, a pesar de estar organizadas muy bien, son empresas muy pequeñas, con poco personal. Imagina que todos los investigadores respondemos a sus invitaciones con peticiones peculiares: recibirían miles de correos y no sabrían cuales son de científicos despistados, científicos conscientes que siguen el juego y cuáles de spam. Y como explica el escritor James Veitch, todo el tiempo que dediquen a contestarte, no estarán timando a nadie más.
  • Vigilar y penalizar estas prácticas. El personal investigador que esté en un comité de evaluación debería estar atento y penalizar a los candidatos que participen en actividades organizadas por entes depredadores. No evalúes positivamente ni contrates a alguien con un currículo burbuja.

* Mariano Campoy Quiles es investigador del CSIC en el Instituto de Ciencia de Materiales de Barcelona (ICMAB).

Si los muros del Metro hablaran… ¿Qué nos dicen los azulejos de una ‘estación fantasma’?

Por Elena Mercedes Pérez Monserrat y Mar Gulis (CSIC)*

El Metro de Madrid cumple 100 años en 2019. Esta red de Metro, que hoy es una de las mejores del mundo y cuenta con 302 estaciones a lo largo de 294 kilómetros de recorrido, fue inaugurada en 1919 por el rey Alfonso XIII con una sola línea Norte-Sur que iba desde Puerta del Sol a Cuatro Caminos (el germen de la que hoy se denomina Línea 1), con un total de 8 estaciones y que no llegaba a cubrir 3,5 kilómetros.

En los años 60 del siglo XX, cuando la compañía Metropolitano decidió alargar los trenes, se reformaron las estaciones para que los andenes pasaran de tener 60 a 90 metros. Pero hubo una estación en la que, por su situación en curva y por la cercanía a las paradas colindantes, no se pudo acometer esta reforma y acabó siendo clausurada por el Ministerio de Obras Públicas: la estación de Chamberí.

 

La icónica decoración de las estaciones del Metro de Madrid, incluidos vestíbulos, andenes o bocas de acceso, fue diseño del arquitecto Antonio Palacios. / Laura Llera

La icónica decoración de las estaciones del Metro de Madrid, incluidos vestíbulos, andenes o bocas de acceso, fue diseño del arquitecto Antonio Palacios. / Laura Llera

Tras más de 40 años cerrada y siendo objeto de curiosidades varias, la estación de Chamberí, después de una importante actuación de limpieza, restauración y conservación, fue reabierta en 2008 como centro de interpretación visitable del Metro de Madrid. Durante esas décadas en las que la “estación fantasma” permaneció cerrada al público, los accesos exteriores fueron vallados, hecho que permitió que se conservaran muchos de los objetos cotidianos de la época, como carteles publicitarios, tornos, papeleras… así como las cerámicas que recubrían toda la estación. Es decir, lo excepcional del lugar es que se trata de la única estación del Metropolitano que conserva su estado original casi en su práctica totalidad.

Luz y color para el Metropolitano de Madrid

En 1913 los ingenieros Carlos Mendoza (1872-1950), Miguel Otamendi (1878-1958) y Antonio González Echarte (1864-1942) presentaban un proyecto de red de metro para la ciudad de Madrid. El arquitecto Antonio Palacios (1874-1945) fue el encargado de diseñar las estaciones, los accesos y los edificios del proyecto. Se buscaba integrar el uso de materiales tradicionales en un entorno tecnológico completamente nuevo, dando un resultado muy decorativo de marcado estilo español. Con la aplicación de azulejería en el suburbano se pretendía proporcionar luminosidad y color a unos nuevos espacios -bajo tierra- que iban a ser utilizados por personas acostumbradas a la luz natural. La rica variedad de cerámicas de las diversas regiones españolas facilitó poner en práctica este empeño.

Estado actual de la estación de Metro de Chamberí (Madrid), alicatada con azulejos blancos y decorada con piezas coloreadas y/o con reflejo metálico. / Laura Llera

Estado actual de la estación de Metro de Chamberí (Madrid), alicatada con azulejos blancos y decorada con piezas coloreadas y/o con reflejo metálico. / Laura Llera

En Madrid, la cerámica vidriada aplicada a la arquitectura tuvo su máximo apogeo a finales del siglo XIX y principios del XX. Entonces, la azulejería publicitaria -especialmente en las estaciones del Metropolitano- y la urbana cobraron un especial significado. Este material favoreció el auge de las industrias cerámicas de los principales centros productores. Así, en la arquitectura madrileña de principios del siglo XX la cerámica vidriada desempeñaba un papel esencial desde la concepción inicial de los proyectos; y cabe resaltar la apuesta por seleccionar materias primas nacionales para su elaboración. En cuanto a las piezas de reposición que se han elaborado recientemente para las labores de restauración, se han respetado los aspectos formales de las originales, pero utilizando materiales y tecnologías que incrementan su resistencia.

El uso de la cerámica vidriada respondía también al apogeo en la época de la publicidad alicatada, así como a las condiciones de buena conservación y fácil limpieza que presenta la azulejería. Tras la Guerra Civil española (1936-1939) la publicidad en cerámica de la estación fue cubierta por tela y papel, que protegieron las cerámicas.

Qué nos dice el análisis científico de las cerámicas vidriadas de Chamberí

Un estudio multidisciplinar coordinado por personal investigador del Instituto de Geociencias (CSIC/UCM) ha permitido conocer las materias primas y las tecnologías de fabricación de unas cerámicas vidriadas extraordinarias, especialmente elaboradas para este emplazamiento excepcional: la estación de Metro de Chamberí (Madrid). El conocimiento adquirido pretende apostar por la conservación y puesta en valor de estos materiales, tanto de las piezas originales como de las de reposición.

Conforme a la función que desempeñan en la estación, las piezas estudiadas se agrupan en:

  • Azulejos blancos y lisos, que revisten la práctica totalidad de los paramentos y desempeñan una función esencialmente práctica, al otorgar luminosidad y resultar de fácil limpieza.
  • Piezas con reflejo metálico y superficies adornadas, con un carácter marcadamente decorativo, resaltando los encuentros de los planos y el enmarcado de la publicidad alicatada en los andenes.
Piezas originales. Perspectivas: a simple vista, imágenes de microscopia óptica de polarización (vidriados y soporte cerámico) y electrónica de barrido (soportes cerámicos). Superior: azulejos blancos. Inferior: piezas decorativas con reflejo metálico

Piezas originales. Arriba: azulejos blancos, elaborados en Onda (Castellón). Abajo: piezas con reflejo metálico, elaboradas en Triana (Sevilla). Perspectivas: a simple vista, imágenes de microscopia óptica de polarización (vidriados y soporte cerámico) y electrónica de barrido (soportes cerámicos).

Los azulejos blancos originales fueron fabricados en Onda (Castellón) a partir de mezclas arcillosas muy ricas en carbonatos y cocidas a unos 950 ºC. Presentan un vidriado plúmbico alcalino cuya opacidad es en gran parte otorgada por partículas ricas en plomo y arsénico. Las piezas originales de carácter decorativo -con reflejo metálico- fueron elaboradas en Triana (Sevilla) a partir de arcillas illíticas calcáreas y cocidas entre 850-950 ºC. Se cubrieron con vidriados plúmbicos transparentes, con la adición de cobre y estaño.

Piezas de reposición. Perspectivas: a simple vista, imágenes de microscopia óptica de polarización (vidriados y soporte cerámico) y electrónica de barrido (soportes cerámicos). Superior: azulejos blancos. Inferior: piezas decorativas con reflejo metálico

Piezas de reposición, elaboradas en Madrid. Arriba: azulejos blancos. Abajo: piezas con reflejo metálico. Perspectivas: a simple vista, imágenes de microscopia óptica de polarización (vidriados y soporte cerámico) y electrónica de barrido (soportes cerámicos).

Las piezas de reposición se elaboraron según el aspecto de las originales y se apostó por la utilización de materiales y técnicas que otorgaran especial resistencia a las piezas. Se fabricaron en Madrid con materias primas principalmente procedentes de Barcelona, Castellón y Teruel. Las blancas, a partir de arcillas illítico-caoliníticas y calcáreas ricas en cuarzo cocidas a >950 ºC, aplicando un vidriado alcalino muy rico en zircona y alúmina. Las nuevas piezas con reflejo se elaboraron a partir de arcillas illítico-caoliníticas muy alumínicas cocidas a <850 ºC y con la importante adición de una chamota especialmente refractaria, cubriéndose con un vidriado plúmbico-potásico rico en alúmina.

 

* Este proyecto de investigación ha sido realizado por un equipo multidisciplinar del Instituto de Geociencias (CSIC/UCM), la Universidad de Granada, el Museo Nacional de Ciencias Naturales (CSIC) y la Universidad Nacional de Educación a Distancia. Puedes leer el artículo completo aquí.

De la investigación a tu casa: ¿cómo controlar el gas radón?

Por Borja Frutos Vázquez* y Mar Gulis (CSIC)

Llega el día en el que por fin decides mudarte a otra vivienda. Has escogido una bonita casa ubicada en la sierra, alejada de la gran ciudad, el tráfico, el bullicio y la contaminación. La situación te parece idílica y vives con ilusión el cambio hasta que un día, hablando con tus nuevos vecinos, descubres que vivir en ella te podría acarrear serios problemas de salud. Te informas y descubres que la mayoría de las casas construidas en esa zona tienen, en su interior, concentraciones de un gas que es considerado cancerígeno y que este se adentra en la vivienda de manera natural a través del suelo… ¿verdad que la situación ha empeorado bastante?

Esto nos podría suceder a cualquiera que decidamos ir a vivir a alguna de las zonas consideradas de potencial riesgo por presencia de radón según los mapas publicados por el Consejo de Seguridad Nuclear (CSN). Esta cartografía representa, para todo el territorio nacional, los posibles niveles de presencia de gas radón según tres categorías.

Mapa de exposición potencial al radón elaborado por el CSN que muestra las tres zonas de riesgo, siendo la categoría 2 (color naranja) la de máximo riesgo

Pero tratemos de conocer mejor este gas, cómo puede estar presente en nuestros hogares y cómo podría afectar a nuestra salud.

El isótopo del radón Rn-222 aparece en la naturaleza como producto de la desintegración natural del radio-226, común en la corteza terrestre. La cantidad de este gas que puede exhalar viene definida, por un lado, por el contenido de radio del sustrato (por ejemplo, los graníticos), y por otro, por la permeabilidad del mismo, que facilita la movilidad a través de los poros. El radón, como elemento gaseoso, posee una alta movilidad y puede penetrar en los edificios a través de fisuras o grietas o por la propia permeabilidad de los materiales que estén en contacto con el terreno. Así, puede entrar fácilmente en el interior de la vivienda, atravesando los forjados, soleras y muros.

Caminos de mayor entrada de gas radón, que suelen coincidir con los puntos débiles de estanquidad de la envolvente en contacto con el terreno, fisuras, juntas, cámara de aire, chimeneas, conductos de saneamiento o materiales de cerramiento/ Elaboración propia

La acumulación de este gas en los recintos cerrados puede elevar las concentraciones y constituir un riesgo para la salud de las personas que lo inhalen. La OMS advierte de sus efectos, situándolo como agente cancerígeno de grado uno (es decir, probado), y alerta de que se trata de la segunda causa de cáncer de pulmón, detrás del tabaquismo. En otros documentos, como los publicados por la Agencia Estadounidense para la Protección Ambiental (EPA), se ofrecen datos de muertes asociadas a la inhalación de gas radón del mismo orden que las atribuidas a los accidentes de tráfico.

Dada la gravedad de la problemática y a partir de la percepción del riesgo derivada de estudios médicos epidemiológicos, algunos países han establecido unos niveles de concentración de radón de referencia, por encima de los cuales se recomienda, o se obliga según el caso, a una intervención arquitectónica para reducir los niveles. La concentración de este gas se expresa en bequerelios (número de desintegraciones subatómicas por segundo) por metro cúbico de aire y los valores límite que se están manejando a nivel internacional oscilan entre 100 y 300 Bq/m3, publicados en documentos de la OMS, la EPA o la Comisión Europea, mediante la Directiva 2013/59/EURATOM. Sobrepasados los niveles citados, resulta necesario realizar actuaciones correctoras para reducir las concentraciones.

¿Cómo se puede actuar frente al radón en las viviendas?

El CSN ha publicado una guía sobre las diferentes técnicas que se pueden emplear. Estas actuaciones se pueden clasificar en tres categorías. Ordenadas de mayor a menor eficacia, serían las siguientes:

  • Técnicas de despresurización del terreno. Se centran en drenar el gas contaminado en el terreno mediante redes o puntos de captación insertados en el subsuelo con conexión al ambiente exterior. Suelen usarse equipos de extracción para mejorar el rendimiento y radio de acción. Es una técnica de alta eficacia, aunque requiere de técnicos especializados.
  • Técnicas de barreras frente al radón. Se basan en la instalación de barreras estancas frente al paso del gas en todo elemento constructivo que separe el edificio del terreno. La colocación idónea es bajo la solera y por el exterior de los muros de sótano, por lo que suele usarse en proyectos en fase de ejecución y no en viviendas existentes.
  • Técnicas de ventilación. Mediante el intercambio de aire con el exterior se consigue reducir la concentración por dilución. Esta técnica puede requerir altas tasas de intercambio de aire que en muchos de los casos puede perjudicar la eficiencia energética por pérdidas de confort térmico. Se aconseja para situaciones de concentración baja o moderada.

Desde la identificación del radón como agente cancerígeno se ha incrementado el interés por el desarrollo de técnicas de protección. Durante las últimas dos décadas, se han venido probando soluciones y estudiando sus efectividades. En nuestro país, hace ya tiempo que se llevan a cabo estudios relacionados con la medida del gas, las concentraciones, los mecanismos de transporte o los efectos sobre la salud. Sin embargo, la investigación sobre las técnicas de protección y las experiencias de aplicación son aún escasas. En esta línea, en el Instituto de Ciencias de la Construcción Eduardo Torroja del CSIC se están desarrollando, en la actualidad, dos proyectos con el objetivo de controlar con mayor precisión la eficacia y optimizar el diseño de técnicas de protección. En concreto, el proyecto RADONCERO, busca obtener datos de optimización de los sistemas de protección frente a la entrada de gas radón en edificios para desarrollar una metodología de intervención que tenga en cuenta la diversidad de terrenos, las tipologías edificatorias más comunes en España y el uso que se les vaya a dar.

Para ello, en primer lugar, se evalúa la penetración de radón en edificios existentes analizando varias tipologías de terrenos y técnicas constructivas. En segundo lugar, se estudian los sistemas de protección como las barreras y los basados en extracciones de gas y ventilaciones (mediante el uso de herramientas informáticas que permiten simular procesos de movimiento del gas en todo el recorrido, desde el terreno hasta el interior del edificio). La última fase del proyecto consiste en la intervención en los edificios previamente analizados, aplicando el método resultante de los estudios de simulación antes citados y el método que ha sido propuesto para la protección frente al radón.

Dado que, a pesar de su importancia, aún no existe una reglamentación específica al respecto en nuestro país, los resultados de este proyecto constituyen una referencia técnica para el documento básico de protección frente al gas radón que se encuentra en la actualidad en fase de desarrollo en el ámbito del Código Técnico de la Edificación.


* Borja Frutos Vázquez es investigador del Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc), del CSIC y lidera el proyecto RADONCERO.

¿En qué consiste un estudio clínico nutricional? Te invitamos a participar en uno

Por Jara Pérez Jiménez (CSIC)*

A menudo nos llegan mensajes que hablan de la última dieta milagrosa o del alimento que no debe faltar en nuestra alimentación para evitar alguna enfermedad. Pero lo cierto es que el proceso de investigación en nutrición, hasta llegar a una conclusión trasladable al público general, es bastante lento y riguroso.

La investigación en nutrición suele combinar distintas etapas. La primera se basa en estudios in vitro, por ejemplo en células aisladas, donde se puede hacer una primera selección de alimentos potencialmente interesantes en relación a cierto proceso biológico, o evaluar los mecanismos de acción de un compuesto alimentario una vez entra en la célula. También se realizan experimentos en animales, que pueden ser útiles para determinar si un compuesto se acumula en determinados órganos, que se convertirían en reservorios del mismo. Finalmente, llegamos a los estudios en humanos. Dentro de estos últimos, a veces se desarrollan estudios observacionales, donde grupos de individuos proporcionan información sobre su dieta habitual y se evalúa cómo ésta se asocia con distintos marcadores de salud. En otras ocasiones, se trata de estudios clínicos nutricionales. Vamos a ver en qué consisten, y te propondremos participar en uno de ellos relacionado con la uva.

En los estudios clínicos nutricionales se pretende evaluar los efectos que se producen en la salud al incorporar cierto alimento a la dieta o al seguir unas pautas alimentarias concretas. Si has oído hablar de los estudios clínicos con medicamentos, a lo mejor estás pensando “ah, es lo mismo, pero en lugar de con una medicina, con un alimento”. La respuesta es “sí, pero no”, ya que los estudios clínicos nutricionales tienen algunas características específicas.

Las dificultades de investigar en nutrición

En la investigación con medicamentos es relativamente fácil preparar un placebo, por ejemplo, produciendo una cápsula con un aspecto semejante al de la medicina que se está probando, pero sin incorporar el principio activo. Sin embargo, ¿cómo se prepara el placebo de una manzana? Y lo cierto es que en los estudios nutricionales también se produce el efecto placebo.

Otra diferencia es que, si se está testando un nuevo medicamento que se ha sintetizado en el laboratorio, los investigadores médicos pueden tener la certeza de que los sujetos no están tomando este producto por ninguna otra vía. Pero, ¿cómo hacemos con los alimentos, que contienen múltiples compuestos, muchos de los cuales forman parte a su vez de otros alimentos? Por esta razón, los participantes en los estudios nutricionales suelen recibir instrucciones sobre cómo debe ser el conjunto de su dieta durante el estudio o qué alimentos no pueden consumir, todo ello para intentar que el grupo sea lo más homogéneo posible.

Y además, resulta que mientras de un medicamento se pueden probar dosis elevadas si no implican efectos secundarios relevantes, en nutrición existe un límite en las dosis que se pueden emplear. Éste viene fijado, entre otros, por el máximo que resulte razonable consumir en una dieta habitual; es poco relevante evaluar el efecto de consumir un kilo al día de salmón porque resulta bastante improbable que alguien haga eso de por vida.

Buscamos personas voluntarias para un estudio

Investigar en nutrición no es fácil pero, a pesar de ello, se sigue avanzando en este campo, para lo que son clave los estudios clínicos y, por supuesto, las personas que forman parte de los mismos. Porque a lo mejor te estarás preguntando quiénes son los que participan en estudios clínicos nutricionales. Pues son voluntarios, que pueden tener distintas características según lo que se investigue en cada estudio: a veces se centran en personas de una determinada edad, con cierta patología o que practiquen un deporte en concreto.

En el grupo de investigación ‘Polifenoles no extraíbles, antioxidantes y fibra dietética en salud’, del Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN), un centro del CSIC, estamos buscando voluntarios para un nuevo estudio nutricional. En concreto, buscamos personas con obesidad, que no presenten enfermedades cardiovasculares ni diabetes, ni tomen medicación relacionada con la glucosa, el colesterol o la tensión.

Estamos desarrollando un proyecto de investigación financiado por la Comisión de la uva de mesa de California para evaluar si ciertos compuestos de la uva -los polifenoles- permiten regular el metabolismo de las grasas y azúcares después de comer. Y es que a continuación de cada comida, como es lógico, en nuestro cuerpo se producen aumentos de estos compuestos en sangre. Pero en función de cómo ocurra esto (durante cuánto tiempo se mantengan altos esos niveles o a qué valores lleguen), puede aumentar nuestro riesgo de desarrollar enfermedades cardiovasculares o diabetes tipo 2. De ahí el interés en comprender mejor este proceso y evaluar si hay componentes de la dieta que lo puedan modular.

Y como lo que queremos es evaluar los efectos de la uva cuando se toma en una comida, los participantes en nuestro estudio han de tomar un desayuno y una comida que irán acompañados o de uva en polvo o de un producto placebo (una forma que tenemos para resolver el problema de cómo encontrar un placebo adecuado para los alimentos es proporcionarlos en polvo). A distintos tiempos se irán haciendo extracciones de sangre y en esas muestras podremos medir las diferencias en el metabolismo cuando se toma la uva o cuando se consume el placebo. De esta manera, podremos seguir avanzado para proporcionar información nutricional rigurosa y basada en la investigación.

Si crees que cumples los requisitos o quieres contactar con el equipo de esta investigación, puedes enviar un mensaje a uvasalud@ictan.csic.es.

* Jara Pérez Jiménez es investigadora del Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN), del CSIC.