Entradas etiquetadas como ‘ciencia’

‘Top models’ de la ciencia: descubre a los seres vivos más utilizados en el laboratorio

Por Mar Gulis (CSIC)

Entre probetas, microscopios o tubos de ensayo, camuflados o a la vista, podrías encontrarlos en cualquier parte de un laboratorio. Hablamos de una bacteria del intestino humano, de la mosca de la fruta y del ratón; tres especies en principio poco llamativas, o incluso molestas. Sin embargo, la ciencia utiliza estos ‘bichitos’ como modelos de los seres vivos desde hace años. Gracias a ellos, se han hecho importantes descubrimientos sobre los mecanismos de la vida o diseñado tratamientos contra el cáncer. Te invitamos a conocer desde tu casa a estos ‘top model’ de la investigación, que forman parte de la exposición virtual del CSIC Seres modélicos. Entre la naturaleza y el laboratorio.

1. La bacteria que se volvió famosa por cambiar la biología

Aunque a simple vista sea inapreciable, la bacteria Escherichia coli es la más conocida en los laboratorios. Inicialmente se llamó Bacterium coli por ser la bacteria común del colón. Comenzó a estudiarse por las infecciones que causaba, pero a mediados del siglo XX se convirtió en modelo biológico gracias a su estructura sencilla, rápido crecimiento y los medios empleados para su cultivo, que aumentaron las posibilidades experimentales. Su utilización permitió hallar algunos de los principios básicos de la vida, pero E. coli alcanzó el estrellato con el descubrimiento de la técnica de ‘corta y pega’ del ADN, en la cual se usan enzimas para quitar e insertar segmentos de código genético y que supuso el inicio de la ingeniería genética. Hoy en día se emplea en la selección de genes concretos, estudiados posteriormente en otros organismos más complejos.

Micrografía electrónica de Escherichia coli a 10.000 aumentos.

Esta bacteria sabe mucho de los seres humanos. El genoma de E. coli, compuesto por cerca de 4.300 genes, contiene una séptima parte de nuestros genes. Además, habita en el intestino humano, donde forma parte junto a cientos de especies de la mibrobiota intestinal –también conocida como flora intestinal–, que cumple un papel fundamental en la digestión y en la defensa frente a patógenos.

E. coli es un instrumento más del laboratorio. El interés de su investigación reside todavía en las infecciones, ya que cada vez existe una mayor resistencia a los antibióticos, pero también en los mecanismos que se ponen en marcha al dividirse la célula, y cuyo mejor conocimiento permitiría diseñar, con ayuda de técnicas genómicas, fármacos con menor resistencia.

2. ¿Cómo conseguir la apariencia de una mosca?

Imagina lo molesto que resulta el zumbido de una mosca al merodear por nuestras cabezas. A partir de ahora puede que cambies de opinión cuando descubras que las moscas del vinagre o de la fruta (Drosophila melanogaster) son usadas como modelo en biología animal. Es habitual verlas en cualquier lugar, pero son más abundantes en terrenos agrícolas, cuando hace buen tiempo y, desde hace más de un siglo (esta especie se estudió por primera vez en 1901), también en los laboratorios. Saber de la mosca significa saber del ser humano porque ha sido clave en investigaciones sobre enfermedades neurodegenerativas, tumores y metástasis.

Visión dorsal y lateral de un macho y una hembra de Drosophila melanogaster. / Benjamin Prud’homme. Institut de Biologie du Développement de Marseille-Luminy. Parc Scientifique de Luminy.

Uno de los objetivos de su estudio es conocer cómo este pequeño insecto consigue su apariencia. La secuenciación de los genomas ha permitido determinar que la mayoría de genes de la mosca de la fruta son homólogos a los humanos. Por tanto, investigando los genes de esta mosca, que es un modelo de experimentación mucho más simple, se puede tener una idea de la acción de los genes en los humanos.

Sin duda su filón para la genética es más que evidente, y no solo porque el genoma de la mosca del vinagre alberga alrededor de 13.600 genes, un tercio de los que contiene el genoma humano. Además, a partir de cruces entre más de 100 tipos de moscas, el investigador Thomas H. Morgan (1866-1945) estableció que los caracteres se encuentran en los cromosomas y se heredan de generación en generación. Con ello dio lugar a la teoría cromosómica de la herencia, que le hizo merecedor del Nobel de Medicina en 1933.

3. ¡Roedores en el laboratorio!

Llaman la atención por su par de dientes incisivos y por su minúsculo tamaño. Los encontrarás en bosques, en tu ciudad y, cómo no, en un laboratorio. Así son los ratones, o Mus musculus si atendemos a su nombre científico. Utilizados como objeto de experimentación, desde hace más de un siglo son piezas clave en el estudio de la diabetes, el cáncer o los trastornos neurológicos; incluso los misterios del cerebro se exploran antes en los ratones que en el ser humano. Entre la comunidad científica hay quien los llama ‘seres humanos de bolsillo’.

En el año 2002 se dio a conocer la secuencia de su genoma, la primera de un mamífero: con cerca de 30.000 genes, aproximadamente los mismos que nuestra especie, el 99% de estos tiene su homólogo humano. Además, en ellos se reproducen enfermedades humanas como la obesidad o el párkinson, se realizan pruebas de toxicidad y se ensayan terapias futuras con células madre o nuevos materiales. Estos experimentos se han podido llevar a cabo a partir de ratones transgénicos y knock outs, es decir, aquellos producidos con un gen inactivado en todas sus células. En todos los casos, se han utilizado solo ratones machos para evitar que las hormonas sexuales afecten a los resultados.

Foto publicitaria del Jackson Laboratory. De izquierda a derecha, George Woolley, Liane Brauch, C.C. Little, desconocido y W.L. Russell. Década de 1940. / Cortesía del Jackson Laboratory.

Cuando las voces en contra de la experimentación animal comenzaron a alzarse, la defensa de los ratones no formó parte de las primeras reivindicaciones. La regulación llegó al mundo de los roedores con normativas y protocolos a nivel europeo. En ellas se establece que se debe reemplazar al ratón por otro sistema cuando sea posible y reducir el número de individuos en la investigación, para evitar así el sufrimiento animal.

E. coli, la mosca del vinagre y el ratón son solo algunos de las especies más comunes utilizadas como modelo. La muestra Seres modélicos. Entre la naturaleza y el laboratorio, cuyos contenidos puedes consultar online y descargar en alta calidad desde casa, se ocupa también de organismos como la levadura de la cerveza, un gusano minúsculo del suelo, una hierba normal y corriente y un pez de acuario. Elaborada originalmente por la Delegación del CSIC en Cataluña y ampliada en el marco del proyecto de divulgación Ciudad Ciencia, la exposición se complementa con entrevistas a especialistas en cada uno de estos seres modelo.

¿Te gusta escribir? Aprovecha el tiempo en casa y participa en Inspiraciencia

Por Mar Gulis (CSIC)

El Consejo Superior de Investigaciones Científicas (CSIC) acaba de poner en marcha la décima edición de su certamen de relatos de inspiración científica. Si tienes más de 12 o más años, Inspiraciencia te invita a enviar un texto de ficción corto escrito en castellano, catalán, euskera o gallego en el que, de forma libre y personal, trates algún aspecto relacionado con la ciencia.

Inspiraciencia X

Para participar no necesitas ser un especialista en la materia ni ceñirte a un tema o a un estilo determinado. Imaginar el futuro en clave de ciencia ficción, explicar fenómenos científicos por medio de metáforas y personajes o fabular descubrimientos y anécdotas históricas son solo algunas de las posibilidades que tienes a mano para inventar una historia.

En la página web de Inspiraciencia puedes leer los textos presentados en las ediciones anteriores y así hacerte una idea de la gran variedad de propuestas que tienen cabida en el certamen. Un ejemplo son los últimos relatos en castellano premiados en la categoría ‘Adulto’. El de 2019 utilizaba la estrepitosa caída de un eminente científico durante la entrega de un importante premio para hablar, con mucho humor negro, de estadística y probabilidades. El del año precedente nos presentaba un diálogo entre un profesor y varios alumnos en el que se iban desvelando los sorprendentes cambios educativos y sociales provocados por el desarrollo de la inteligencia artificial. Por su parte, el de 2017 fantaseaba sobre el impacto ambivalente de la realidad virtual en el marketing y la selección de recursos humanos del futuro.

Existen muchos alicientes para aceptar el reto que propone Inspiraciencia. El más importante es que te guste escribir ficción, pero también están los premios. Como en años anteriores, quienes resulten galardonados serán premiados con cursos de escritura en escuelas de prestigio, libros electrónicos o suscripciones a revistas.

Además, esta edición coincide con un momento excepcional al que quizás puedes sacarle partido literario. ¿Quién sabe? Tal vez estos días de confinamiento tienes más tiempo para ponerte a escribir. O a lo mejor la crisis del coronavirus ha hecho que se dispare tu creatividad. Desde luego, la situación invita a proyectar distopías causadas por fenómenos como las pandemias o el cambio climático; aunque también a soñar utopías en las que la ciencia nos ayude a solucionar los múltiples desafíos del presente. O, ¿por qué no?, a crear ficciones que sirvan para evadirnos y pensar en otra cosa. La imaginación es libre.

¿Te animas a participar? Entonces, tienes hasta el 7 de junio para enviar un texto original de 800 palabras como máximo. Tendrás que presentarlo en la categoría ‘Joven’ si tienes entre 12 y 17 años y ‘Adulto’ si ya has cumplido los 18. ¡Te esperamos!

 

Inspiraciencia es un certamen impulsado por la Delegación del CSIC en Cataluña con la colaboración de numerosas personas y entidades; entre ellas, la Fundación Española para la Ciencia y la Tecnología (FECYT) del Ministerio de Ciencia e Innovación.

El fondo cósmico de microondas, la fotografía más antigua del universo

Galaxia Andrómeda. / Robert Gendler.

Por Pablo Fernández de Salas (CSIC)*

Cuando miramos al cielo nocturno, la mayoría de lo que vemos es un manto negro con algunas estrellas dispersas. Por eso, siempre nos han dicho que el universo está prácticamente vacío.

Sin embargo, en el interior de una galaxia como la nuestra esto no es realmente cierto, ya que en el espacio que media entre las estrellas hay mucho polvo y nubes de gas molecular. Otra cosa distinta es lo que ocurre en el enorme espacio que por lo general separa las galaxias. Sin ir más lejos, Andrómeda, la galaxia más cercana a la Vía Láctea, se encuentra a nada menos que dos millones y medio de años luz. Si alguien nos enviara un mensaje desde allí, ¡tendríamos que esperar un mínimo de dos millones y medio de años para recibirlo! La cantidad de polvo y gas que hay en estas grandes distancias es ridículamente pequeña, y es por ello que decimos que el espacio intergaláctico se encuentra vacío. No obstante, estrictamente hablando, dicho espacio queda muy lejos de no contener nada.

Lo que llena el espacio intergaláctico está presente a lo largo y ancho de todo el universo. Se trata, principalmente, de fotones, las partículas que componen la luz. Comparten el espacio con otras partículas, como por ejemplo los neutrinos, pero los fotones son las más abundantes del universo. Concretamente, hay más de medio millón de fotones en el volumen que ocupa una botella de litro y medio en el ‘vacío’ cósmico. ¿Cómo es posible que, siendo fotones, no los veamos a simple vista?

Arno Penzias y Robert Woodrow Wilson bajo la antena que descubrió el fondo cósmico de microondas, en Holmdel, Nueva Jersey. / NASA.

La explicación la encontramos en su origen. Los fotones que pueblan el universo se conocen, en su conjunto, como el fondo cósmico de microondas, y son, además de los más abundantes del cosmos, también los más viejos. Proceden de una época en la que el universo tenía menos de medio millón de años. Trescientos ochenta mil años, siendo más precisos, frente a los casi catorce mil millones de años que tiene en la actualidad. ¡Apenas un día en la vida de un ser humano!

Estos fotones, creados cuando el universo era tan joven, sufrieron un proceso que se conoce con el nombre de desacoplamiento. Antes de que esto ocurriera, el cosmos era una especie de ‘sopa traslúcida’, conocida como plasma, en la que los fotones no duraban mucho, ya que se aniquilaban y creaban de nuevo sin descanso debido a sus frecuentes interacciones con electrones y núcleos de elementos ligeros. Sin embargo, cuando la temperatura descendió por debajo de los 3.000 grados, los electrones se hicieron suficientemente lentos como para que los núcleos los capturaran para formar átomos. Eso, a su vez, permitió que los fotones dejaran de chocar constantemente con esas partículas y pudieran emprender un viaje en solitario y en todas las direcciones hasta nuestros días.

satélite Planck

Representación artística del satélite Planck. /
ESA-AOES Medialab.

A lo largo de todos estos años que nos separan, estos fotones se han ido enfriando por culpa de la expansión del universo hasta alcanzar hoy una temperatura de 270 grados bajo cero. Paradójicamente, esto hace que calienten el universo, ya que si no estuvieran en todas partes la temperatura del cosmos se encontraría en el cero absoluto, a menos 273 grados.

Además de enfriarlos, la expansión del universo ha expandido la longitud de onda de estos fotones, por lo que ya no nos llegan en forma de luz –nuestros ojos no pueden verlos–, sino en forma de microondas –que no pueden ser ‘vistas’ pero sí detectadas–. La primera detección de este fondo cósmico de microondas fue realizada de forma más o menos fortuita por Arno Penzias y Robert Woodrow Wilson en 1964 con una descomunal antena. Ambos fueron galardonados con el Premio Nobel de Física.

Desde entonces la comunidad investigadora ha observado estos antiquísimos fotones con satélites como COBE, WMAP o Planck, y con experimentos situados en la superficie de la Tierra. Actualmente, la observación más precisa de las anisotropías del fondo cósmico se la debemos al satélite Planck, que tras cuatro años de operación nos ha permitido tomar la fotografía más antigua del universo.

Antisotropías

Anisotropías del fondo cósmico de microondas medidas por el satélite Planck. La fotografía más antigua del universo. / ESA-Planck Collaboration.

La imagen refleja las minúsculas variaciones –del orden de las cienmilésimas de grado– que existen entre estos fotones según la dirección de la que procedan. Estas pequeñas desviaciones, conocidas como anisotropías, constituyen una fuente de información maravillosa sobre nuestro universo, en especial en sus primeros años de vida. Por ejemplo, permiten estudiar las diferencias en la densidad del plasma cósmico cuando el universo tenía trescientos ochenta mil años, o características de los neutrinos y de la materia oscura ligadas con las propiedades estadísticas de dichas anisotropías, tareas que llevamos a cabo en el Instituto de Física Corpuscular (IFIC, centro mixto del CSIC y la Universidad de Valencia) con datos preliminares obtenidos por el satélite Planck.

 

* Pablo Fernández de Salas es investigador en el Instituto de Física Corpuscular (centro mixto del CSIC y la Universidad de Valencia).

¿Se puede resolver el juego del ajedrez?

Por Razvan Iagar (CSIC)*

Cuando la gente me pregunta a qué me dedico, al responder que aparte de investigador en matemáticas soy un jugador activo de ajedrez en competiciones, me hacen preguntas como: “Pero, ¿no está el ajedrez ya resuelto?, ¿no hay ya máquinas que pueden dar la mejor jugada?”. Voy a dar respuesta a estas cuestiones, argumentando por qué el ajedrez no solo no está acabado, sino que goza de muy buena salud y tiene un gran futuro por delante.

Por “resolver el ajedrez” entendemos establecer una estrategia óptima para jugar la partida; es decir, encontrar el camino que contiene las mejores jugadas tanto para las blancas como para las negras, desde el principio, o desde cualquier posición dada, hasta el final. En un sentido más débil, también podemos entender por “resolver el juego” el hecho de predecir el resultado óptimo (con el mejor juego posible) de una partida. Es decir, a partir de la posición inicial, cuál de los tres resultados posibles -victoria de las blancas, victoria de las negras o el resultado de tablas- es el resultado del juego óptimo de un encuentro entre dos jugadores perfectos sin exponer necesariamente la estrategia óptima.

Tan solo a través de fuerza bruta de cálculo, ninguna máquina puede resolver en la actualidad el ajedrez

Se trata de un problema abierto que ha surgido a partir del desarrollo de los programas informáticos de ajedrez. Pero esta cuestión ya se ha intentado solucionar antes. Claude Shannon, ‘el padre de la teoría de la información’, explicó en un artículo en 1950 la tarea de una máquina para analizar todas las variantes posibles de jugadas y concluyó que “una máquina operando con una tasa de una variante por microsegundo necesitaría un tiempo de 1090 años para calcular todas las posibilidades desde la primera jugada”. Shannon argumenta así que, tan solo a través de fuerza bruta de cálculo, ninguna máquina razonable podrá completar esta tarea.

Más recientemente, en 2007, se ha podido resolver el juego de las damas, emparentado con el ajedrez, pero con una complejidad mucho menor, sobre todo porque aquí todas las piezas son idénticas -tienen el mismo valor-, mientras que en el ajedrez las piezas tienen valores y capacidades diferentes. El equipo investigador liderado por el canadiense Jonathan Schaeffer, experto en inteligencia artificial, pudo comprobar que en las damas siempre se acaba en tablas si no se comete ningún error por parte de ninguno de los dos jugadores. El esfuerzo computacional para analizar de forma exhaustiva todas las posiciones ha tomado 18 años, utilizando en algunos periodos incluso 200 ordenadores conectados trabajando en paralelo y sin pausa, para analizar un número de posiciones del orden de 1014. ¡Todo un esfuerzo!

En 2007 se resolvió el juego de las damas.

Sin embargo, se trata un esfuerzo no extrapolable al ajedrez, ni en el aspecto de la capacidad computacional necesaria, ni en cuanto a método de demostración. Si miramos la complejidad del ajedrez desde el punto de vista del número total de partidas posibles que se pueden jugar (lo que en términos de la teoría de juegos recibe el nombre de ‘complejidad del árbol del juego’, game-tree complexity) alcanzamos un número muy grande, del orden de 10123. Esta estimación se deduce usando un cálculo basado en dos aproximaciones: que el número medio de jugadas completas de una partida es de 40 y que, en cada paso, el número medio de jugadas legales disponibles es de 35. El mismo Jonathan Schaeffer opina que solo después del establecimiento de una nueva tecnología de cálculo —ordenadores cuánticos— tendría sentido intentar ponerse a la tarea de resolver este juego milenario.

Por otro lado, el método de demostración que ha funcionado en las damas falla completamente en nuestro caso debido a los valores y capacidades diferentes de las piezas, y también por la existencia de algunas piezas con características especiales como el rey, cuyo mate acaba la partida en cualquier momento, incluso con todas las demás piezas en el tablero; o el peón, cuya coronación hace que reaparezcan en el tablero piezas más fuertes que posiblemente habían desaparecido antes en el transcurso de una partida. Así pues, no se puede establecer una base de finales de partidas con, por ejemplo, un número máximo de 10 piezas, de tal manera que cualquier partida tenga que pasar por una de esas posiciones. En efecto, un jaque mate puede ocurrir mucho antes de haber llegado a una situación de menos de 10 piezas en el tablero. Este razonamiento sencillo demuestra que es necesario tener la capacidad de analizar todas las posiciones posibles, sin simplificaciones.

Por todas estas razones, aunque el reto de resolver -o no- el ajedrez queda abierto (no hay una demostración matemática o lógica formal de que este hecho sea imposible), la mayoría de los especialistas consideran que no hay nada que indique una posibilidad práctica de llegar a una solución. Ni siquiera en el sentido débil, es decir, predecir el resultado sin decir las jugadas, a corto o medio plazo. Así pues, los maestros y aficionados pueden estar tranquilos: ¡el juego tiene todavía mucho futuro!

*Razvan Iagar es investigador del CSIC en el Instituto de Ciencias Matemáticas (ICMAT) de Madrid y autor del libro Matemáticas y ajedrez, de la colección ¿Qué sabemos de?, disponible en la Editorial CSIC y Los Libros de la Catarata.

Una de libros científicos para la Feria de Madrid

Cada junio los libros acuden a una cita obligada en el Parque de El Retiro de Madrid. La ciencia también tiene hueco en este encuentro anual entre textos y lectores. La Editorial CSIC y Los Libros de la Catarata presentan las novedades de sus colecciones ¿Qué sabemos de? y Divulgación, ambas escritas por investigadores e investigadoras con el fin de acercar al gran público temas de actualidad científica de forma sencilla y amena. Este año los microbios que habitan en nuestro intestino, las algas como alimento, el olfato y la participación de las mujeres en la Primavera Árabe protagonizan algunos de los títulos que se presentarán en el pabellón de actividades culturales de la Feria del Libro.

El jueves 1 de junio a las 12:30 horas, la ciencia de lo diminuto aparece en escena. En pocos años la nanotecnología se ha incorporado a un ritmo frenético en múltiples ámbitos, pero, como toda tecnología, la capacidad de controlar el nanomundo también tiene su ‘lado oscuro’. Marta Bermejo y Pedro Serena intentan centrar el debate sobre las aplicaciones y los posibles daños que puede comportar esta actividad en Los riesgos de la nanotecnología.

Uno de los retos a los que se enfrenta la sociedad en el siglo XXI es el de ser capaz de alimentar a una creciente población mundial, y las algas –uno de los recursos marinos más abundantes y menos explotados- son una posibilidad para paliar este problema. Elena Ibáñez y Miguel Herrero describen en Las algas que comemos algunas de las características únicas que poseen estos organismos vivos para convertirse en la base de la alimentación del futuro.

¿Quién no ha pasado tardes enteras jugando al ajedrez? Su complejidad, su profundidad e incluso su belleza nos siguen atrayendo como el mejor de los retos. La inserción de las matemáticas en el estudio del juego ha supuesto una simbiosis perfecta que alimenta, por un lado, el avance hacia la partida de ajedrez perfecta y, por otro, el desarrollo de nuevas mejoras en campos como el de la programación informática o la inteligencia artificial. Razvan Iagar habla de este juego milenario en Matemáticas y ajedrez.

El proceso reproductivo tiene una importancia vital en cada una de sus fases. El libro La reproducción en la Prehistoria de la colección Divulgación busca contribuir a valorar este proceso social básico, que además es susceptible de regulación y control. Sus autores Assumpció Vila-Mitjà, Jordi Estévez, Francesca Lugli y Jordi Grau, sostienen que este proceso no se limita a lo biológico y, apoyándose en un ilustrativo recorrido fotográfico, transmiten que ha estado regulado por normas sociales que permitían garantizar la continuidad de las sociedades desde la Prehistoria.

 

 

Tardes de feria con ciencia

El lunes 5 de junio a las 18:00 horas, Carmen Peláez y Teresa Requena, autoras de La microbiota intestinal, explicarán la importancia de las bacterias que habitan en nuestro intestino y contribuyen a mantenernos saludables. La microbiota intestinal nos ayuda a digerir los alimentos, coopera con nuestro sistema inmune y optimiza el aprovechamiento energético de la dieta. Pero además, investigaciones recientes están tratando de descifrar en qué medida estos seres microscópicos también pueden afectar a nuestra actividad cerebral.

Por su parte, El olfato nos habla del más desconocido de nuestros cinco sentidos, a pesar de que es el más directo, el que más recuerdos evoca y el que más perdura en nuestra memoria. Sus autores Laura López-Mascaraque y José Ramón Alonso expondrán como el olfato puede ser una nueva herramienta diagnóstica para algunas enfermedades.

M. Valderrama presentará Los desiertos y la desertificación. En su texto, el investigador de la Estación Experimental de Zonas Áridas aclara las diferencias entre ambos términos, explicando qué es un desierto y qué no lo es, identifica las causas que lo originan y expone cómo se produce el proceso de degradación del territorio.

Cierra esta tarde de presentaciones La isla de Pascua, de la colección Divulgación. Escrito por Valentí Rull, la publicación sobre el lugar habitado más remoto del planeta responde a cuestiones como quiénes fueron los pobladores originarios de este lugar y con qué fin construyeron los moai, o cuándo y por qué desapareció esta civilización de la isla.

Las presentaciones se realizarán en el Pabellón Bankia de actividades culturales. Puedes consultar aquí la programación detallada. Además, los autores de las colecciones firmarán sus libros en las casetas de la Editorial CSIC (número 14) y de la editorial Los libros de la Catarata (número 149).

¿Cómo llegó el aceite de palma a nuestra mesa?

Por Rafael Garcés (CSIC) * y Mar Gulis (CSIC)

La entrada en vigor en 2014 del etiquetado de alimentos permitió conocer que una parte importante de los alimentos procesados contienen aceite o grasa de palma. Hasta esa fecha bastaba con indicar en la etiqueta del alimento que contenía grasa vegetal. Dentro de esa denominación se incluían tanto los aceites hidrogenados, que contienen ácidos grasos trans, como la grasa de palma. Al ser vegetal, los consumidores pensábamos que esa grasa no era mala. Sin embargo, el informe publicado en 2016 por la Agencia Europea para la Seguridad Alimentaria, que indica que el aceite de palma puede provocar un “posible problema de salud” cuando se procesa incorrectamente, hizo saltar las alarmas, creando una gran controversia en torno a su consumo. Pero, ¿es realmente perjudicial?, ¿su uso está legislado? Vamos a intentar explicar cómo llegó este ingrediente a la bollería, galletas y otros muchos alimentos procesados de consumo habitual, como patatas fritas o helados, y qué alternativas hay a su uso.

Muestras de aceite de palma y de manteca de cerdo./ Instituto de la Grasa, CSIC.

Históricamente hemos consumido grasas animales -manteca de cerdo o sebo de vacuno-, hasta que se descubrió que era perjudicial para la salud, porque aumentaba los niveles de colesterol y provocaba las temidas enfermedades cardiovasculares, debido a su alto contenido en ácido palmítico y, en menor medida, al colesterol. La alternativa era utilizar aceites vegetales saludables, pero estos son líquidos a temperatura ambiente, y no se puede hacer una margarina o preparar un croissant con un aceite líquido. En aquel momento la solución fue hidrogenar el aceite químicamente. En este proceso parte de los ácidos grasos se convierten en ácidos grasos trans, que resultaron ser aún más perjudiciales que la grasa animal. No solo subían el contenido del colesterol malo, sino que también bajaban el contenido de colesterol bueno. Aun así, durante muchos años hemos estado consumiendo este tipo de grasa, porque está permitido utilizarla, al igual que la grasa animal. No obstante, hay honrosas excepciones a la ausencia de restricciones gubernamentales al respecto. Dinamarca, por ejemplo, legisló hace años el uso del aceite vegetal hidrogenado. En 2003 este país impuso un límite máximo del 2% de trans en los aceites o grasas, lo cual tuvo efectos positivos. En una publicación de 2016 se muestra que el número de fallecimientos en los siguientes tres años a la puesta en vigor de la legislación disminuyó en 14,2 muertes por cada 100.000 habitantes. Teniendo en cuenta que la población era de 5,4 millones de habitantes, la reducción de fallecimientos fue de 767 al año. Esta cifra ha ido aumentando hasta alcanzar 22 muertes menos por cada 100.000 habitantes y año; 1.232 muertes menos que en 2012, lo que supone un resultado bastante relevante.

Continuando con nuestro repaso, para evitar la hidrogenación y los ácidos grasos trans se comenzó a usar grasa de palma, con un contenido alto en ácidos saturados. De nuevo, la solución aportada contiene grasas ricas en palmítico no recomendadas por los organismos internacionales. Y aunque es mejor nutricionalmente que las grasas vegetales hidrogenadas, no es un buen sustituto.

Dado que en España no existe legislación para la grasa de palma, y a pesar de que se aprobó una proposición no de ley para modificar el reglamento sobre la información alimentaria facilitada al consumidor, la solución aconsejada por organismos internacionales como la Organización Mundial de la Salud es reducir la ingesta de estas grasas perjudiciales y utilizar aceites con ácidos grasos insaturados. Con la dieta mediterránea lo tenemos fácil: el primero y el mejor es el aceite de oliva virgen extra, junto con otros aceites vegetales, como el de girasol.

Hay alternativas para la grasa de palma

Muestras de aceite de girasol normal y de aceite de girasol con ácido esteárico./ Instituto de la Grasa, CSIC.

Pero nuestro problema continúa sin solución: ¿cómo fabricamos una margarina o un croissant? Igual que existen dos tipos de colesterol, uno bueno y otro malo, también existen diversos tipos de ácidos grasos saturados, los malos, como el laurico, mirístico y palmítico, y uno que no afecta a los niveles de colesterol: el ácido esteárico, que fue definido en 1970 por el doctor Grande Covián. La pregunta es obvia: ¿por qué no se utilizan esas grasas que contienen ácido esteárico? Porque se trata de grasas de coste elevado, entre ellas están la manteca de karité, la del hueso de mango o la de mangostán, todos ellos árboles tropicales.

Desde hace bastantes años la comunidad científica trabaja en proyectos de investigación para desarrollar semillas de soja, colza, algodón, girasol, e incluso de palma, con alto contenido en ácido esteárico. En particular, en el Instituto de la Grasa del CSIC se ha obtenido una semilla de girasol cuyo aceite tiene un contenido alto de ácido esteárico por métodos de mejora genética vegetal clásica. Esperemos que pronto podamos saborear productos saludables con alguna de estas nuevas grasas.

*Rafael Garcés es investigador del CSIC en el Instituto de la Grasa 

¿Cómo reconocer un buen aceite de oliva?

Por Raquel Mateos* y Mar Gulis (CSIC)img_20161123_110724-1x1

Si es picante y amargo, lo más probable es que estés degustando un aceite de oliva especialmente beneficioso para tu salud. Los responsables de estas propiedades son un grupo de compuestos presentes de forma casi exclusiva en el aceite de oliva virgen y virgen extra que centran el interés de la comunidad científica: el hidroxitirosol y sus derivados.

Pero empecemos por el principio: ¿son todos los aceites de oliva igual de beneficiosos? Cuando se habla de las características saludables de este ingrediente básico de la dieta mediterránea, el aceite que se suele tomar como referencia es el virgen o el virgen extra, que se obtienen directamente de la oliva mediante procedimientos mecánicos como la presión y la centrifugación. El aceite de oliva ‘a secas’ es en realidad aceite lampante refinado y mezclado con un pequeño porcentaje de aceite de oliva virgen para dar sabor y color al producto. Por eso su composición y propiedades no son las mismas que las del aceite de oliva virgen o el virgen extra.

Aceite de oliva virgen extra. / USDA vía Flickr

Aceite de oliva virgen extra. / USDA vía Flickr.

Todas las categorías de aceite de oliva tienen en común una composición rica en ácidos grasos monoinsaturados, que son considerados beneficiosos para la salud. Así, la Administración de Alimentos y Medicamentos de Estados Unidos (FDA, por sus siglas en inglés) reconoce que el consumo de dos cucharadas (25 mililitros) de aceite de oliva al día en sustitución de la misma cantidad de grasa saturada ayuda a prevenir el riesgo coronario.

Sin embargo, los aceites de oliva virgen y virgen extra contienen además compuestos fenólicos que los protegen de la oxidación y tienen reconocidos efectos sobre nuestra salud; el hidroxitirosol y sus derivados constituyen el grupo más emblemático de estos antioxidantes. Recientemente, la Autoridad Europea de Seguridad Alimentaria (EFSA) ha señalado que la ingesta de 5 miligramos al día de fenoles de aceite de oliva previene la oxidación del ‘colesterol malo’ (las lipoproteínas de baja densidad o LDL), que es un proceso clave en el depósito de grasa en las arterias. Ello se debe al contenido en hidroxitirosol y derivados de dichos fenoles. Para ingerirlos en la cantidad adecuada hay que consumir entre una y dos cucharadas de aceite, siempre que se trate de un aceite bien amargo y picante.

Además, el estudio PREDIMED sobre la dieta mediterránea ha asociado parte de los beneficios de esta a la fuente de grasa utilizada, el aceite de oliva virgen extra, y más concretamente a su contenido en hidroxitirosol y derivados. Según este estudio, la dieta mediterránea contribuye a mejorar la salud cardiovascular y reducir el riesgo de padecer diabetes tipo II, cáncer de mama y enfermedades neurodegenerativas, además de prevenir el aumento de peso. Estos beneficios se observaron tras la ingesta diaria de 50 mililitros de aceite de oliva virgen extra, equivalente a cuatro cucharadas soperas.

Así pues, no todos los aceites de oliva son iguales. Si queremos aprovecharnos de una grasa monoinsaturada de calidad y de los beneficios del hidroxitirosol, tendremos que consumir preferentemente aceite de oliva virgen extra. Por suerte para los consumidores, podemos recurrir a la etiqueta del producto para identificar el tipo de aceite y a nuestro sentido del gusto para hacernos una idea de la cantidad de fenoles que contiene un aceite de oliva, ya que estos compuestos son amargos y picantes. Por eso, cuanto más intensos sean estos atributos en un aceite, mayores serán sus propiedades saludables.

Pero, ¿son el aceite de oliva virgen y virgen extra las únicas fuentes de hidroxitirosol? No necesariamente. Este compuesto también es abundante en el alperujo, un subproducto generado durante la producción del aceite, que en los próximos años puede convertirse en un ingrediente atractivo para la elaboración de nuevos productos dietéticos. En un estudio reciente que hemos realizado en el Instituto de Ciencia y Tecnología de Alimentos y Nutrición del CSIC con galletas suplementadas con este ingrediente reveló que el hidroxitirosol que contienen es muy biodisponible –es decir, resulta de fácil y rápida absorción por nuestro organismo– y reduce el nivel de las partículas oxidadas del ‘colesterol malo’. Así pues, parece que en el futuro será posible encontrar hidroxitirosol en una gama variada de alimentos.

 

* Raquel Mateos es investigadora del CSIC en el Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN).

¿Sabías que el flash de tu cámara puede ayudar a detectar el cáncer de retina?

Por Mar Gulis (CSIC)

Cualquiera se ha encontrado alguna vez una foto en la que los retratados aparecen con un par de círculos rojos en los ojos. Este molesto fenómeno, que ocurre cuando utilizamos el flash, tiene su origen en la fisiología del ojo y en el comportamiento de la luz, y por extraño que parezca puede utilizarse para detectar un tipo cáncer de retina, el retinoblastoma.

Efecto 'ojo rojo' en la pupila. / Liam Welch vía Unsplash.

Pupila con ‘ojo rojo’. / L. Welch vía Unsplash.

Empecemos por el principio. ¿Por qué se produce el ‘efecto ojos rojos’? Sergio Barbero, investigador del CSIC en el Instituto de Óptica, explica que la luz entra en nuestros ojos a través de la pupila, “que es el equivalente al diafragma en una cámara de fotos”. Así, cuando hay mucha luminosidad en el ambiente, la pupila se contrae para evitar el daño de un exceso de luz, mientras que si ocurre lo contrario se dilata para permitir la visión.

Tras atravesar la pupila, la luz llega al fondo del ojo, donde se encuentran la retina y la coroides. “De toda la luz incidente en la retina, la mayor parte es transformada en señal eléctrica, lo que constituye el primer paso de la visión; sin embargo, una pequeña fracción atraviesa la retina y llega hasta la coroides, que está muy vascularizada porque su función es nutrir al ojo”, señala Barbero.

“La hemoglobina, presente en la sangre de los capilares de la coroides, absorbe los componentes azules de la luz incidente y emite hacia fuera luz de color rojizo”, prosigue. “Aunque este fenómeno está siempre presente, solo es perceptible si la cantidad de luz que penetra en el ojo es lo suficientemente grande: esto ocurre cuando en el ojo entra un haz de luz repentino (por ejemplo, el flash de una cámara) en un momento en que la pupila está dilatada (en un ambiente de oscuridad)”, aclara el investigador.

Funcionamiento del fenómeno 'ojos rojos'. / Photokonnexion

Esquema del efecto ‘ojos rojos’. / Photokonnexion

En la actualidad el ‘efecto ojos rojos’ ha sido solucionado gracias a la incorporación de un segundo flash, que se dispara a la vez que se abre el diafragma de la cámara, justo inmediatamente después del primero. De esta forma, la luz del segundo flash impacta ya sobre el músculo contraído, lo cual elimina casi por completo este antiestético efecto.

Hoy, el modo ‘anti ojos rojos’ viene de serie en la mayoría de las cámaras. Sin embargo, será necesario desactivarlo si pretendemos utilizar nuestro flash como método de detección del retinoblastoma, un tumor canceroso que se desarrolla en la retina causado por la mutación en una proteína. Este tipo de tumor aparece mayoritariamente en niños pequeños y representa un 3% de los cánceres padecidos por menores de quince años.

Cuando el retinoblastoma se sitúa en los vasos sanguíneos del ojo actúa como una muralla ante el efecto del flash, lo que impide que se vea el destello rojo en ese ojo o hace que aparezca uno blanquecino. Por eso, una foto puede ‘chivarnos’ esta patología. MedlinePlus, el servicio online de la Biblioteca Nacional de Medicina de los Estados Unidos, recoge que, si la persona fotografiada aparece solo con un ojo rojo o con uno de color blanquecino, esto podría ser una señal de presencia del tumor, por lo que se debería acudir al médico.

Carteles de la campaña de prevención del retinoblastoma. / Childhood Eye Cancer Trust

Carteles de la campaña de prevención del retinoblastoma. / Childhood Eye Cancer Trust

De hecho, Childhood Eye Cancer Trust, una fundación de ayuda contra el retinoblastoma, lanzó hace un par de años una campaña de prevención basada en este efecto. La entidad colocó carteles interactivos en varias ciudades con imágenes de ojos de niños con la característica de que, si se realizaba una foto con flash sobre estas, la pupila cambiaba y reflejaba uno de los posibles síntomas.

La campaña intentaba que los padres hicieran la prueba con sus hijos. Sin embargo, si alguien se decide a seguir el consejo, debe tener claro que la fotografía no basta para tener un diagnóstico concluyente: la presencia del retinoblastoma solo puede ser confirmada por profesionales médicos mediante pruebas adicionales y exámenes.

Vídeo: ¿Qué tiene que ver Borges con las neurociencias?

Por Mar Gulis (CSIC)

“Mientras Borges escribía la fantástica historia de Funes el memorioso, un neurólogo ruso llamado Alexander Luria estudiaba un caso real muy parecido”. Así se presenta la primera cápsula audiovisual de ‘Realidad conexa’, una serie que nos invita a descubrir las relaciones entre ciencia, arte y literatura y a reflexionar sobre las diferentes formas de llegar al conocimiento. Sus guionistas son Gustavo Ariel Schwartz, físico del CSIC y colaborador de este blog, y Ana Montserrat, ex directora del programa de televisión Tres14. El vínculo de la matemática fractal con la literatura, de la teoría de la relatividad con el cubismo o de la pintura con el funcionamiento del cerebro son otras de las conexiones que podrás descubrir en los ochos vídeos de la serie.

 

‘Octopus vulgaris’ y otros caníbales sexuales

canibalismo-cefaparques-1-autor-manuel-e-garci

Otopus vulgaris practicando canibalismo en el medio natural / Manuel E. Garci

Por Mar Gulis (CSIC)

En noviembre del año pasado el proyecto Cefaparques, liderado por el investigador del CSIC Ángel Guerra, constató por primera vez la existencia de canibalismo sexual en pulpos. Este comportamiento permite a las hembras de Octopus vulgaris obtener un aporte extra de energía para sobrevivir en el periodo de cuidado de sus crías, fase que dura cuatro meses en la que no comen nada y necesitan vivir de sus propias reservas.

El canibalismo es un comportamiento bastante extendido en el reino animal y que ha podido ser documentado en algunas especies de arácnidos, insectos y anfípodos, dándose también entre gastrópodos y copépodos. Esta práctica, particularmente común en numerosas familias de arañas y escorpiones, llega a tener efectos significativos en el tamaño y la distribución relativa de géneros en una población. Por lo general se trata de una conducta que beneficia a la hembra, pues aumenta su éxito reproductivo.

Hembra adulta de Lycosa hispanica, en la Sierra de Chinchilla (Albacete). Autor: Guillermo García-Saúco

Hembra de Lycosa hispanica, en la Sierra de Chinchilla (Albacete) / Guillermo García-Saúco

Recientemente un grupo de investigación en el que ha participado la Estación Experimental de Zonas Áridas del CSIC, en Almería, ha estudiado el canibalismo sexual en la tarántula mediterránea (Lycosa hispanica). Su reproducción es la habitual en las arañas: el apareamiento y la fecundación no ocurren a la vez, sino que las hembras almacenan el esperma en su interior hasta que los huevos están listos para ser fecundados.

Según los resultados de este estudio, un tercio de las hembras de la tarántula mediterránea se alimentan del macho en lugar de aparearse con él, una vez que tienen esperma almacenado de un encuentro anterior. Esta práctica, que es más frecuente cuanto mayor es el número de machos disponibles, les aporta importantes beneficios biológicos, ya que tienen más descendencia y de mayor calidad que las que sólo se alimentan de presas.

El estudio ha resultado sorprendente, pues casi todos los datos anteriores procedían de experimentos de laboratorio, que no siempre reflejan de manera fiable el comportamiento en libertad. En esta ocasión, los investigadores han trabajado con animales dentro de parcelas controladas en zonas semidesérticas de Almería, que es el hábitat natural de la especie. Los científicos barajan la hipótesis de que la escasa disponibilidad de alimento en estas zonas propicia este tipo de comportamiento.

araña de espalda roja

Araña de espalda roja (Latrodectus hasselti) / Doug Beckers

Otro caso curioso es el de la araña de espalda roja (Latrodectus hasselti). En esta especie se ha observado que el macho llega incluso a sacrificarse buscando la muerte, dando unas lentas volteretas hasta quedar en una postura en la que a la hembra le resulta fácil comérselo. Debido a los ataques que sufren por parte de sus parejas sexuales, los machos de esta especie de araña tienen una expectativa de vida de apenas 7 meses, mientras que las hembras llegan a vivir 2 o 3 años.

Este tipo de canibalismo se sumaría a otros en los que los machos se comen a la descendencia de un anterior progenitor o en los que unas crías se comen a otras. Como siempre, la naturaleza no deja de sorprendernos y una práctica que nos puede resultar violenta y difícil de comprender resulta efectiva y de gran ayuda para la supervivencia o mantenimiento de determinadas especies.