Entradas etiquetadas como ‘Instituto Cajal’

Pareidolia: en ocasiones veo caras

Por Miriam Caro y Emilio Tejera (CSIC)*

¿Quién no se ha tumbado sobre la hierba, en una apacible tarde de verano, y ha jugado a encontrar formas en las nubes? De igual manera, somos capaces de ver rostros, animales y otros elementos familiares en enchufes, casas o paisajes. Internet está lleno de imágenes de objetos con estas cualidades, pero los seres humanos llevamos estableciendo estas analogías visuales desde hace miles de años.

Roca ubicada en la isla volcánica de Heimaey, al sur de Islandia. / Diego Delso (delso.photo)

Nuestra tendencia a ver más de lo que realmente hay explicaría que el Dolmen de Menga, construido hace más de 5.650 años en la actual provincia de Málaga, se alce frente a la Peña de los Enamorados, con su forma de cabeza. También parece probable que los antiguos homínidos desenterrados en el yacimiento de Makapansgat, en Sudáfrica, se hayan dejado encandilar por un guijarro encontrado en esa zona que, de manera natural, se asemeja a un rostro humano.

Caras por doquier

La creación de este tipo de analogías visuales por nuestra mente se denomina pareidolia. Aunque en un principio se asoció a patologías mentales, hoy tenemos claro que es un comportamiento común en el ser humano desde una edad muy temprana. Es la base del famoso test de Rorschach, y también de los emoticonos. Se ha empleado en el arte, en educación y en medicina, y hay lugares turísticos que han alcanzado notoriedad gracias a él, como la Ciudad Encantada de Cuenca.

La neurociencia ha comprobado que mientras ocurre el fenómeno se activan las mismas áreas cerebrales que reconocen esas formas cuando son auténticas, aunque de una manera ligeramente más lenta que si los estímulos fuesen verdaderos. Los estudios confirman la sabiduría popular acerca de que cada persona evoca imágenes distintas, pero que esas percepciones se mantienen con el tiempo, aunque hayan tenido que señalárnoslas al principio. Compartimos esta capacidad con otras especies, y puede verse alterada por procesos como el embarazo, o en varios tipos de trastornos mentales y neurodegenerativos, lo cual podría contribuir a su tratamiento y diagnóstico.

El hecho de ver caras o formas en todo lo que nos rodea se explica porque nuestro cerebro está preparado para simplificar el entorno. Ya habló de ello la ley de la pregnancia de la Gestalt, según la cual la percepción tiende a adoptar las formas más sencillas posibles. Dentro de esta ley general, nos encontramos con las leyes particulares de proximidad, de cierre, de continuidad o de semejanza, que explicarían el porqué de la pareidolia. Los estudios parecen indicar que, en efecto, nuestras neuronas nos predisponen a “completar el dibujo”, y pueden detectar caras a partir de elementos aislados (sobre todo similares a ojos) más que de imágenes en conjunto, aunque muchos de estos aspectos aún se discuten.

Reconocer elementos sueltos como parte de un todo

La pareidolia forma parte de un concepto más amplio denominado apofenia, por el cual inferimos patrones a partir de datos aparentemente aleatorios. En realidad, sólo es una derivación de un fenómeno normal, y útil desde un punto de vista evolutivo: el ser humano tenía que ser capaz de detectar predadores a su alrededor a partir de sutiles percepciones en el entorno, como movimiento, sonido o algo parecido a unos ojos. Y esto explica que funcione tan bien para reconocer rostros, porque debíamos detectar al vuelo el estado mental de quien nos acompaña, para así decidir con rapidez cómo reaccionar.

Esto nos ha ayudado a sobrevivir, e incluso, más adelante, ha formado parte indeleble de algunas nociones culturales del ser humano: desde la creación de las constelaciones hasta la interpretación paranormal de determinados eventos. De hecho, la ciencia también se basa en ese mismo reconocimiento de patrones, con una salvedad: en lugar de creernos lo que, a primera vista, sugieren nuestras impresiones al relacionar ciertos sucesos (origen de buena parte de las teorías de la conspiración), nos dedicamos a comprobar si las conexiones que genera nuestra mente tienen algún fundamento real.

Vivienda en la ciudad de Sibiu, en Transilvania (Rumanía) / Helena Tejera Puente

En el cuento Funes el memorioso, Borges habla de un hombre con una memoria tan exacta que, para él, era distinto un perro de frente que uno de perfil. Eso le impedía ejercer la capacidad de abstracción y, por tanto, le hacía imposible pensar. La pareidolia, en el fondo, forma parte de lo mismo que nos hace interpretar los símbolos más primitivos (entre ellos los jeroglíficos, o ciertos motivos del arte rupestre) y, por tanto, tiene que ver con mucho de lo que ha sustentado nuestra civilización. Así que, la próxima vez que veas una oveja en una nube, no la desprecies: es más real de lo que parece.

*Miriam Caro y Emilio Tejera son miembros de la Unidad de Biología Molecular del Instituto Cajal (CSIC).

Cinéfila-mente: cómo el cine ha tratado el cerebro y las enfermedades mentales

Por Emilio Tejera (CSIC)*

 

Shakespeare liberó en La tempestad aquella mítica frase de “estamos hechos de la misma materia con la que se tejen los sueños”. Pero, de un siglo a esta parte, los “sueños” se fabrican sobre todo a partir de celuloide, luz, sonido y, últimamente, soporte digital. El cine siempre es un reflejo de la realidad y de su tiempo y, como tal, no podían faltar las referencias a nuestro cerebro y a las enfermedades mentales.

Al principio, de manera tímida. Es difícil establecer cuál fue la primera película que trató sobre las dolencias mentales: en 1908 hay una adaptación de El extraño caso del Dr. Jekyll y Mr. Hyde, obra donde Stevenson quería reflejar la dualidad del ser humano, pero que siempre se ha visto como una metáfora de los mal llamados trastornos de personalidad múltiple (mejor denominarlo “trastorno de identidad disociativo”). No obstante, fue en 1914 cuando apareció The woman of mistery, probablemente la película más antigua que trata de manera específica esta patología, y de las primeras que utiliza la enfermedad mental como argumento principal.

Fotograma de la película muda El gabinete del doctor Caligari, dirigida por Robert Wiene en 1920

Sin embargo, será en los años cincuenta o sesenta cuando empiezan a exponerse los trastornos mentales con todo su dramatismo, y entramos en las consultas de psiquiatras y psicólogos, en ocasiones con diagnósticos, patologías o métodos de tratamiento que no forman parte de la clínica habitual. En cintas como De repente el último verano, Recuerda, Matar a un ruiseñor, Las tres caras de Eva, Psicosis o La extraña pareja aparecen personajes con trastornos mentales. En estas historias, en general, se refleja muy bien la perspectiva de la época, donde se observa a los pacientes desde fuera, en ocasiones con un halo de condescendencia, y la figura del médico ocupa un papel central.

Un cambio de orientación

Progresivamente, el foco se va desplazando hacia la persona que sufre el problema: si Alguien voló sobre el nido del cuco señalaba las críticas a los centros psiquiátricos (en parte con un punto de injusticia), las ficciones modernas tratan de ponerse en la piel de los y las pacientes y, de hecho, la reciente serie Fácil destaca la importancia de la autonomía y de que las personas afectadas —bien tratadas y asesoradas— sean libres de decidir, en la medida de lo posible, acerca de su destino. A lo largo de este tiempo, determinadas ficciones (Rainman con los trastornos del espectro autista; Una mente maravillosa con la esquizofrenia; Memento con la amnesia anterógrada; El indomable Will Hunting con las altas capacidades intelectuales) han puesto de moda determinadas dolencias y condiciones que han empezado a abundar con profusión en el cine, y hasta han influido en la forma de presentación de estos trastornos y, por supuesto, en nuestra forma de tratar a quienes los padecen.

Las películas y series no siempre han sido rigurosas al tratar los problemas mentales: muchas veces se tergiversan o mezclan enfermedades, se simplifican las causas, los diagnósticos se hacen con un simple vistazo, los tratamientos duran días (en vez de años) y los pacientes se curan espontáneamente, a veces, por un golpe en la cabeza o por un impulso voluntario, fenómenos que por supuesto no suelen acaecer con mucha frecuencia. También se ha exagerado la asociación entre enfermedad mental y violencia hacia otras personas, cuando lo más común que los pacientes atenten contra sí mismos.

En ocasiones, le pedimos demasiado al cine: el film Adam reflejaba tan bien el síndrome de Asperger que se criticó que el protagonista fuera un paciente excesivamente “arquetípico”; en cambio, al personaje de Jack Nicholson en Mejor imposible se le reprochó que manifestara un carácter desagradable, que no tiene por qué estar asociado a los pacientes con trastorno obsesivo-compulsivo.

Al final, es difícil que una sola película resuma por completo un trastorno mental, igual que un solo paciente no puede representar a todo un colectivo. Cada persona es única, con sus particularidades y vivencias, algo que ya empiezan a reflejar las obras de ficción recientes, donde la enfermedad mental es un hecho normal que se cura o con el que en ocasiones se convive, que le puede ocurrir a cualquiera y para el cual siempre se puede pedir ayuda por parte de profesionales. Y que, a menudo, tiene su origen no tanto en quienes la sufren como en el entorno con el que nos ha tocado lidiar.

Carrie (1976) tiene el poder de la telequinesis, pero muchos de sus problemas proceden de la ansiedad que le provoca el bullying ejercido por sus compañeros de clase

 

Últimamente, en la sociedad se destaca mucho la importancia de la salud mental, y con razón: ojalá esto sirva para que cada vez haya más medios disponibles (incluyendo la todavía en desarrollo filmoterapia, que emplea el cine para ayudar a los pacientes). Al fin y al cabo, como suele decirse, la salud de una sociedad se define por cómo esta trata a sus enfermos. Y nos conviene que esta película, más que ninguna otra, acabe bien.

 

* Emilio Tejera es médico y bioquímico; trabaja como responsable de la Unidad de Biología Molecular y como miembro del área de Cultura Científica del Instituto Cajal (CSIC). Una expansión de este artículo en formato charla, puede encontrarse aquí.

 

 

 

Astrocitos: estrellas que hablan en nuestro cerebro

Por Irene Serra Hueto (CSIC)*

Seguro que has oído alguna vez que nuestro cerebro es el ordenador más potente del mundo. Ahora bien, ¿en qué piensas cuando te preguntan de qué está formado? Lo más probable es que lo primero que te venga a la cabeza sean las neuronas. No está mal, pero para que esta máquina tan singular funcione con todo su potencial necesita del trabajo de otras células igual de importantes. Entre ellas se encuentran los astrocitos, que reciben su nombre de las estrellas.

Empecemos por el principio. El cerebro funciona gracias a que las neuronas transmiten información a través de corrientes eléctricas. Los puntos de conexión entre una neurona y otra se conocen como sinapsis. En ellas se liberan sustancias llamadas neurotransmisores que permiten que el impulso eléctrico continúe de una neurona a otra. En este punto de conexión, en este diálogo entre las neuronas, el astrocito juega un papel fundamental, modulando y regulando la comunicación entre ellas.

Nuestro cerebro habla bajo sus propias reglas. Esquema de una sinapsis cerebral donde se intercambia la información entre las células, como en una conversación de WhatsApp. / Irene Serra. Células creadas con Biorender.com.

¿Qué ventajas puede tener una conversación a tres? Este sistema, más complejo que una conversación a dos, permite más variedad de mensajes y añade un elemento mediador que asegura que la información se transmite correctamente, el astrocito. La cuestión es que no tenemos un solo astrocito por cada sinapsis. En ratones, una sola de estas células es capaz de modular, mediar y participar en más de 100.000 sinapsis simultáneamente. Es como si un único astrocito estuviese presente y hablando en 100.000 grupos de WhatsApp al mismo tiempo. En humanos, un solo astrocito interviene en 2 millones de sinapsis. Es decir, que nuestros astrocitos tienen 20 veces más capacidad de procesar información… Y, además, tenemos millones de ellos. ¿Y si la explicación (o, al menos, parte de ella) a nuestra inteligencia residiera en el gran refinamiento que los astrocitos aportan a nuestro cerebro?

Para poder contestar esta pregunta necesitamos saber más. Precisamente, mi investigación en el Instituto Cajal (IC) del CSIC se centra en estudiar los circuitos astrocito-neurona; en concreto, los que se establecen en el núcleo Accumbens, la zona del cerebro que se activa cuando algo nos gusta. Esta zona recibe información de otras regiones del cerebro relacionadas con la memoria (hipocampo), las emociones (amígdala) y la toma de decisiones (corteza prefrontal), y es muy importante porque se ve afectada, entre otros casos, en trastornos de adicción.

Ejemplo de cómo es la información que pasa por el núcleo Accumbens vista desde una conversación de WhatsApp./ Irene Serra

Sabemos que los astrocitos son parte fundamental de la regulación de este núcleo y, desde hace poco, también que el cerebro tiene distintos tipos de astrocitos, del mismo modo que tiene distintos tipos de neuronas. Sin embargo, todavía no hemos comprendido en profundidad para qué son los astrocitos diferentes entre ellos ni cómo son de diferentes. En el núcleo Accumbens, ¿tenemos astrocitos especializados regulando la información de recuerdos de aquello que nos gusta? ¿Hay otros asociados a las emociones? ¿Intervienen en los circuitos de toma de decisión?

Un sensor de calcio para superar las limitaciones de los microscopios

En el último trabajo publicado por el Laboratorio de Plasticidad Sináptica e Interacciones astrocito-neurona del IC-CSIC, dirigido por Marta Navarrete, profundizamos en estas preguntas y presentamos una nueva herramienta que nos ha permitido estudiar, por primera vez, la actividad de los astrocitos a gran escala y con precisión temporal. Se trata de CaMPARIGFAP, un sensor de calcio con el que hemos podido observar el núcleo Accumbens al completo y detectar qué astrocitos responden a un estímulo concreto.

El tamaño de las lentes de los microscopios es limitado y hace que no sea posible observar al mismo tiempo todos los astrocitos de una región cerebral. La particularidad de CaMPARIGFAP es que detecta, mediante la fluorescencia, el calcio que emiten los astrocitos cuando se activan. Es como hacer una foto: al enviar un ‘flash’ de luz violeta, los astrocitos inactivos se muestran en verde y los activos en rojo. De este modo, podemos analizar cómo responden regiones amplias del cerebro a un estímulo determinado.

Tejido del núcleo Accumbens en el que cambia el color de CaMPARIGFAP según la actividad de los astrocitos. / Irene Serra

Utilizando esta herramienta hemos descubierto que los astrocitos del núcleo Accumbens forman redes funcionales que responden de diferente forma según la procedencia de los estímulos -memoria, emociones o decisiones­-. Los resultados indican que los astrocitos son capaces de distinguir de dónde viene la información y, también, que integran las diferentes señales en un procesamiento paralelo al de las neuronas. Todo apunta a que los astrocitos están mucho más especializados en los circuitos cerebrales de lo que pensábamos.

Comprender en detalle cómo interaccionan con las neuronas y cómo regulan la información que llega de las diferentes zonas del cerebro nos acercaría mucho a encontrar soluciones eficaces para tratar la adicción. Y eso solo en el núcleo de Accumbens: llegar a entender cómo interaccionan los astrocitos en otras regiones cerebrales nos permitiría comprender mucho mejor el potencial de nuestro cerebro, que a día de hoy esconde tantos misterios como el universo.

*Irene Serra Hueto es investigadora predoctoral en el Laboratorio de plasticidad sináptica e interacciones astrocito-neurona del Instituto Cajal del CSIC, dirigido por Marta Navarrete.

¿Ha resuelto la inteligencia artificial el enigma de la estructura de las proteínas?

Por Emilio Tejera* (CSIC)

Cuando oímos hablar del creciente poder de los ordenadores y, en concreto, de la inteligencia artificial, suelen llamarnos la atención los aspectos más perturbadores: que si sirve para colarnos bulos (aunque también para combatirlos), desafiar nuestra privacidad o volvernos más consumistas; que si los robots nos robarán los trabajos; incluso, que una inteligencia artificial, influida por los seres humanos, se ha vuelto racista. Al final, sentimos un temor instintivo que nos lleva a apagar el ordenador, pensando en Hal9000 o en Terminator. Sin embargo, hoy quiero mencionar la historia de una inteligencia artificial que, quizá, haya resuelto un enigma científico que llevaba más de 50 años desafiando a la comunidad científica. En una palabra, hoy quiero hablar del día en que una máquina nos hizo un gran favor.

Empezaremos con los artífices de este logro: Deepmind. La empresa, dirigida por Demis Hassabis y adquirida por Google, empezó desarrollándose sobre todo en el campo de los videojuegos, pero también utilizaba los clásicos juegos de mesa para perfeccionar sus propios sistemas de inteligencia artificial, como refleja el documental AlphaGo, que trata sobre el entretenimiento de origen chino denominado Go. En él se narra cómo su algoritmo fue capaz de derrotar de manera aplastante al campeón mundial de este juego milenario, mucho más complejo que el ajedrez.

Imagen del juego Go / Prachatai / Flickr

Los frikis de los juegos se meten en ciencia

Pero el equipo de Deepmind quería llegar mucho más lejos y aplicar su experiencia a la ciencia. En concreto, se interesaron por una cuestión clave para la biología: cómo conocer la estructura de una proteína –las moléculas que realizan buena parte de las funciones biológicas– a partir de su secuencia de aminoácidos (es decir, de sus componentes fundamentales). Resulta que poseemos esta secuencia básica de la mayoría de las proteínas, pero para obtener su estructura hay que realizar complicados estudios bioquímicos que tardan meses o años en extraer resultados. Por eso, siempre existió el interés en que las máquinas pudieran acortar este proceso y deducir las estructuras, aunque hasta ahora los resultados eran bastante pobres. Hasta que Deepmind, con su programa AlphaFold, ganó de modo rotundo las ediciones de 2018 y 2020 del concurso bienal CASP, que premia los software que trabajan en este ámbito. Se intuía que algo gordo iba a ocurrir y, en efecto, sucedió.

En julio de 2021, Deepmind, en colaboración con el Laboratorio Europeo de Biología Molecular, publicaba dos artículos en la prestigiosa revista Nature. En uno describían el proceso para crear una versión mejorada del software de AlphaFold (cuyo código fuente donaron al mundo, como corresponde a una investigación financiada en parte con fondos públicos). Y en el otro aportaban las estructuras del 98,5% de las proteínas de las células humanas: un resultado espectacular si tenemos en cuenta que hasta entonces solo conocíamos la estructura del 17% de ellas. Además, publicaron las estructuras de 365.000 proteínas de 20 tipos de organismos diferentes, muchos de ellos modelos clave para la investigación en biología. El manantial de nueva información a disposición de la comunidad científica era impresionante (y sigue aumentando).

Imagen de la estructura de la mioglobina, una de las primeras proteínas que se desentrañó/ Wikipedia

Un software que ahorraría años de investigación

Pero, ¿por qué es tan importante averiguar la estructura de las proteínas? Gracias a este conocimiento, podemos analizar cómo actúan estas moléculas y, a partir de ahí, elaborar fármacos que modifiquen su función y nos permitan actuar sobre toda clase de enfermedades. De hecho, softwares similares a AlphaFold podrían predecir cómo un medicamento interaccionará con determinada proteína y, así, ahorrar años de investigación y acelerar el desarrollo de nuevos tratamientos.

¿Ha desentrañado finalmente Deepmind este tan descomunal como intrincado problema? Probablemente tardaremos años en dilucidarlo, conforme las técnicas clásicas confirmen (o no) que las estructuras propuestas por AlphaFold en tan sólo unas pocas horas de análisis coinciden con las que realmente poseen dichas proteínas. Además, se plantean nuevos interrogantes: quizá existan estructuras concretas frente a las que AlphaFold no sea lo suficientemente resolutiva. Hasta ahora, el software no ha entrado en los cambios que se producen en las proteínas cuando interaccionan con otras moléculas; y, entre conocer la conformación de una proteína, y curar enfermedades como el alzhéimer, queda por recorrer un mundo. No obstante, si se confirma (de momento, los últimos artículos refuerzan tanto las perspectivas como las dudas), será un avance fundamental; y no logrado por especialistas en biología que llevan años estudiando la cuestión, sino por un grupo de frikis expertos en informática que empezaron trabajando en videojuegos.

Deepmind está desarrollando otras aplicaciones para sus software: quiere diagnosticar enfermedades mediante el análisis de imágenes de fondos de ojo, así como predecir dolencias futuras a partir de las constantes básicas de un individuo. Las aplicaciones de la inteligencia artificial (capaz de aprender de sí misma, y de detectar patrones que permanecen ocultos al intelecto humano) son todavía innumerables; entre otras cosas porque muchas, probablemente, no somos capaces aún de imaginarlas.

La inteligencia artificial, desde luego, representa un reto para la humanidad, pero, como la mayor parte de las creaciones humanas, presenta tantos inconvenientes como ventajas. Al final, la tecnología es una herramienta: la gran responsabilidad que tenemos es que nos lleve a prosperar como sociedad. De no ser así, poco importará que llegue Terminator para acabar con la humanidad: seremos nosotros mismos quienes habremos desaprovechado esta inmensa oportunidad.

* Emilio Tejera (@EmilioTejera1) es responsable de la Unidad de Biología Molecular del Instituto Cajal (IC-CSIC). En este post de su blog realiza una descripción más detallada del tema de este artículo.

“Cariño, ¿dónde he metido el cerebro de Einstein?”

Por Emilio Tejera (CSIC)*

En 1955 Albert Einstein muere y, mientras el mundo llora su pérdida, un patólogo del Hospital de Princeton le hace la autopsia. El nombre del médico es Thomas Harvey, quien, animado por un súbito impulso, toma una decisión: extraer el cerebro de Einstein de su cráneo sin el consentimiento de la familia. Harvey regala fragmentos de cerebro a médicos del hospital (otras partes de su cabeza, como los ojos, acabarían en manos del oftalmólogo personal del científico) y luego decide meter el órgano del eminente genio en el maletero de su coche. Durante veinte años, nadie sabrá qué ha ocurrido con el cerebro de Einstein.

Fotografía del cerebro de Einstein tomada por el patólogo Thomas Harvey.

Siendo sorprendente, lo que hizo Harvey no era nuevo. El ser humano siente una especial fascinación por partes del cuerpo de celebridades (desde las reliquias de los santos hasta los cráneos de Goya y Haydn, que sufrieron diversos avatares), como si de esta manera pudiéramos acercarnos más a ellos. Lo cierto es que el secuestro del cerebro de Einstein trae a colación una vieja pregunta, ¿podemos averiguar algo de la personalidad de los individuos a partir de la observación a simple vista de sus cerebros? Durante años, se sostuvieron las erróneas teorías de que el peso del cerebro o las proporciones del cráneo eran una buena medida de la inteligencia de los individuos, pero era hora de abordar este tema desde una perspectiva más científica: ¿conseguiría el cerebro de Einstein aportar algo de luz sobre estas cuestiones?

A lo largo de dos décadas, Harvey mantuvo el cerebro de Einstein preservado en alcohol, dentro de unos botes de conservas en su casa, en una caja de sidra debajo de un enfriador de cerveza. Esto fue así hasta que un periodista aireó el asunto. Además de generarse un gran revuelo, unos cuantos investigadores se interesaron por el órgano en cuestión y solicitaron a Harvey pequeñas muestras para estudiarlas. A partir de ellas, se hicieron varias investigaciones para determinar cuál era el secreto de la inteligencia de Einstein.

Albert Einstein en sus días de estudiante. / Lotte Jacobi

No quiero aburrir con los detalles, pero un análisis llevado a cabo por la neurocientífica Marian Diamond (de la Universidad de Berkeley) ilustra muchas de las conclusiones obtenidas. Diamond descubrió que en determinadas zonas del cerebro de Einstein existía una mayor proporción de células de glía (células, por simplificarlo, con una función de “sostén”) alrededor de cada neurona. Esto podría explicar las capacidades de Einstein, pero Diamond también descubrió que esas células de glía pueden aumentar su número con el entrenamiento en matemáticas y otras disciplinas complejas. Es decir, como afirmaba Ramón y Cajal, “todo hombre puede ser escultor de su propio cerebro”. La inteligencia también se entrena, y nos pasa como con el dilema del huevo y la gallina: es difícil concluir si Einstein era muy listo porque su cerebro era así o, en cambio, su cerebro era así porque Einstein trabajó en materias que estimularon su inteligencia.

Ocurre algo muy parecido con otros descubrimientos relacionados con la anatomía de Einstein (por ejemplo las alteraciones que se encontraron en la llamada cisura de Silvio): resulta imposible esclarecer si estos cambios tenían una relevancia significativa o consistían en meras casualidades. El cerebro es un órgano muy complejo, del que no entendemos muchas cosas, y observar simplemente los ejemplos de unos cuantos individuos sobresalientes no nos va a revelar cuál era la clave de su singular brillantez. Es necesaria todavía mucha más investigación para dilucidar qué hacía a Einstein ser como era o cuánto podríamos parecernos a él. De hecho, las aproximaciones más avanzadas hoy en día en cuanto a investigación en neurociencia (The Human Brain Project, de la Unión Europea, y The Brain Initiative, de Estados Unidos) se basan sobre todo en las conexiones entre cada una de las neuronas, mucho más difíciles de desentrañar, pero sin duda más importantes que lo que somos capaces de detectar a simple vista.

Con el cerebro del genio en el maletero

El cerebro de Einstein estuvo en manos de Harvey hasta los años 90, cuando un periodista le propuso llevar el macabro “recuerdo” de vuelta a sus legítimos descendientes. Durante un fascinante road trip conocieron a gente famosa, atravesaron Las Vegas y llegaron finalmente a casa de sus herederos, quienes rechazaron el regalo. Así que Harvey devolvió el cerebro al Hospital de Princeton, y los registros que había obtenido (dibujos, fotografías, cortes para el microscopio) acabaron en un museo, no muy lejos de donde pasó sus últimos días un genio que, paradójicamente, nunca quiso que nadie prestara atención a sus restos. De hecho, él solicitó que lo incineraran.

Al final, pese a nuestro comportamiento un poco fetichista respecto a los cerebros de personas famosas, y al intento de la ciencia de comprender mejor sus mentes, la mejor manera de acercarse al cerebro de una persona sigue siendo hablar con ella; y, en casos como el de Einstein (con individuos que ya no están), revisar su trabajo, leer sus escritos y, en definitiva, examinar el legado que nos dejaron en vida, donde desplegaron sus pensamientos y sus alardes de genialidad. No hay mejor mecanismo que la palabra escrita para viajar al pasado; o, al menos, en seis mil años de historia, todavía no lo hemos inventado.

*Emilio Tejera (@EmilioTejera1) trabaja en el Instituto Cajal del CSIC. Una conferencia más detallada acerca de las vicisitudes del cerebro de Einstein y de otros personajes puede encontrarse en este enlace.

‘Kareishu’ y la formación del olor corporal

Por Laura López-Mascaraque (CSIC)* y Mar Gulis

¿Sabías que en Japón existe una palabra específica, ‘kareishu’, para referirse al “olor de la gente mayor”? Lejos de ser despectiva, la expresión constituye una muestra de respeto hacia las personas de edad avanzada y al aroma que desprenden. Un olor característico que, a diferencia de lo que popularmente se cree, es más suave, menos intenso y más agradable que el de la gente joven o de mediana edad, como reveló el estudio ‘The special scent of age’, del Centro Monell.

Esta investigación y el término ‘kareishu’ ponen de manifiesto que el olor corporal varía con la edad, del mismo modo que puede cambiar con la dieta y otras circunstancias, como el ciclo menstrual o el estrés –de hecho, los japoneses han dado el nombre de ‘sutoresushu’ al olor que las personas emiten cuando viven situaciones tensas–. Gracias a ello y a que hay olores que comparten determinados grupos de personas, podemos reconocer la edad, el sexo o lo que alguien ha comido o bebido, como ajo o alcohol, simplemente a partir de su aroma personal. Sin embargo, cada individuo posee un olor característico: su firma química.

A partir de infinitas combinaciones de bacterias y microorganismos que albergamos en nuestro cuerpo, que pueden ir variando por factores como los que hemos visto, cada persona desarrolla su propia huella olfativa. Por eso un perro policía puede seguir el rastro de un fugitivo y resulta posible, aunque con algunos matices, identificar a una persona a través de su olor. Además, investigaciones recientes han mostrado que personas con huellas olfativas parecidas también portan genes similares relacionados con proteínas del sistema inmune –en concreto, con el complejo mayor de histocompatibilidad– y vinculados al olor corporal.

¿Y cómo se forma esta huella olfativa? A partir de un complejo cóctel químico que se genera sobre todo en nuestra piel, aunque el aliento también realiza su contribución. Los seres humanos no tenemos glándulas específicas para la formación de aromas, pero los tres tipos principales de glándulas de la piel contribuyen a crear nuestro característico olor personal. Se trata de las glándulas sebáceas, que dan lugar a una secreción aceitosa sobre toda la superficie del cuerpo; las ecrinas, que secretan el sudor y se concentran en las axilas, la frente y las palmas de manos y pies; y de las glándulas apocrinas, que producen un fluido acuoso y están adosadas a los folículos pilosos –la parte de la piel que da crecimiento al cabello– de las axilas, el pubis, los párpados, los pezones, los oídos, la nariz y de alrededor del ombligo.

La química de los microorganismos

La secreción de las primeras glándulas, las sebáceas, contiene muchos ácidos grasos libres y lípidos, que son los principales responsables de nuestra identidad olfatoria. Sin embargo, se cree que son las glándulas apocrinas, especialmente las de las axilas, las que generan la mayor parte del olor corporal. Estos dos tipos de glándulas empiezan a secretar poco antes de llegar a la pubertad y aumentan su actividad con los cambios hormonales de esa época. En las personas de edad avanzada, las glándulas de la piel aumentan la secreción de dos compuestos –el nonenal y el nonanal–, que podrían influir en el peculiar “olor a viejo”.

En cualquier caso, la secreción fresca de glándulas de la piel no tiene prácticamente olor. La actividad metabólica de los microorganismos que habitan en ella es la responsable de transformarla en compuestos con un olor marcado. La composición de esta microfauna es característica de cada persona, y ellos, los microorganismos, son los protagonistas clave de la construcción del olor corporal individual.

Pero, ¿para qué sirve tener una señal aromática determinada? Los olores corporales pueden jugar un papel importante en la selección de pareja, el reconocimiento individual o la detección de parientes. También pueden aportar una valiosa información sobre nuestros problemas metabólicos e incluso sobre las enfermedades que sufrimos.

¿Una ventaja evolutiva?

En particular, en las interacciones entre madre e hijo, los bebés son capaces de identificar el olor corporal de su madre y las madres igualmente reconocen el olor de su bebé. Esta habilidad de discriminación e identificación se extiende también a otros miembros de la familia como padres, abuelas o primos. Al parecer, esto se debe al reconocimiento de una firma olfatoria genéticamente próxima, la llamada huella olfativa que es un espejo del genoma olfativo de una persona. Así que debe de haber un olor de clan, unas señales olfatorias ligadas a cierto grado de consanguinidad.

De hecho, los individuos que tengan la habilidad para distinguir a los parientes de los que no lo son pueden haber tenido mayores índices de supervivencia y de reproducción exitosa, aspectos clave del éxito evolutivo, algo en lo que el olfato juega un papel fundamental.

* Laura López Mascaraque es investigadora del Instituto Cajal del CSIC y autora, junto con José Ramón Alonso, de la Universidad de Salamanca, del libro El olfato de la colección ¿Qué sabemos de? (CSIC -Catarata).

Siete libros de ciencia para tu maleta veraniega

Por Mar Gulis (CSIC)

Las deseadas y merecidas vacaciones están cerca, por eso nos gustaría proponerte unas lecturas de divulgación con las que disfrutar del verano. Las colecciones ¿Qué sabemos de? y Divulgación (CSIC-Catarata) cuentan con más de 150 títulos de libros fáciles de llevar y leer. Aquí te presentamos algunos de los números más recientes.

¿Existe una filosofía en español?

Decía Heidegger que pensar, lo que se dice pensar, solo es posible en griego y en alemán. Entonces, ¿no es factible la existencia de un pensamiento filosófico en nuestro idioma? El investigador del CSIC Reyes Mate aborda esta cuestión el libro Pensar en español, el primer volumen de estas colecciones dedicado a la filosofía. En un mundo dominado por el inglés, el autor trata de “crear un marco de referencia que nos sitúe frente a otros pensares en otras lenguas y, también, establezca vínculos entre nuestros propios intentos de pensamiento, en el primer caso para diferenciarnos, y en el segundo caso para unirnos”.

Para los que gusten de la reflexión en nuestra lengua, este texto es más que recomendable. Además, viene con contenido extra: un vídeo resumen de un minuto y una entrevista al autor en el nuevo pódcast del CSIC ‘Ciencia para leer’.

La enfermedad de las mil caras

La esclerosis múltiple es una enfermedad crónica, inflamatoria y neurodegenerativa del sistema nervioso central. Tiene un marcado componente autoinmune, y aparece generalmente en personas de entre 20 y 40 años, lo que supone un enorme impacto en su calidad de vida, importantes repercusiones sociales, y un elevado coste sanitario. Esta patología afecta a 2,5 millones de pacientes en el mundo y, a pesar de la investigación desarrollada desde su descubrimiento en el siglo XIX, aún presenta muchos interrogantes.

La esclerosis múltiple afecta a 700.000 personas en Europa. En España, la incidencia es de 100 casos por 100.000 habitantes, en su mayoría mujeres. / CSIC-Catarata

Las científicas Leyre Mestre y Carmen Guaza del Instituto Cajal del CSIC se adentran en su evolución, sintomatología, tratamientos y líneas futuras de estudio en La esclerosis múltiple, un libro que da a conocer una enfermedad muy heterogénea y difícil de tratar.

Los entresijos de la ciencia

Desde que alguien formula una hipótesis en un despacho o laboratorio de cualquier parte del planeta hasta que esa idea aparece publicada en una revista científica en forma de nueva teoría, tecnología o producto existe un largo y complicado proceso poco conocido más allá de los campus universitarios y los centros de investigación. Por qué y cómo se hace la ciencia está escrito “desde dentro” por Pere Puigdomènech, un profesional que ha dedicado su vida a esta labor. “Condensar en un libro de bolsillo un texto sobre la ciencia en sí misma no era tarea fácil, pero esta actividad tiene tal impacto tanto por los millones de personas que se dedican a ella como por su influencia en cómo vivimos y en las decisiones que toman los gobiernos, que merecía la pena intentarlo”, comenta el autor.

Con este libro, el investigador del Centro de Investigación en Agrigenómica adscrito al CSIC pretende describir la evolución histórica de la actividad investigadora, qué papel cumple en nuestra sociedad y cuál es su funcionamiento interno. Sus páginas, idóneas para curiosos y curiosas de los vericuetos científicos, responden a preguntas como quién investiga, dónde lo hace, qué método y reglas sigue o con qué financiación cuenta.

Nanotecnología y desarrollo sostenible

Desde 2010 se han publicado más de un millón de artículos científicos sobre descubrimientos o desarrollos relacionados con la nanotecnología y se han concedido cinco premios Nobel de Física o Química a personas que han realizado aportaciones significativas en este ámbito. Estos dos datos son solo una muestra de la relevancia que ha adquirido la llamada ‘ciencia de lo pequeño’ en los últimos años. Objetos o partículas que miden la milmillonésima parte de un metro (10-9) se perfilan como una de las soluciones para lograr la supervivencia de la especie humana en imprescindible equilibrio con el planeta que habita.

Por su carácter transversal, la nanotecnología impacta en la mayoría de los objetivos de la Agenda 2030. 

El investigador del CSIC en el Instituto de Ciencia de Materiales de Madrid Pedro Serena firma Nanotecnología para el desarrollo sostenible, un libro que explica cómo el conocimiento acumulado sobre el nanomundo puede ayudar a mejorar nuestra calidad de vida sin comprometer el futuro de nuestros descendientes. El autor introduce los aspectos fundamentales de la nanotecnología y su salto de los laboratorios al mercado, para luego conectar las aplicaciones existentes y las futuras con los Objetivos de Desarrollo Sostenible (ODS) establecidos por la ONU en su Agenda 2030.

¿Qué tienen en común la niebla y la cerveza?

Rodrigo Moreno, investigador del CSIC en el Instituto de Cerámica y Vidrio es autor de Los coloides, el libro que responde a esta pregunta. El arcoíris, un flan, la ropa deportiva impermeable que transpira y no pesa, la espuma con la que rizamos nuestro pelo o el famoso gel hidroalcohólico que nos aplicamos continuamente. Los coloides están presentes en muchos procesos y productos cotidianos, aunque la mayoría no hayamos oído hablar nunca de ellos. Son mezclas no homogéneas de dos o más fases (gas, líquido o sólido) en las que una de ellas tiene un tamaño menor a un micrómetro (0,001 milímetros) y que hacen posible la existencia de muchos materiales que usamos a diario. También se encuentran detrás de complejas tecnologías que en el futuro podrían permitir reutilizar materias primas o eliminar microplásticos de ríos y océanos. Este texto describe las características, técnicas de preparación y algunas de las numerosas aplicaciones de los sistemas coloidales.

La espuma de la cerveza es un coloide en el que partículas de gas, las burbujas, se encuentran dispersas en un medio líquido. 

La sorprendente vegetación de Atacama

Entre el océano Pacífico y la cordillera de los Andes se extiende un territorio de unos 178.000 kilómetros cuadrados donde predominan los tonos rojizos y, a simple vista, no se percibe rastro alguno de vegetación. Atacama, ubicado en el norte de Chile, es el desierto cálido más árido del mundo. Allí hay lugares donde no llueve en años, incluso en décadas, y otros en los que la media anual de precipitaciones no llega a los 5 milímetros de agua. Las temperaturas oscilan unos 30 grados entre el día y la noche, y la radiación solar es implacable. A pesar de las condiciones climáticas tan extremas, en este desierto se han descrito miles de especies de plantas que el investigador del Centro Nacional de Biotecnología del CSIC Carlos Pedrós-Alió nos invita a descubrir.

El ‘desierto florido’ es uno de los fenómenos más llamativos que suceden en Atacama. Solo algunos años, y en zonas diferentes, la superficie se transforma en un campo de flores de distintas especies que dura varios meses. / Gerhard Hüdepohl

“Después de veinte años visitando este territorio para estudiar microorganismos, vi que en algunos sitios había plantas. Quise saber de qué especies se trataba, cómo se las arreglan para vivir en este entorno, qué adaptaciones tienen a la aridez, de dónde sacan el agua, cómo se distribuyen y cuánto tiempo hace que aparecieron en la evolución”, cuenta el científico. El resultado de esta investigación es el libro Las plantas de Atacama. El desierto cálido más árido del mundo, un recorrido por una de las zonas naturales más espectaculares del planeta.

La expedición Magallanes-Elcano

El 10 de agosto de 1519 partían desde Sevilla cinco naves con unos 250 tripulantes a bordo. Era el comienzo de la famosa expedición capitaneada por Fernando de Magallanes y finalizada gracias a Juan Sebastián Elcano. Financiada por la Corona de Castilla, su objetivo principal era llegar por occidente a un lugar llamado La Especiería – en el archipiélago de Las Molucas, ubicado en Indonesia– y crear así una ruta marítima alternativa a la establecida por Portugal para controlar el comercio de especias como el clavo de olor, la canela, la nuez moscada y la pimienta negra.

Terra Brasilis y el Atlántico Sur (Atlas Miller, 1519). Imagen del mapa que forma parte de la portada del libro. / CSIC

Más de tres años después, el 6 de septiembre de 1522, 18 europeos y 3 orientales enfermos y agotados arribaron a Sanlúcar de Barrameda. Después de recorrer 14.460 leguas, habían conseguido culminar la primera vuelta al mundo. En la conmemoración de su quinto centenario, Las plantas de la expedición Magallanes-Elcano (1519-1522)  rinde tributo a esta hazaña promovida por la búsqueda de nuevas plantas y nos propone viajar a través de unas páginas impregnadas de olores y sabores exóticos. El libro de la colección Divulgación está coordinado por el investigador del CSIC en el Real Jardín Botánico Pablo Vargas y escrito por una veintena de investigadores e investigadoras procedentes de aquellos países por los que transcurrió esta azarosa singladura.

La ‘huella olfativa’: ¿es posible identificar a una persona por su olor?

Por Laura López Mascaraque (CSIC) *

Hace cien años, Alexander Graham Bell (1847-1922) planteaba lo siguiente: “Es obvio que existen muchos tipos diferentes de olores (…), pero hasta que no puedas medir sus semejanzas y diferencias, no existirá la ciencia del olor. Si eres ambicioso para encontrar un tipo de ciencia, mide el olor”. También decía el científico británico: “Los olores cada vez van siendo más importantes en el mundo de la experimentación científica y en la medicina, y, tan cierto como que el Sol nos alumbra, es que la necesidad de un mayor conocimiento de los olores alumbrará nuevos descubrimientos”.

A día de hoy la ciencia continúa investigando el olfato y sus posibles aplicaciones. De momento sabemos, al menos, que detectar y clasificar los distintos tipos de olores puede ser extremadamente útil. El olfato artificial, también llamado nariz electrónica, es un dispositivo que pretende emular al sistema olfativo humano a fin de identificar, comparar y cuantificar olores.

Los primeros prototipos se diseñaron en los años sesenta, aunque el concepto de nariz electrónica surge en la década de los ochenta, definido como un conjunto de sensores capaces de generar señales en respuesta a compuestos volátiles y dar, a través de una adecuada técnica de múltiples análisis de componentes, la posibilidad de discriminación, el reconocimiento y la clasificación de los olores. El objetivo de la nariz artificial es poder medir de forma objetiva (cuantitativa) el olor. Se asemeja a la nariz humana en todas y cada una de sus partes y está formada por un conjunto de sensores que registran determinadas señales como resultados numéricos, y que un software específico interpreta como olores a través de algoritmos.

Los sensores de olores –equivalentes a los receptores olfativos situados en los cilios de las neuronas sensoriales olfativas del epitelio olfativo– están compuestos por materiales inorgánicos (óxido de metal), materiales orgánicos (polímeros conductores) o materiales biológicos (proteínas/enzimas). El uso simultáneo de estos sensores dentro de una nariz electrónica favorece la respuesta a distintas condiciones.

Comentábamos en otro texto en este mismo blog cómo se puede utilizar el olfato, y en particular el artificial, en el área de la medicina (mediante el análisis de aliento, sudor u orina), para el diagnóstico de enfermedades, sobre todo infecciones del tracto respiratorio. De hecho, en la actualidad se está estudiando la posibilidad de desarrollar y aplicar narices electrónicas para detectar la presencia o no del SARS-CoV-2 en el aliento de una persona, y ayudar así en el diagnóstico de la Covid-19. Pero lo cierto es que su desarrollo podrá tener otras muchas aplicaciones: seguridad (detección de explosivos y drogas, clasificación de humos, descubrimiento de agentes biológicos y químicos), medioambiente (medición de contaminantes en agua, localización de dióxido de carbono y otros contaminantes urbanos o de hongos en bibliotecas), industria farmacéutica (mal olor de medicamentos, control en áreas de almacenamiento) y agroalimentación (detección de adulteración de aceites, maduración de frutas, curación de embutidos y quesos).

De la ‘huella olorosa’ a la odorología criminalística

Las nuevas generaciones de sensores también pueden servir para detectar ese olor corporal personal conocido como huella aromática u olfativa. Esta podría llegar a identificar a una persona como ocurre con la huella digital. Helen Keller (1880-1968) esbozó la idea de que cada persona emite un olor personal, como una huella olfativa única e individual. Para ella, que se quedó sordociega a los 19 meses de edad a causa de una enfermedad, esta huella tenía un valor incalculable y le aportaba datos como el oficio de cada una de las personas con las que tenía relación. Y no se trata del perfume, sino que cada uno de nosotros tenemos un olor particular, un patrón aromático, compuesto por secreciones de la piel, flora bacteriana y olores procedentes de medicamentos, alimentos, cosméticos o perfumes. Este patrón podría emplearse, en el futuro, para la identificación personal e incluso en investigación criminalística para la localización de delincuentes.

 

Ilustración de Lluis Fortes

Ilustración de Lluis Fortes

La odorología criminalística es una técnica forense que utiliza determinados medios y procedimientos para comparar el olor de un sospechoso con las muestras de olor recogidas en el lugar del crimen. De hecho, en algunos países se permite usar como prueba válida la huella del olor. Así mismo, científicos israelíes están desarrollando una nariz electrónica que pueda detectar la huella aromática de seres humanos a nivel individual como si se tratase de una huella digital. Este olor particular está determinado genéticamente y permanece estable a pesar de las variaciones en el ambiente y la dieta. Por tanto, el olor proporciona un rastro reconocible de cada individuo que puede detectarse por la nariz, por un animal entrenado o utilizando instrumentos químicos más sofisticados.

Las narices electrónicas están todavía lejos de imitar el funcionamiento del olfato humano, pero para algunas aplicaciones este último tiene algunos inconvenientes, como la subjetividad en la percepción olfativa, la exposición a gases dañinos para el organismo o la fatiga y el deterioro que implica la exposición constante a estas pruebas. Por tanto, las narices electrónicas resultan un mecanismo rápido y confiable para monitorizar de forma continua y en tiempo real olores específicos.

* Laura López Mascaraque es investigadora del Instituto Cajal del CSIC y autora, junto con José Ramón Alonso, de la Universidad de Salamanca, del libro El olfato de la colección ¿Qué sabemos de? (CSIC -Catarata).

 

 

¿Qué le pasa a tu cerebro cuando haces ejercicio? Ojo, no todo son ventajas

Por José Luis Trejo (CSIC)*

La Grecia clásica ya sabía de los beneficios del ejercicio físico para el cuerpo y para la mente, y hoy día todo el mundo es consciente de los perjuicios del sedentarismo. El ejercicio mejora la capacidad de aprendizaje, es antidepresivo, ansiolítico, y favorece la formación de nuevas neuronas en el área cerebral dedicada a la memoria. Sin embargo, pocas personas son conscientes de que no todo ejercicio es bueno para la salud. El ejercicio físico moviliza una serie de moléculas de nuestro cuerpo que, una vez entran en el cerebro y activan las células diana, producen efectos que explican todas estas ventajas y desventajas.

En cuanto a los beneficios del ejercicio, su práctica incrementa la cantidad de los llamados ‘factores de crecimiento’, una gran familia de moléculas que se liberan en sangre durante la actividad. Mejoran la irrigación sanguínea en las zonas activas del cerebro, aumentan el número de conexiones neuronales (o sinapsis), el número de ramificaciones de las células neurales (conocidas como dendritas) y la división de células madre neurales, responsables de generar nuevas neuronas en el hipocampo del individuo adulto. Todo ello contribuye a que la conectividad nerviosa mejore y se incremente la eficiencia del cerebro, es decir, nos ayuda a que pensemos mejor. Ejercitar tanto el cuerpo como el cerebro mejora la salud de ambos. La máxima mens sana in corpore sano es cierta, la actividad cognitiva unida a la actividad física no solo incrementa la división sino también la conectividad de las nuevas neuronas, y ahora, además, sabemos cómo sucede.

XXXVII Carrera de la Ciencia organizada por el CSIC./ Eliezer Sánchez.

Averiguar estos detalles ha requerido investigar con animales de experimentación. Gracias a estudios relacionados con la neurobiología del ejercicio hemos sabido que la actividad que más efectos beneficiosos conlleva es el ejercicio físico sumado a la actividad cognitiva. En los animales de experimentación esto se conoce como enriquecimiento ambiental. Examinar la memoria y el estado de ánimo de un animal de laboratorio no es tarea sencilla. Para ello los neurobiólogos han tenido que diseñar tests específicos que no causen ningún estrés ni malestar en los animales, pero que sirvan para analizar su estado de ánimo y su capacidad cognitiva. Con este propósito, se han refinado los métodos para analizar cómo los factores de crecimiento ejercen su acción sobre las neuronas, y han aparecido marcadores de las nuevas neuronas que nos permiten su detección y seguimiento.

Gracias a estas nuevas herramientas se ha determinado, por ejemplo, que un animal ejercitado es capaz de distinguir dos objetos muy parecidos, pero en realidad diferentes, con mayor exactitud que un animal sedentario. También se ha demostrado que tras el ejercicio, el miedo que el animal siente ante los espacios abiertos y desconocidos se reduce, y le permite aventurarse a explorarlos sin ansiedad. Todos estos efectos son mediados por los factores de crecimiento. De hecho, la administración de dichos factores por sí solos a animales sedentarios ha producido los mismos beneficios sin necesidad de ejercicio.

Estos hallazgos abren la posibilidad de que los factores de crecimiento (como decíamos, la familia de moléculas que se liberan en sangre durante la actividad física) pudieran usarse como farmacomiméticos del ejercicio en personas que no pueden hacerlo por una u otra razón. Sin embargo, no son las únicas moléculas que participan en los efectos beneficiosos de la actividad física, y además aún no se conocen todas, así que el mensaje para todos aquellos que sí pueden hacer ejercicio es que comiencen de inmediato a practicarlo, pero con una nota de cautela.

Desventajas del ejercicio físico

Lo mencionábamos al principio. ¿Todo el ejercicio es bueno?, ¿cuánto más, mejor? Si el ejercicio es extenuante, además de los citados factores de crecimiento, se acabarán liberando hormonas del estrés, que también entrarán en el cerebro y se dirigirán a las mismas células neurales, produciendo los consabidos efectos perjudiciales cuando el estrés tiene lugar de manera continuada en el tiempo. Por decirlo rápidamente: la intensidad del ejercicio es la que marca si su práctica es beneficiosa o perjudicial. Cuando un mismo estímulo es beneficioso a baja intensidad y se torna perjudicial a altas intensidades decimos que tiene una curva de respuesta dual. Este fenómeno se denomina hormesis y varía en cada persona. Esto significa que el estímulo es el mismo, pero es su intensidad, moderada o extenuante, la que determina si los efectos son beneficiosos o perjudiciales, respectivamente. La baja exposición al estímulo (en este caso ejercicio) produce cierto efecto, mientras que mucha exposición produce el efecto contrario, o ningún efecto.

 

El gráfico, en forma de U invertida, muestra cómo los efectos positivos se acumulan a medida que incrementamos la intensidad del ejercicio, llegan a un punto máximo, y a continuación, aunque aumente la intensidad, éstos empiezan a perderse hasta llegar a un punto similar a la situación de partida./ Nutrition Journal.

Desde tiempo inmemorial se ha sabido que el ejercicio es bueno, pero también se alaba la virtud del término medio, o aurea mediocritas de Aristóteles. Así pues, el ejercicio moderado, no extenuante, nos puede hacer más listos, más felices, ¡y con más neuronas!

José Luis Trejo es investigador en el Instituto Cajal del CSIC.

Feromonas: cuestión de (algo más que) sexo

Por Laura López Mascaraque (CSIC)* y Mar Gulis (CSIC)

En 1959, un grupo de químicos alemanes, liderado por Adolf Butenandt, reunieron 313.000 mariposas hembras y les cortaron el extremo del abdomen. Como si de una poción de brujería se tratara, trituraron estas porciones y las disolvieron en diferentes sustancias para observar la respuesta que provocaban los brebajes en los machos de esta especie. De este modo, comprobaron que bastaba con una trillonésima parte de un gramo (10-18 gramos) de mezcla para conseguir algún tipo de reacción por parte del macho. Gracias a este experimento identificaron por primera vez una feromona, a la que denominaron bombicol y que es la responsable de que el macho de la mariposa de la seda (Bombyx mori) mueva sus alas al percibirla.

Mariposa de la seda (Bombyx mori)/ Csiro.

Las feromonas son claves para determinadas relaciones sociales, y sobre todo sexuales, entre varias especies animales, ya sean organismos simples, invertebrados o vertebrados. ¿Qué es y cómo funciona esta potente herramienta capaz de favorecer la comunicación entre individuos en unas concentraciones tan bajas?

Se trata de un tipo de estímulos químicos que transmiten información específica entre individuos de la misma especie, generando normalmente una respuesta tipo. En los casos más evidentes provocan un cambio inmediato en el comportamiento del animal receptor o un cambio en su desarrollo: generan movimientos determinados, actúan sobre la fisiología reproductiva o transmiten un estado de salud determinado o un estatus social dentro de una comunidad.

Las feromonas pueden ser compuestos específicos o mezclas de ellos. En cualquier caso, son compuestos con propiedades físicas y químicas concretas. Una vez liberada se podría decir que la feromona tiene vida propia. La duración de su mensaje dependerá de la persistencia de las moléculas en el ambiente, y el alcance dependerá tanto de esa vida media como de la facilidad de ser transportada por el aire o por una corriente de agua.

En general son sustancias pequeñas, volátiles, que se dispersan con facilidad en el ambiente y que generan efectos en cantidades minúsculas. Según sea su función, así serán sus características: estables y poco volátiles cuando el objetivo es marcar los límites de un territorio, o bien de corta vida y rápida difusión cuando lo que se busca es alarmar ante una situación de peligro…En definitiva, el requisito indispensable es que sean capaces de generar una reacción determinada dentro de la misma especie.

Protozoo, lombriz de tierra y ratón doméstico/ EPA, Holger Casselmann y George Shulkin.

Existen feromonas en organismos simples, como ciertos protozoos (Chlamydomonas) que producen esta sustancia en sus flagelos para conseguir que otros protozoos se agreguen a él. También existen estos compuestos en invertebrados, como la lombriz de tierra (Lumbricus terrestres), que bajo situaciones de estrés segrega una feromona que alerta al resto sobre algún peligro inminente. O en algunos vertebrados, como el macho del ratón doméstico (Mus musculus domesticus), que emite una feromona que genera agresividad en el resto de machos a la vez que atrae a las hembras maduras y acelera la pubertad en las más jóvenes. Pero, ¿qué pasa con los humanos? ¿existen feromonas que influyan en nuestro comportamiento?

Parece mentira, pero aún se desconoce la existencia de feromonas en los seres humanos. Hay diversos estudios que pueden relacionar las feromonas con fenómenos como el reconocimiento recíproco entre una madre y su hijo recién nacido, la denominada sincronía menstrual que ocurre entre las mujeres que viven o trabajan juntas o la reacción que puede provocar sobre los que nos rodean el olor corporal que emitimos en situaciones de estrés. Sin embargo, la creencia es que los olores personales están influidos por la dieta, el ambiente, la salud y la genética. Se piensa que tienen demasiadas sustancias para ser descritos como feromonas y, de hecho, no se ha podido identificar una molécula que se haya definido como feromona humana. Eso no ha disuadido a un grupo de emprendedores para montar empresas que venden pociones de amor que supuestamente contienen feromonas, aunque en realidad, en el mejor de los casos, contienen feromonas, sí, pero de cerdo.

* Laura López Mascaraque es investigadora del Instituto Cajal  del CSIC y autora, junto con José Ramón Alonso de la Universidad de Salamanca, del libro El olfato de la colección ¿Qué sabemos de?, disponible en la Editorial CSIC y Los Libros de la Catarata.