Archivo de la categoría ‘Biología’

¿En qué se diferencian los probióticos de los prebióticos?

Por Carmen Peláez, Teresa Requena y Mar Gulis (CSIC)*

Con frecuencia nos encontramos en el mercado productos que contienen probióticos o prebióticos, o bien una combinación de ambos. Su creciente comercialización en alimentos y en productos farmacéuticos y de parafarma­cia hace que estos compuestos nos parezcan muy saludables, pero lo cierto es que muchas veces no sabemos distinguirlos ni cuáles son sus propiedades. En este texto vamos a explicar en qué consisten, en qué se diferencian y qué beneficios pueden tener los probióticos y los prebióticos para nuestra microbiota intestinal y, por tanto, para nuestro organismo.

El colon: uno de los ecosistemas más densamente poblados de la Tierra

Si bien la microbiota se aloja en diferentes partes del cuerpo (en la piel, la boca, la cavidad genitourinaria…), el tracto intestinal es la región que contiene la comunidad microbiana más numerosa, densa y diversa del cuerpo humano. En concreto, la microbiota intestinal está compuesta por billones de microorganismos, de los que una gran mayoría son bacterias.

El colon posee características fisiológicas y un constante aporte de nutrientes que lo convierten en un eficiente reactor biológico. Gracias a ello, este órgano forma uno de los ecosistemas más densamente poblados de la Tierra, en el que se desarrolla una microbiota que interviene en numerosas funciones fisiológicas del organismo.

Algunas enfermedades están asociadas con desequilibrios en la microbiota intestinal, que interviene en numerosas funciones de organismo.

Es fácil deducir que semejante cantidad y diversidad microbiana ejerce importantes funciones en nuestro cuerpo y que, por tanto, sus desequilibrios podrían causar diversos desajustes en nuestra salud. Algunas alteraciones de la microbiota intestinal, como la reducción de diversidad, la excesiva proliferación de patobiontes (patógenos oportunistas) o la reducción de la producción de ácidos grasos de cadena corta o de bac­terias con propiedades antiinflamatorias, están asociadas con algunas enfermedades, tanto infecciosas como no transmisibles. Aunque no se ha demos­trado que las alteraciones de la microbiota, conocidas como disbiosis, sean la causa de patologías, cada vez resulta más evidente la importancia de emplear estrategias que modulen la composición y/o la funcionalidad de la microbiota intestinal. Entre ellas, las estrategias más estudiadas son tres: la utilización de microorganismos probióticos, el consumo de compuestos prebióticos y los trasplantes fecales. En esta entrada del blog nos centraremos en las dos primeras.

Probióticos

Según una definición ampliamente aceptada por la co­munidad científica, los probióticos son microor­ganismos vivos que, cuando se administran en cantidades adecuadas, proporcionan un beneficio para la salud del or­ganismo. La diferencia con las bacterias mutualistas del tracto gastrointestinal (aquellas que en su relación con un organismo proporcionan un beneficio mutuo) es que son microorganismos que se han aislado y cultivado, y que existen evidencias científicas y clínicas sobre su capacidad para aportar un beneficio para la salud.

Se considera que este beneficio es gene­ral en algunas especies de bacterias que pertenecen a los géneros Bifidobacterium y Lactobacillus. Son especies con las que se han realizado numerosos ensayos clínicos que demuestran su potencial para mejorar ciertas condiciones intestinales y ejercer una modulación inmunológica. Los efectos saludables se han demostrado frente a la diarrea infecciosa, la asociada al tratamiento con antibióticos o el síndrome de intestino irritable, así como con la mejora del tránsito intestinal. Los mecanismos por los que los probióticos mejo­ran la salud gastrointestinal se relacionan con la produc­ción de compuestos antimicrobianos, vitaminas, nutrientes esenciales o mecanismos de defensa y competición frente a patógenos y la interacción con el sistema inmune.

Alimentos como el yogur o el queso cuentan con bacterias que favorecen una adecuada microbiota intestinal.

Alimentos como el yogur o el queso cuentan con bacterias que favorecen una adecuada microbiota intestinal.

Aunque la mayoría de los probióticos no se ins­talan permanentemente en el intestino, parece que ejercen un efecto saludable durante su tránsito. El beneficio está asociado a su funcionali­dad, que podría contribuir a restablecer un equilibrio micro­biológico intestinal saludable. Por otra parte, no exis­ten datos de efectos adversos por su consumo, aunque siempre es recomendable consultar antes con los profesionales sanitarios.

Hay especies de lactobacilos y bifidobacterias, en las que se incluyen muchos probióticos, que están presentes en alimentos como el yogur, el kéfir o el queso, así como en otro tipo de alimentos fermentados, como el chucrut, las aceitunas o el kimchi. Sin embargo, el creciente interés científico, clínico y comercial sobre los probióticos ha generado un esce­nario en el que proliferan multitud de productos que se denominan probióticos, pero todavía resulta difícil para consumidores y profesionales sa­nitarios separar la paja del grano.

No todos los productos etiquetados como probióticos responden a la definición y en algunos no existe ningún dato que identifique a las bacterias que contiene, la cantidad en que se encuentran y la evidencia que respalda el beneficio para la salud. Es fundamental conocer la composición de cada producto y contar con información fiable y contrastada de la acción de estos microorganismos sobre nuestra salud. También es importante conocer los mecanismos y las características que explican los beneficios de cada probiótico.

Prebióticos

A diferencia de los probióticos (microorganismos vivos), los prebióticos son componentes de los alimentos, no digestibles, que están presen­tes de forma natural o añadidos. Por decirlo de un modo muy sencillo, los prebióticos serían el “alimento” de las bacterias beneficiosas (probióticos). Por ello, también pueden contribuir a restablecer la diversidad bacte­riana y riqueza genética que se ve empobrecida en ciertas condiciones patológicas, como obesidad, enfermedades inflamatorias intestinales, etc.

Los prebióticos son sustratos utilizados selectivamente por microorganismos del hospedador que le confieren un efecto beneficioso para la salud. En el tracto intestinal, sirven como sustrato de crecimiento para la microbiota resi­dente en el intestino y, de este modo, promueven cambios de composición o metabólicos que se consideran beneficiosos. Se trata fun­damentalmente de carbohidratos que favorecen una po­blación microbiana intestinal sacarolítica, que a su vez aumenta la formación de ácidos grasos de cadena corta que proporcionan múltiples beneficios metabólicos. En algunos casos son suministrados con probióticos, denominándose simbiótico al conjunto.

Los alimentos ricos en fibra son los que nos aportan más componentes prebióticos.

Los alimentos ricos en fibra son los que nos aportan más componentes prebióticos.

Los alimentos que nos aportan más componentes prebióticos son los ricos en fibra, como las frutas, las verduras, las legumbres o los cereales integrales. Curiosamente, el primer prebiótico natural de consumo humano está constituido por los oligosacáridos que se ingieren con la leche materna. Estos compuestos favorecen el desarrollo de bacterias beneficiosas como las bifidobacterias, y a la vez aumentan la resistencia a la invasión por patógenos. Por ello, una línea de investigación y desarrollo comercial actual consiste en incluir, en la fórmula de leches maternizadas, oligosacáridos equivalentes a los presentes en leche humana (que prácticamente no existen en la leche de vaca).

¿Te ha quedado algo más claro qué son los probióticos y los prebióticos y en qué se diferencian? Conocer estos componentes beneficiosos para nuestra microbiota intestinal nos ayudará a valorar lo que ingerimos.

 

* Carmen Peláez y Teresa Requena son investigadoras del CSIC en el Instituto de Investigación en Ciencias de la Alimentación (CIAL) y autoras de La microbiota intestinal, de la colección de divulgación ¿Qué sabemos de?, disponible en la Editorial CSIC y Los Libros de la Catarata.

Bacterias en nuestro cuerpo: ¿dónde se aloja la microbiota humana?

Por Carmen Peláez y Teresa Requena (CSIC)*

La inscripción “Conócete a ti mismo”, grabada en el frontispicio del templo griego de Apolo en Delfos, ya indicaba que el conocimiento de lo absoluto comienza por el conocimiento de uno o una misma. Si nos preguntamos ¿qué somos realmente?, y nos ceñimos exclusivamente al pragmático método científico de describir lo que podemos experimentar, podríamos empezar tratando de contestar a la siguiente cuestión: ¿de qué se compone nuestro cuerpo?

Teniendo en cuenta que nuestro organismo está formado tanto de células humanas (organizadas en tejidos, órganos y sistemas) como de células microbianas, podría decirse que ‘somos’ toda esa amalgama de células humanas más la microbiota. En ese ‘somos’ las células microbianas serían ‘los otros’, haciendo un paralelismo con la película de Alejandro Amenábar. Solo que en este caso esos otros, aunque no los vemos, también están vivos y forman parte de ‘nosotros’, pues convivimos en un mismo escenario que es nuestro cuerpo. Si queremos conocernos debemos considerar la presencia de esos otros y la influencia que ejercen en el contexto de nuestra inevitable convivencia. A la unidad que forman la microbiota y las células humanas, y que interactúa como una entidad ecológica y evolutiva, se la denomina holobionte humano.

Considerado como holobionte, el ser humano es un ecosistema formado por millones de microorganismos, entre los cuales se da una relación simbiótica. / Gerd Altmann - Pixabay

Considerado como holobionte, el ser humano es un ecosistema formado por billones de células humanas y de microorganismos, entre los cuales se da una relación simbiótica. / Gerd Altmann – Pixabay

Se ha llegado a afirmar que la microbiota humana puede alcanzar alrededor de 100 billones de bacterias, un número que podría superar en 10 veces al de nuestras propias células. No obstante, estas cantidades se están reconsiderando y las estimaciones más recientes indican que nuestro organismo está compuesto por 30 billones de células y que el número de células bacterianas, sin ser constante –ya que se evacúa cierta cantidad del intestino de manera regular–, sería similar. Es decir, los cálculos recientes estiman que tendríamos, más o menos, el mismo número de células humanas que de bacterias. En cualquier caso, lo que está claro es que la población de bacterias del holobionte humano es extraordinariamente numerosa.

Las bacterias de la microbiota que se reparten por nuestro cuerpo presentan una estructura filogenética muy particular que se asemeja a un gran árbol con pocas ramas principales que, a su vez, se dividen en numerosos brazos. Las ramas principales serían los órdenes o filos, que en el cuerpo humano están representados principalmente por 5 de los más de 100 que existen en la naturaleza: Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria y Verrucomicrobia. Veamos en qué partes del cuerpo se alojan estos diferentes tipos de bacterias.

Un recorrido por las partes del cuerpo donde se aloja la microbiota humana

La piel está recubierta de microorganismos, aunque de diferente modo según las zonas: en las partes más secas, como brazos y piernas, el número es bajo. Pero en los poros, los folículos pilosos, las axilas o los pliegues de la nariz y las orejas, donde hay más humedad y nutrientes, su número es mayor y su composición, diferente. Las manos se caracterizan por tener la microbiota más diversa y más variable. El filo que predomina en las diferentes regiones de la piel es Actinobacteria, como corinebacterias y cutibacterias, y también los filos Firmicutes y Bacteroidetes, representados por Staphylococcus epidermidis. Esta especie es la más abundante en la piel, participa en la regulación del pH y, entre otras cosas, compite con el patógeno Staphylococcus aureus e impide su asentamiento.

La cavidad oral, puerta de entrada al aparato digestivo, es una de las regiones del cuerpo con mayor abundancia y diversidad de microorganismos. La microbiota se reparte de manera diferente entre la saliva, la lengua, los dientes, las mejillas y las encías, y contribuye a mantener el equilibrio necesario para la salud oral. Si este equilibrio se rompe, la microbiota oral puede ser responsable de la caries dental y de infecciones como la periodontitis.

La cavidad genitourinaria femenina, particularmente la vagina, también está habitada por una microbiota abundante, que durante la etapa reproductiva está dominada por lactobacilos. Estas bacterias constituyen una barrera eficaz frente a la invasión por patógenos bacterianos y fúngicos. En la infancia y tras la menopausia, la microbiota de esta zona se asemeja más a la de la piel y la región anal.

La Escherichia coli es una de las muchas especies de bacterias que pueblan el tracto intestinal humano. / Gerd Altmann -Pixabay

La ‘Escherichia coli’ es una de las muchas especies de bacterias que pueblan el tracto intestinal humano. / Gerd Altmann – Pixabay

Pero es el tracto intestinal la región que contiene la comunidad microbiana más numerosa, densa y diversa del cuerpo humano. El colon posee características fisiológicas y un constante aporte de nutrientes que lo convierten en un eficiente reactor biológico donde puede desarrollarse una microbiota que interviene en numerosas funciones fisiológicas del organismo. Solo los Firmicutes y Bacteroidetes, dos de los cinco filos que comentábamos anteriormente, representan el 90% del ecosistema intestinal y son los mayoritarios en los seres humanos, aunque los géneros que los componen aparecen representados de forma diferente entre los individuos.

Se han identificado más de 1.000 especies distintas en la microbiota intestinal humana, aunque no todas están presentes en todos los individuos. Según Rob Knight, de la Universidad de Colorado, la probabilidad de que una bacteria intestinal procedente de un individuo sea de diferente especie que la obtenida de otro es superior al 90%, lo que indica una alta variabilidad interindividual. Por tanto, la diversidad bacteriana intestinal podría representar un carácter distintivo: una huella microbiana identificativa de cada individuo. Esta diversidad de especies dificulta que se pueda establecer un núcleo taxonómico universal compuesto por un conjunto consistente de especies presentes en la microbiota intestinal humana. También dificulta la descripción de lo que llamaríamos una microbiota normal o saludable. Aún más, la microbiota es muy diferente según la etapa de la vida en que nos encontremos. Sin embargo, sí hay evidencias de los beneficios para la salud que conlleva mantener una microbiota abundante y diversa. Nos adentraremos en ello en un próximo texto del blog.

 

* Carmen Peláez y Teresa Requena son investigadoras del CSIC en el Instituto de Investigación en Ciencias de la Alimentación (CIAL) y autoras de La microbiota intestinal, de la colección de divulgación ¿Qué sabemos de?, disponible en la Editorial CSIC y Los Libros de la Catarata.

¿Por qué hay tantas razas de perros?

Por Tessa Lynn Nester y Mar Gulis (CSIC)*

Los hay grandes como un mastín italiano y pequeños como un yorkshire terrier; de pelo largo al estilo chow chow o corto tipo dogo; con el cráneo achatado de un bulldog o alargado como un pastor alemán… Y, sin embargo, todos pertenecen a la misma especie: Canis familiaris. El perro es el mamífero con más diversidad morfológica que existe sobre la superficie de la Tierra.

Ilustración de Irene Cuesta

Ilustración de Irene Cuesta (SINC).

¿Cómo es posible que haya perros tan distintos? ¿Por qué entre los individuos de esta especie hay una variedad mucho mayor que entre los de otras especies, como el ser humano, cuyo origen es muy anterior? ¿Acaso los lobos, los parientes más cercanos de los perros, no se parecen mucho más entre ellos?

La respuesta a estas preguntas es relativamente sencilla: los perros son tan increíblemente diversos porque los seres humanos los ‘hemos hecho’ así. Para entender mejor esta respuesta, tenemos que hablar de cómo surgieron y cómo han evolucionado hasta la actualidad.

El origen del perro

Hoy sabemos que los perros son lobos domesticados a partir de una especie de lobo extinta y no de los lobos modernos (Canis lupus). De hecho, se cree que los lobos que conocemos en la actualidad y los perros son taxones (grupos de especies) hermanos que descienden del mismo ancestro común.

Sin embargo, el origen del perro es muy controvertido ya que no existe un acuerdo sobre dónde o cuándo se produjo la domesticación. Hay estudios genéticos que sitúan este evento en Asia, mientras que otros lo hacen en Oriente Medio o Europa. Los resultados de estas investigaciones tampoco coinciden en las fechas, de modo que el nacimiento de la especie puede haber ocurrido entre hace 20.000 y 40.000 años. Por otra parte, puede ser que todas tengan algo de razón y que existieran varios momentos de domesticación a lo largo de la historia.

Razas de perros

Hoy vemos una gran variedad entre las distintas razas de perros. / Mary Bloom, American Kennel Club, Shearin y Ostrander, 2010.

La domesticación es un proceso evolutivo en el que un organismo se adapta a un entorno humano a través de influencias que las personas ejercen sobre su reproducción y cuidado. A lo largo de las generaciones, este proceso cambia el genoma de la especie y, con ello, la morfología y el comportamiento del animal. Pero la manera concreta en que los lobos se convirtieron en animales domésticos también es tema de debate.

Se ha pensado que los humanos capturaron a los lobos y los domesticaron, pero esto es poco probable si tenemos en cuenta el comportamiento de los lobos salvajes. Es más factible que los lobos se hayan domesticado en un proceso conocido como autodomesticación. Desde este punto de vista los lobos más amistosos se habrían domesticado durante el Paleolítico a base de pasar tiempo cerca de comunidades cazadoras y recolectoras, comiendo las sobras, y se habrían hecho dependientes de los seres humanos con el paso del tiempo. Además, en ese proceso habrían desarrollado tolerancia al almidón, un carbohidrato común en la comida humana que los lobos salvajes siguen sin poder digerir. Después de poco tiempo, aquellos lobos se habrían hecho domésticos al encontrar un nicho en la sociedad humana.

Humanos y perros: una relación simbiótica

Lo que parece evidente es que entre los lobos domesticados y los seres humanos se formó una relación simbiótica de la que ambos grupos se beneficiaban. Los primeros conseguían comida y resguardo y los segundos un nuevo compañero, guardián y cazador.

La arqueología ha arrojado diversas muestras de esta relación, como las pinturas rupestres de hace miles de años encontradas en Arabia Saudí que parecen mostrar a un grupo de cazadores llevando a perros atados con correas. O el yacimiento de Oberkassel (Alemania), en el que se encontraron los restos de un perro y dos adultos humanos que vivieron hace 14.000 años y que habían sido enterrados juntos.

Pinturas Arabia Saudí

Las pinturas rupestres descubiertas en Arabia Saudí se remontan a miles de años atrás y posiblemente muestren a los cazadores llevando a los perros con correas. Es posible que sea una de las ilustraciones más antiguas de perros domésticos. / Journal of Anthropological Archaeology.

A partir de la dentición, se averiguó que el perro sufrió el virus del moquillo cuando tenía alrededor de 19 semanas y luego falleció a las 27-28 semanas de edad. Este descubrimiento es muy llamativo porque el virus del moquillo suele causar una muerte bastante rápida, durante las tres primeras semanas después del contagio, y el perro sobrevivió 4-5 semanas más de lo que habría sido normal. El hecho de que el perro no supusiera ninguna ventaja para sus amos durante el periodo en el que estaba enfermo y que aun así lo mantuvieran y llegaran a enterrarse con él nos indica que, además de asistirlo, posiblemente tenían vínculos afectivos que les unían al animal.

En cualquier caso, es evidente que en la actualidad mantenemos con los perros lazos de confianza y emocionales. Este es un fenómeno fácil de ver entre individuos de una misma especie –por ejemplo, entre una madre y su hijo–, pero muy poco frecuente entre individuos de especies distintas. De hecho, parece que el caso del perro y el ser humano es el único que existe.

Las razas del perro

Los perros siempre han sido muy útiles en nuestra sociedad en un gran número de papeles: pastores, guardianes, cazadores, rescatadores, compañeros etc. Dependiendo de su función, han sido seleccionados para tener las características que les permitieran hacer mejor su trabajo. Por ejemplo, los perros ganaderos son muy grandes, fuertes y con los músculos marcados porque a lo largo de generaciones los seres humanos han seleccionado a este tipo de individuos para que sean capaces de guardar el ganado y protegerlo de los depredadores.

Esta selección artificial es la responsable de que los perros sean tan distintos en su pelaje, tamaño y habilidades. No obstante, las razas de perro se diferencian mucho en su aspecto físico y poco en su genoma, ya que los rasgos físicos son solamente el resultado de pocos genes.

Aunque la domesticación empezó hace miles de años, la formación de las razas modernas tuvo lugar en el siglo XIX. Durante esta época, las personas aficionadas a los perros comenzaron a criarlos de acuerdo con un estándar de linaje, aspecto y comportamiento, y a fomentar de este modo las características que más les interesaban en cada caso. Así, en 1873 se creó en Londres el English Kennel Club, el primer club de razas de perros. Hoy, su homólogo estadounidense, el American Kennel Club, reconoce 193 razas, cada cual con sus propias características, temperamento y morfología.

Perros Moscú

Los perros callejeros en Moscú se parecen mucho debido al intercambio genético y a la pérdida de la selección artificial. / Andrey, Wikipedia.

Pero si dejáramos que todas las razas se entrecruzaran durante un periodo de tiempo las veríamos desparecer. Debido al intercambio genético, tendríamos solamente una raza de perro, en lugar de todas las que vemos hoy. Como ejemplo, los perros callejeros en Moscú, que han estado viviendo en las calles durante más de 150 años, sin las restricciones de la selección artificial. Sus acervos génicos se han mezclado rápidamente, lo que ha dado lugar a una única ‘raza’ de perro. Esto quiere decir, que somos los humanos los que mantenemos la separación de las razas evitando que se entrecrucen. Es nuestra especie la que mantiene y controla los rasgos y las características de los perros.

 

* Tessa Lynn Nester es investigadora predoctoral en el Museo Nacional de Ciencias Naturales del CSIC. Este texto es una reelaboración del artículo Mastín italiano vs yorkshire terrier. ¿Son la misma especie?, publicado en la revista Naturalmente.

Tres teorías para explicar el origen de la asimetría en los seres vivos

Por Luis Gómez- Hortigüela (CSIC) *

La quiralidad es la propiedad que tienen ciertos objetos de no ser superponibles con su imagen especular. Así, cada una de las imágenes especulares constituyen entidades diferentes. El mundo que nos rodea está lleno de objetos quirales, como el clásico ejemplo de nuestras manos (la izquierda se convertirá en la derecha si la ponemos frente a un espejo), u objetos que posean ejes helicoidales, como tornillos o escaleras de caracol.

La trascendencia más fundamental de la quiralidad tiene lugar en el nanomundo de las moléculas, en particular en las que conforman el funcionamiento de los seres vivos. Esto es así porque, ya desde su más remoto origen, la vida decidió funcionar de manera asimétrica, empleando compuestos quirales para construir las biomoléculas funcionales: aminoácidos para formar proteínas y azúcares para los ácidos nucleicos. En una entrada anterior, ya hablábamos de la asimetría como una propiedad esencial para la vida. Por alguna misteriosa razón, de las dos posibles formas especulares de estos compuestos quirales, la vida decidió comenzar su andadura empleando exclusivamente la forma zurda (L) de los aminoácidos y la forma diestra (D) de los azúcares, fenómeno que se conoce como homoquiralidad.

El pez platija con su extravagante asimetría en la posición de los ojos es un claro ejemplo de quiralidad.

A su vez, consciente de su eficiencia, la evolución trasmitió esta caprichosa selección quiral a todos los seres vivos, al menos en lo que concierne a nuestro planeta. Ahora bien, una vida imagen especular de la existente, con aminoácidos diestros y azúcares zurdos, en principio debería ser igualmente viable. ¿Por qué entonces la naturaleza se decantó por la vida basada en L-aminoácidos y D-azúcares? ¿Fue fruto de una mera casualidad o existe un imperativo cósmico detrás? ¿Podría existir vida imagen especular de la nuestra en otros planetas? Hasta el momento, hay tres posibles teorías que responden esta cuestión.

La homoquiralidad surgió por azar

Al ser las dos formas especulares (enantiómeros) de compuestos quirales igualmente estables, en principio existen en igual proporción (50% de cada uno). La senda hacia la homoquiralidad requiere el establecimiento de ciertos desequilibrios enantioméricos primigenios, una ruptura inicial de esa simetría del 50% que pueda derivar por diversos mecanismos de amplificación hacia la exclusividad quiral requerida para traspasar la barrera de la materia inerte a la viva. Un primer agente que podría haber generado esos desequilibrios es el propio azar.

Imaginemos que lanzamos una moneda al aire 100 veces; la estadística predice que lo más probable es que obtengamos 50 caras y 50 cruces. Sin embargo, si realizamos el experimento varias veces, es muy posible que en alguna ocasión obtengamos 49 caras y 51 cruces (o viceversa), lo que da lugar a una ruptura de la simetría. De manera similar, pequeños desequilibrios estocásticos en la proporción de uno y otro enantiómero de biomoléculas quirales en el caldo prebiótico habrían generado un germen de asimetría que habría derivado en la homoquiralidad. De ser este el mecanismo, la vida terrestre basada en L-aminoácidos y D-azúcares constituiría un mero accidente congelado fruto de un azaroso desequilibrio primigenio, condenado a la eternidad por la selección natural y las ventajas bioquímicas de la homoquiralidad. Esta selección quiral, por tanto, no sería imperativa en el universo, sino que podría encontrarse vida imagen especular en otros rincones del mismo.

El Hibiscus hawaiano, es quiral: los pétalos se montan unos sobre otros de manera helicoidal. / Wikipedia

Imperativo cósmico

No obstante, Einstein encontraba poco espacio en el universo para el azar: “Dios no juega a los dados con el universo” (o en este caso, la selección natural a través de la evolución química). Así, también se han propuesto mecanismos deterministas, donde ciertas influencias asimétricas debieron concurrir para generar esa ruptura inicial de simetría, lo que establecería una causa última para la selección quiral de la vida.

La primera de las teorías deterministas está relacionada con la naturaleza íntima de la materia. Uno de los más desconcertantes descubrimientos científicos del siglo XX fue la llamada caída de la paridad, que se deriva del hecho de que las partículas que conforman nuestro universo de materia son asimétricas. En palabras de Asimov, que el electrón es zurdo (su reverso de antimateria, el positrón, sería su análogo diestro).

Nuestro universo está constituido por partículas de materia, como el electrón, y por tanto es asimétrico. Esta asimetría es debida a un desequilibrio inicial, cuyas causas aún se desconocen, entre la cantidad de materia y antimateria tras el Big Bang, que hizo que la primera prevaleciera en su épica batalla ancestral contra la antimateria, conformando así nuestro universo.

Tal asimetría de la materia que configura las moléculas de nuestro universo implica que existe una ínfima diferencia de estabilidad entre los enantiómeros L y D de los aminoácidos construidos a base de materia, lo cual podría proporcionar la causa para un desequilibrio inicial. De hecho, estudios teóricos sugirieron una ligerísima mayor estabilidad para los L-aminoácidos y los D-azúcares, coincidente con la selección quiral de la vida. Sin embargo, las diferencias de energía calculadas eran extremadamente pequeñas y controvertidas. Así, por muy eficientes mecanismos de amplificación que existieran, resulta difícil predecir que tales mínimos desequilibrios condujeran a la homoquiralidad de la vida. En todo caso, si este fuera el origen, la quiralidad estaría impresa en los mismos entresijos de la materia, y por tanto cualquier vida en nuestro universo de materia debería reflejar la misma selección quiral que la terrestre.

La espiral de las conchas de caracol giran invariablemente hacia la derecha, una muestra de la quiralidad en esta especie.

Origen extraterrestre

En 1969, la llegada de un inesperado visitante en forma de meteorito a Murchison (Australia) proporcionó una nueva pista para otro posible mecanismo de ruptura de simetría quiral. El célebre meteorito contenía aminoácidos de origen extraterrestre. Sorprendentemente, se observaron ciertos desequilibrios enantioméricos en dichos aminoácidos, lo que sugería la provocativa idea de un germen de quiralidad exógeno, forjado en algún rincón del universo donde pudieran darse condiciones que no serían posibles en la Tierra. De esta manera, el desequilibrio quiral inicial habría alcanzado nuestro planeta a bordo de meteoritos.

Para estudiar esta sugerente posibilidad, la Agencia Espacial Europea envió en 2004 la sonda Rosetta al cometa 64P-Churiumov Guerasimenko para analizar in situ la existencia de desequilibrios enantiómericos en compuestos quirales de interés para el origen de la vida, si bien azares del destino impidieron llegar a conclusiones definitivas. En este caso, no existiría una quiralidad universal, sino que su origen sería local asociado a una región particular del universo, y podría por tanto existir vida imagen especular en otros planetas de otras regiones estelares.

Sea como fuere, resulta sobrecogedor pensar que el código quiral que describe la asimetría de la vida pudiera proceder en último término de algún lejano rincón del universo bañado por la luz asimétrica de una estrella de neutrones durante la llamada era química, o bien de lo más recóndito de la existencia, en el más insondable periodo posterior al Big-Bang, cuando la materia venció en su decisiva batalla contra la antimateria durante la era cósmica, salvándose de su desintegración absoluta y permitiendo la formación de las galaxias y el desarrollo de la era biológica que condujo, de la mano de la evolución, a nuestra propia existencia para admirar la asimétrica belleza del Universo… ¿O no fue más que una mera casualidad?

Luis Gómez-Hortigüela es investigador del Instituto de Catálisis y Petroleoquímica del CSIC y autor del libro ‘La quiralidad’ (CSIC-Catarata) de la colección ¿Qué sabemos de?

Hormigas: ¿cómo se construye un matriarcado?

Por José Manuel Vidal-Cordero (CSIC)*

“¡Empieza el matriarcado!” es una de las contundentes frases que Nairobi, el personaje interpretado por Alba Flores en La casa de papel, declama en la primera temporada de esta exitosa serie. Una expresión, y una trama, con las que el equipo de guionistas muestra su apoyo a la figura de la mujer en la sociedad. La palabra matriarcado (del latín māter, madre y del griego archein, gobernar) se refiere a un tipo de sociedad en la cual las mujeres asumen un rol central de liderazgo político y de autoridad moral, además de tener el control de la propiedad y de la custodia de sus hijos. No se han encontrado evidencias claras de que exista o haya existido este sistema social en lo que a seres humanos se refiere. ¿Es posible entonces un mundo con el predominio o mayor autoridad del sexo femenino en la sociedad? La respuesta es sí; de hecho, esa organización social ya existía incluso antes del origen de la existencia humana.

Ejemplares de hormigas Cataglyphis rosenhaueri. / Fernando Amor

Es de sobra conocido que los seres humanos no somos los únicos animales que viven en sociedades compuestas por muchos individuos. En el mundo animal existen insectos, crustáceos e incluso mamíferos cuyas sociedades se caracterizan por formar agrupaciones en las que la mayor parte de sus integrantes no dejan descendientes, sino que trabajan en beneficio de sus reinas, de los machos que las han fecundado y de la descendencia de estos. Este tipo de organización social se conoce con el nombre de eusocialidad (del griego eu, bueno o real + social), y es una palabra derivada del término eusocial, creado en 1966 por la entomóloga estadounidense Suzanne Batra para referirse al nivel más alto de organización social dado en el reino animal.

El mejor ejemplo de animales eusociales lo constituyen las hormigas, donde el sistema de vida social de muchas especies se ha llevado hasta el extremo. Pertenecientes a la familia Formicidae y al orden de insectos Hymenoptera, que engloba a más de 13.000 especies repartidas por todos los continentes a excepción de la Antártida, las hormigas han dado un paso más en este modo de vida social. Muchas especies, las más recientes evolutivamente hablando, viven en lo que en entomología se llama eusociedades avanzadas, para diferenciarlas de las primitivas. Estas últimas están compuestas por al menos dos grupos de individuos o castas: la casta reproductora y la casta trabajadora, las cuales tienen un aspecto muy similar. Ambas forman pequeñas colonias y la casta trabajadora puede sustituir a la reproductora en momentos de necesidad. En cambio, las eusociedades avanzadas pueden estar compuestas por miles de millones de individuos y en ellas es posible distinguir las distintas castas a simple vista. Además, cada una de las castas cumple una función específica en la colonia que solo sus integrantes pueden llevar a cabo.

Primitivas o avanzadas, las dos eusociedades funcionan en la actualidad, llevando a cabo algunos de los comportamientos más complejos e interesantes registrados en el reino animal. Lo más curioso es que la casta trabajadora está compuesta exclusivamente por hembras. Son aquellas a las que llamamos obreras, más o menos estériles, encargadas del cuidado de la cría, la defensa y mantenimiento del nido, el abastecimiento de alimentos y, en definitiva, todas y cada una de las funciones necesarias para asegurar el éxito de la reproducción de la casta reproductora. Dependiendo de la especie, la casta reproductora la conforman una o más reinas cuya función es asegurar la perpetuación de la colonia produciendo numerosos huevos de los cuales saldrán obreras, futuras reinas y machos. Y en último lugar, están los machos que, si bien pertenecen a la casta reproductora, no tienen ni voz ni voto en esta monarquía. Una vez adultos, deambulan por el hormiguero como zánganos siendo alimentados por las obreras y esperando el momento de salir al exterior para copular con futuras reinas de otros hormigueros, momento tras el cual terminan muriendo al poco tiempo.

Ejemplar de hormiga Messor barbarus./ Fernando Amor

Monarquías ganadas a pulso

¿Y cuál es el secreto para fundar un matriarcado tan eficaz? Para contestar a esta pregunta debemos abandonar la idea preconcebida de una reina cuyo cargo vitalicio se le ha cedido exclusivamente por derecho y de forma hereditaria. En un esquema general (pero no único) de este proceso de fundación, la regente de seis patas se ha tenido que ganar a pulso su lugar dentro de la colonia. Tras muchos años de crecimiento y prosperidad, en los hormigueros se empiezan a producir individuos sexuados. Machos y futuras reinas que, a diferencia de las obreras, tienen alas para salir al exterior y dispersarse.

En determinadas épocas del año, todos los hormigueros de la misma especie que frecuentan la zona se sincronizan para liberar princesas y machos que llenan el aire de los conocidos vuelos nupciales. En estos, machos y reinas vírgenes de diferentes nidos copulan entre sí, evitando de este modo la consanguinidad. Esta será la única y última vez en su vida que la futura monarca disfrute de la ‘noche de bodas’. Tras haber copulado con uno o varios machos y haber guardado en un ‘saco especial’ (espermateca) todo el esperma que necesitará a lo largo de su vida, la reina emprende una arriesgada aventura en la que tendrá que sortear numerosos peligros que comprenden desde el parabrisas de un coche, hasta la depredación por diversas especies animales. Y todo para encontrar un lugar idóneo donde establecer la colonia sabiendo que, por cada reina que inicia una, cientos o miles de ellas mueren en el intento.

Ejemplares de hormigas Cataglyphis-hispanica./ Fernando Amor

Arrancarse las alas y poner huevos para labrar el futuro

La mayoría de especies nidifican en el suelo, aunque también hay algunas que prefieren una vida arborícola e incluso existen valientes que deciden vivir en tu casa o la del vecino. Una vez encontrado un lugar donde excavar una cavidad, la reina fecundada se arranca las alas por la base, pues ya no las volverá a necesitar nunca más. En el interior de la cavidad, lejos de los peligros del exterior, la monarca se entrega por completo a la ardua tarea de poner huevos para fundar y mantener su matriarcado. Los ya inútiles músculos alares de la soberana se disuelven proporcionándole una fuente energética muy necesaria durante este periodo de su vida. De los huevos salen larvas que son cuidadas y alimentadas por la regente gracias a la producción de otros huevos especiales alimenticios (sin embrión). Así estarán hasta que pupen y de ellas eclosione la primera generación de obreras. Entonces, estas últimas empezarán a buscar alimento en el exterior y a cuidar de las siguientes generaciones de hermanas. De esta manera, con el paso de los años la colonia irá creciendo en número y el hormiguero se irá agrandando, hasta alcanzar la madurez y cerrar el ciclo con la producción de nuevos machos y princesas.

¿Y quién tiene la autoridad para tomar todas y cada una de las decisiones vitales para la prosperidad de estas sociedades? Las hembras. La reina decide qué huevos serán fecundados y cuáles no, gracias al esperma que guardó de su última y única cópula y que conserva en su ‘saco especial’. De los huevos no fecundados saldrán los machos, mientras que de los fecundados saldrán las hembras: obreras y futuras reinas. Por otro lado, las obreras decidirán si sus hermanas pertenecerán a su casta o, por el contrario, a la casta real. Esto dependerá esencialmente del alimento que se les proporcione durante la fase de larvas y de la temperatura y humedad en la que estas se desarrollen.

* José Manuel Vidal-Cordero es investigador de la Estación Biológica de Doñana del CSIC.

Ojos en el cielo: los drones que cuidan nuestras cosechas

Por Alicia Boto (CSIC)*

Cuando era pequeña, recuerdo que la gente se empezó a ir del campo a las ciudades. Los motivos, sin duda, eran variados, pero uno de ellos era que el campo daba mucho trabajo, el agua era cara y, por si fuera poco, los intermediarios entre los que cultivaban la tierra y los consumidores finales se llevaban muchas de las ganancias, por lo que mantener la agricultura acababa por compensar poco. Además, la tecnología comenzó a posibilitar que una sola persona cultivara mucho terreno, así que la desbandada fue general.

Hoy día, de algún modo, las cosas están cambiando en ese sentido. Ahora el agricultor puede llegar directamente a sus clientes y, además, gracias a los avances que sigue habiendo en la tecnología, es posible cultivar tierras sin que esto implique una atadura constante y presencial. En un futuro no muy lejano, tendrá desde drones para monitorizar, tratar las cosechas o controlar las malas hierbas, a robots que le ayuden en las faenas del campo. Con un click en un programa de ordenador, sin salir de casa, los campos podrán ser vigilados, regados o fumigados. Y lo mejor: gracias a ‘ojos’ que ven con más tipos de luz que los humanos, los nuevos drones podrán detectar un problema antes de que aparezca a simple vista.

Dron vigilando viñedos en Canarias. / Proyecto Apogeo

Vamos a verlo en el caso real en un viñedo y un dron equipado con dos tipos de cámaras: una normal, que solo capta la luz visible, y otra multiespectral, que capta también la luz ultravioleta y la infrarroja. Tras ser envidas por un ordenador para que las interpretase y ‘pintase’, las imágenes recogidas por este dispositivo indicaron que algunas plantas no estaban sanas. Mientras que el suelo y la tierra aparecían en color azul y las vides más sanas en rojo y naranja, las que estaban en peor forma se mostraban en amarillo y verde-azulado.

Cuando el técnico del dron vio la imagen, avisó a la directora de las bodegas. Una vez en el terreno, las plantas parecían todas iguales a simple vista, pero pronto se detectó que el sistema de riego de la zona norte se había taponado parcialmente. Las plantas no estaban recibiendo suficiente agua. Sin embargo, sus hojas no parecían aún secas porque, para ahorrar líquido, las vides dejaron de producir muchas uvas. Si el problema no se hubiera localizado, la cosecha de esa zona habría bajado mucho. Por suerte, una vez corregido el problema, las vides aumentaron su producción de fruta.

Imagen que muestra la cámara normal de un dron que sobrevuela el viñedo. / Proyecto Apogeo

La cámara multiespectral del dron detecta un problema en la zona del recuadro blanco. / Proyecto Apogeo

Las imágenes del dron también permiten detectar en una etapa temprana otros problemas. Los colores de la imagen cambian rápidamente si al suelo le faltan nutrientes, si las plantas se han infectado con patógenos, o si son atacadas por una plaga. Como el problema se descubre de forma precoz, solo hay que tratar unas pocas plantas, y así se ahorran muchos productos, como fertilizantes, pesticidas o fitosanitarios. Esto hace que los gastos sean menores, tanto para quien cultiva como para quien acaba finalmente consumiendo los productos. Además, los residuos que quedan en las plantas después de un tratamiento disminuyen mucho.

Con esta estrategia, el proyecto de investigación MAC-INTERREG APOGEO desarrolla drones con cámaras multi e hiperespectrales, programas de ordenador que interpretan los datos para dar al agricultor un informe rápido de la situación de sus cultivos y nuevos fitosanitarios más selectivos y respetuosos con el medio ambiente. Aunque el proyecto se centra en viñedos, los resultados pueden extrapolarse a muchos tipos de cosechas, desde frutales a hortalizas. La iniciativa, que cuenta con la participación de varias universidades de Canarias y Madeira, el CSIC, la Dirección General de Agricultura del Gobierno de Canarias, cabildos insulares y asociaciones de viticultores, supone también la realización de cursos de formación para jóvenes agricultores. Con ello, se busca contribuir a que la gente se anime a volver al campo, pueda obtener buenas ganancias y de pie a una economía local y sostenible.

*Alicia Boto es investigadora en el Instituto de Productos Naturales y Agrobiología (IPNA) del CSIC.

APOGEO es un proyecto de investigación coordinado INTERREG-MAC en el que participa el Instituto de Productos Naturales y Agrobiología del CSIC, La Laguna, Tenerife, Canarias, y que lidera el Instituto Universitario de Microlectrónica Aplicada de la Universidad de Las Palmas de Gran Canaria. También participa la Dirección General de Agricultura del Gobierno de Canarias, la Universidad de Madeira, Cabildos, y empresas.

Sombreros de plumas: el lado oscuro de la moda

Por Carmen Martínez (CSIC)*

La industria de la moda es una de las más dañinas para la conservación del entorno natural. Promueve el consumo insostenible de prendas y sus procesos productivos son, en general, muy contaminantes. Existen zonas del planeta donde cada año los ríos se tiñen del color que marca la tendencia en occidente. Esta realidad ya era palpable en el siglo XIX, cuando el consumo de ingentes cantidades de plumas para decorar vestidos y sombreros condujo a la extinción de numerosas especies. Durante el período conocido como Plume Boom, el auge de la pluma, se pagaban auténticas fortunas por los sombreros con plumas de aves, lo que llevó al exterminio de millones de ellas.

Mujer con sombrero de plumas. / National Audubon Society

Londres era el centro internacional para el comercio de plumas. En las salas de venta londinenses se realizaban periódicamente subastas, en las que los comerciantes ofertaban pieles y plumas de las aves más bellas del mundo. No resulta extraño que el zoólogo americano, William Temple Hornaday, pionero en el movimiento de conservación de la vida silvestre en los Estados Unidos y primer director de la Sociedad Zoológica de Nueva York, fundada en 1895, denominase Londres como “la meca de los asesinos de aves del mundo”.

En el último tercio del siglo XIX, los sombreros femeninos eran cada vez más elaborados y vistosos. Para decorarlos, se utilizaban partes de las aves como las alas, las cabezas, los penachos o el animal completo. Los pájaros disecados se fijaban en armazones para dar la impresión de movimiento; en ocasiones, se colocaban sobre nidos, o bien con las alas extendidas para aumentar su naturalidad.

Decenas de especies afectadas

Eran muchas las especies perjudicadas por esta próspera industria: avestruces, faisanes, pavos reales, patos, garzas, palomas, aves del paraíso, etc. Se ha calculado que entre 1905 y 1920 se habrían exportado cada año entre 30.000 y 80.000 pieles de aves del paraíso con destino a las subastas de plumas de Londres, París y Nueva York. Solo en 1911, 41.000 pieles de colibrí se vendieron en Londres y es posible que otras tantas en París. Y en el invierno de 1886-1887, 40.000 charranes fueron abatidos en Cape Cod (Massachusetts) para satisfacer la demanda de un único comerciante de sombreros.

Fábrica de plumas, ca 1907-1933. / NYPL Digital Collection

En la industria de la sombrerería las avestruces también eran muy solicitadas y su comercio se convirtió en un negocio muy rentable. A mediados del siglo XIX se estaban extinguiendo debido a una caza desmesurada, de modo que se fomentó su cría en cautividad. En 1863 se domesticó la primera avestruz en el Cabo (Sudáfrica) y un año después se patentó la primera incubadora. Después del oro, los diamantes y la lana, era el producto más valioso que se exportaba desde Sudáfrica.

Otras aves muy demandadas eran algunas especies de garzas que, en la estación reproductiva, exhibían unas largas plumas blancas muy bellas. Lo más cruel es que, no sólo se las mataba, sino que su caza se realizaba cuando estaban nidificando, con lo que se condenaba a las crías a morir de hambre. Un detalle que da idea de la magnitud de la masacre proviene de una casa de subastas londinense que en 1902 vendió 48.240 onzas (1.368 kilos) de plumas de garza, lo que suponía el exterminio de casi 200.000 ejemplares, sin contar los pollos y los huevos sacrificados. Otro registro contabiliza más de un millón de pieles de garcillas bueyeras vendidas en Londres entre 1897 y 1911.

Sociedades conservacionistas: el freno a la masacre animal

La situación llegó a ser tan dramática que finalmente las mujeres conservacionistas de ambos lados del Atlántico se unieron para luchar contra esta lacra. Así surgieron los primeros movimientos de conservación, que darían lugar a dos de las sociedades conservacionistas más importantes del mundo: la británica Royal Society for the Protection of Birds y la americana National Audubon Society.

Manguito y esclavina confeccionados con gaviotas argentinas. / Metropolitan Museum of Art, Nueva York

En 1889 se creó en el Reino Unido la Society for the Protection of Birds como grupo de presión contra el comercio mundial de plumas para la confección de sombreros, gracias al coraje y la determinación de dos mujeres victorianas: Emily Williamson y Eliza Phillips. En 1904 el rey Eduardo VII otorgó a la sociedad el título “Real”, convirtiéndose así en la Royal Society for the Protection of Birds (RSPB). La lucha sin tregua de la RSPB consiguió que en 1921 se aprobase una ley que prohibía la importación de plumaje en Gran Bretaña.

Mientras tanto, en Estados Unidos, también fueron dos mujeres las que impulsaron el movimiento para proteger a las aves de este ominoso comercio. En 1896, Harriet Hemenway y su prima Minna B. Hall decidieron organizar una serie de reuniones de té para convencer a las damas de la sociedad de Boston de que no llevasen sombreros con plumas de aves. Estas reuniones culminaron con la fundación de la Sociedad Audubon de Massachusetts en 1896, que, en apenas dos años, consiguieron que el estado aprobase un proyecto de ley que prohibía el comercio de plumas de aves silvestres. En 1905, conforme fueron surgiendo secciones locales en todo el país, pasó a llamarse National Audubon Society, cuyo nombre hace honor al dibujante y naturalista John James Audubon, pionero de la ornitología norteamericana.

Catálogo de plumas y alas./ T. Eaton Co, Toronto

En 1918 el congreso de Estados Unidos aprobó la Ley del Tratado de Aves Migratorias que ilegalizó la persecución, caza, captura o venta de cualquier ave migratoria o cualquiera de sus partes, incluidos los nidos, los huevos y las plumas. Esta ley puso fin al comercio de sombreros de plumas, y salvó con ello a cientos de millones de aves.

Paso a paso, las conservacionistas fueron ganando terreno y, a partir de la Primera Guerra Mundial, esta moda se convirtió en algo del pasado. Con la guerra, las plumas, al igual que los alimentos y la ropa, eran un bien escaso. También había cambiado la vida cotidiana, y las ocasiones de lucir sombreros de gran tamaño había disminuido. Por ejemplo, el automóvil se había vuelto popular, pero los asientos difícilmente eran compatibles con aquellos sombreros tan grandes y extravagantes. Además, en Gran Bretaña se consideraba antipatriótico adornarse con plumas, ya que éstas ocupaban un valioso espacio de carga en un tiempo tan difícil… y solo por vanidad.

Había llegado el final de lo que se describió como “Era del exterminio” y el triunfo de los primeros grandes movimientos de conservación gracias al impulso de cuatro mujeres.

 

* Carmen Martínez es investigadora del Museo Nacional de Ciencias Naturales (MNCN) del CSIC. Este texto es un extracto del artículo ‘Sombreros de plumas, el lado oscuro de la moda’ publicado en la revista Naturalmente.

 

 

Diatomeas: las algas que ayudan a respirar al planeta y limitan el cambio climático

Por Mar Gulis (CSIC)

Viven cautivas en cápsulas microscópicas de cristal, miden una décima parte de un milímetro y surgieron hace 240 millones de años en los océanos del Triásico, al mismo tiempo en que los primeros dinosaurios comenzaban a caminar sobre los continentes. Las diatomeas, algas unicelulares capaces de producir más oxígeno que todos los bosques amazónicos, centroafricanos e indonesios juntos, son ‘el otro pulmón’ de la Tierra.

Al igual que en los continentes, en los océanos también hay bosques y desiertos, y las diatomeas forman una parte esencial de los primeros, donde sirven de alimento para larvas, moluscos, crustáceos y peces. “Si pudiésemos acumular sobre los continentes toda la biomasa que producen las diatomeas, en tan sólo dos décadas tendríamos suficiente como para reemplazar todos los bosques tropicales del mundo”, explica Pedro Cermeño, investigador del CSIC en el Instituto de Ciencias del Mar y autor de Las diatomeas y los bosques invisibles del océano (CSIC-Catarata).

Ejemplares de algas diatomeas  ‘Coscinodiscus wailesii’ (redondas)  y de ‘Thalassiosira rotula’ (con forma de cadena). / Isabel G. Teixeira.

Otra de sus cualidades es que incrementan la eficiencia de la bomba biológica, un proceso mediante el cual los ecosistemas marinos absorben dióxido de carbono (CO2) de la atmósfera y lo transfieren hacia las capas más profundas del océano, lo cual contribuye a paliar el efecto invernadero y a enfriar el clima del planeta. Según Cermeño, “la mayor parte de los microorganismos que componen el fitoplancton no superan los 0,01 milímetros de diámetro, mientras que las diatomeas pueden llegar a sobrepasar los 0,5 milímetros”. Si volvemos al símil del bosque, estas algas unicelulares son el análogo oceánico de cedros y secuoyas. Sus abultadas dimensiones y sus pesadas cápsulas de sílice hacen que se hundan rápidamente al morir. “De esta forma, aumentan sobremanera los efectos de la bomba biológica”, añade el investigador del CSIC.

Las diatomeas también han sido un componente crucial en la formación de petróleo marino. Del mismo modo que la madera de los árboles acaba transformándose en carbón mineral fósil, una fracción de la biomasa de fitoplancton, principalmente de diatomeas, se acumula en los sedimentos marinos que, con el tiempo, se convierten en petróleo.

Pero, ¿cómo alcanzaron la hegemonía de la producción primaria oceánica estas “joyas del mar”, un sobrenombre que reciben por el color dorado de sus células? Desde su origen, hace 240 millones de años, hasta que lograron convertirse en los productores primarios más importantes de los océanos, las diatomeas pasaron 200 millones de años en la retaguardia. Una de las claves de su éxito reside en haber desarrollado vacuolas de almacenamiento, “algo así como una despensa para momentos en los que los nutrientes escasean”, ilustra Cermeño. La posibilidad de acumular nutrientes en vacuolas les permitió proliferar en ambientes turbulentos como los surgidos en los océanos durante la segunda mitad del Cenozoico, hace 40 millones de años, hasta la actualidad.

Ejemplares de diatomeas ‘Guinardia flaccida‘ y ‘Guinarida delicatula’. / Isabel G. Teixeira Pedro Cermeño

Aplicaciones beneficiosas para el medioambiente

Además de regular el clima y servir de sustento a las redes tróficas marinas, en el futuro las diatomeas podrían contribuir a la sostenibilidad de la agricultura y a conseguir un consumo energético sin huella de carbono.

Las principales ventajas de su uso agrícola son que las diatomeas producen de forma natural sus propios pesticidas, que frenan la proliferación de plagas y aumentan la productividad, y pueden ser útiles en la depuración de aguas residuales, un medio muy similar al utilizado para el crecimiento de microalgas en el laboratorio. En concreto, las diatomeas son expertas en procesar nitrato, amonio, fosfato, hierro, silicio y metales pesados como el cadmio, el cromo o el cobre, a menudo abundantes en las aguas residuales. Además, sus vacuolas les permitirían resistir las posibles fluctuaciones en la composición nutricional de este medio. También liberan sustancias pegajosas, lo que favorece la formación de agregados que, junto a la alta densidad de las capsulas de sílice, facilitan la decantación y la recolección de su biomasa. Con todos estos factores se abre un campo de estudio en expansión que “podría cambiar el paisaje en torno a nuestras ciudades si el cultivo de microalgas consigue ganar terreno y convertirse en un medio de aprovechar la fotosíntesis para depurar las aguas residuales”, afirma el autor.

La comunidad científica también ha visto en el uso de las microalgas una alternativa a los combustibles fósiles, ya que pueden cultivarse en terrenos marginales o en plataformas flotantes usando aguas residuales, como se ha mencionado, o aguas saladas. “Con un suministro adecuado de luz y nutrientes, las microalgas pueden producir más de 100 toneladas de biomasa por hectárea y año, hasta 30 veces más que un cultivo agrícola convencional. La biomasa generada se convertiría en biocombustible mediante la aplicación de procesos termoquímicos que imitan las condiciones geológicas bajo las que se forma el petróleo crudo en el interior de la Tierra”, apunta el investigador.

Reducir los costes de producción de la biomasa e incrementar la eficiencia de conversión de biomasa en biocombustible son algunas de las claves para poder producir biocombustible en cantidades relevantes y a precios competitivos con los combustibles fósiles. Y, de nuevo, las diatomeas se colocan como favoritas. “Los excelentes rendimientos fotosintéticos y las altas eficiencias de conversión de biomasa a biocombustible las convierten en una de las materias primas bioenergéticas con mayor potencial: está en nuestras manos producir en minutos el petróleo que la Tierra tardó millones de años en generar”, concluye Cermeño.

 

Lecturas fresquitas para un verano de ciencia

Por Mar Gulis (CSIC)

Llegan las vacaciones de verano y en ‘Ciencia para llevar’ queremos invitarte a que hagas un hueco en tu maleta para la divulgación. La colección ¿Qué sabemos de? (CSIC-Catarata) te ofrece más de cien libros con los que podrás disfrutar de la ciencia durante estos días de descanso. Aquí te presentamos algunos de los más recientes.

Lecturas veraniegas

 

Mentiras de la física cuántica

El primero va de los falsos mitos que rodean a la física que estudia las partículas más diminutas, como los átomos o los electrones. En Verdades y mentiras de la física cuántica, Carlos Sabín, investigador del CSIC en el Instituto de Física Fundamental, desmonta creencias erróneas acerca de esta rama de la física y aclara que los gatos no están vivos y muertos a la vez, que no modificamos la realidad solo con observarla o que la información no puede viajar más rápido que la luz. En palabras del autor, el libro trae “malas noticias” para quienes creen que la física cuántica es “una manera de escapar a las leyes de la física y entrar en un mundo nuevo donde todo está permitido, todo es impredecible y la realidad puede modificarse a voluntad”. La buena noticia es que Sabín ofrece la explicación correcta a los fenómenos cuánticos más desconcertantes, y lo hace de forma clara y sencilla, sin renunciar al humor o la ironía.

Asimetrías en la materia, la vida y el universo

Aunque a priori parezca improbable, nuestras manos, un tornillo y la concha de un caracol tienen algo importante en común: todos ellos son objetos quirales. Esto quiere decir que su imagen especular no puede superponerse con la original, por mucho que la giremos. Por eso, en el espejo la mano derecha se convierte en la izquierda, un tornillo cambia la dirección de su rosca y la concha ‘da vueltas’ en sentido contrario. En el libro La quiralidad. El mundo al otro lado del espejo, el químico del CSIC en el Instituto de Catálisis y Petroleoquímica Luis Gómez-Hortigüela nos invita a emular a Alicia, el personaje de Lewis Carroll, y a embarcarnos en un viaje alucinante para descubrir las sorprendentes y variadas expresiones de esta propiedad, que está estrechamente relacionada con la asimetría. La quiralidad, por ejemplo, se manifiesta en el cuerpo humano, con un corazón que se encuentra desviado a la izquierda y un cerebro que compartimenta las funciones de forma asimétrica en sus dos hemisferios. Sin embargo, la relevancia fundamental de este fenómeno se expresa en objetos mucho más pequeños, como el ADN, con sus hélices retorciéndose invariablemente hacia la derecha, o las partículas elementales, entre las que ha prevalecido la materia sobre la antimateria, una asimetría que ha dado forma a nuestro universo.

Algas diatomeas, el otro pulmón de la Tierra

Las diatomeas, algas unicelulares capaces de producir más oxígeno que todos los bosques amazónicos, centroafricanos e indonesios juntos, son ‘el otro pulmón’ de la Tierra. El investigador del Instituto de Ciencias del Mar (CSIC) Pedro Cermeño explica, en Las diatomeas y los bosques invisibles del océano, la importancia de estos microorganismos para los ecosistemas marinos y el conjunto del planeta, y presenta algunas de sus posibles aplicaciones tecnológicas.

Con este libro podrás descubrir que en los océanos también hay bosques y desiertos, y que las diatomeas forman una parte esencial de los primeros, donde sirven de alimento para larvas, moluscos, crustáceos y peces. “Si pudiésemos acumular toda la biomasa que producen las diatomeas, en tan solo dos décadas tendríamos suficiente como para reemplazar todos los bosques tropicales del mundo”, ilustra el autor. Otra de sus cualidades es que incrementan la eficiencia de la bomba biológica, un proceso mediante el cual los ecosistemas marinos absorben dióxido de carbono (CO2) de la atmósfera y lo transfieren hacia las capas más profundas del océano, lo cual contribuye a paliar el efecto invernadero y a enfriar el clima del planeta. Si quieres saber más sobre las denominadas ‘joyas del mar’, no dejes de abrir las páginas de este libro.

Virus ‘buenos’ que combaten bacterias infecciosas

¿Existen los virus ‘buenos’? La respuesta es sí: algunos de ellos pueden usarse para luchar contra bacterias resistentes a los antibióticos, uno de los grandes retos de la biología y la medicina en la actualidad. En Los bacteriófagos. Los virus que combaten infecciones, cuatro investigadoras del CSIC en el Instituto de Productos Lácteos de Asturias (Lucía Fernández, Diana Gutiérrez, Ana Rodríguez y Pilar García) nos presentan a los virus que atacan a las bacterias. Como cualquier otro agente vírico, los bacteriófagos son parásitos que necesitan infectar una célula, en este caso una bacteria, para multiplicarse en su interior; pero, a diferencia de otros virus, resultan totalmente inocuos para los humanos, los animales, las plantas y el medioambiente. El libro presenta las bacterias patógenas que se esconden en el nanomundo y traza la historia de los antibióticos, que hasta ahora en Occidente han relegado a los bacteriófagos. También explica cómo la progresiva pérdida de eficacia de la penicilina y otros compuestos con el mismo efecto están abriendo la puerta al empleo de los bacteriófagos en múltiples campos: desde la terapia fágica para la salud humana y animal, hasta biocidas para la agricultura o productos desinfectantes.

Escritos por personal investigador del CSIC, los libros de la colección ¿Qué sabemos de? son ediciones de bolsillo, por lo que resultarán un práctico compañero de viaje. Pero, si lo prefieres, también podrás leerlos en formato electrónico. ¡Buenas vacaciones y buena lectura!

‘Xylella fastidiosa’, la bacteria que amenaza la agricultura global

Por Alberto Fereres* y Mar Gulis (CSIC)

En 2013 fue detectada por primera vez en Europa la bacteria Xylella fastidiosa, responsable de una gran variedad de enfermedades que afectan a más de 500 especies de plantas de todo el mundo. El patógeno, para el que no existe cura, obligó entonces a arrancar más de un millón de olivos en la región italiana de Apulia. Sin embargo, esto no evitó su expansión por el litoral mediterráneo ni su llegada a nuestro país, donde ya ha provocado importantes daños en cultivos de las islas Baleares (almendros, viñas, olivos y acebuches) y Alicante (almendros).

Olivo enfermo por ‘Xylella fastidiosa’. / Juan Antonio Navas.

A pesar de que Xylella fastidiosa lleva más de 100 años enfermando, y matando, a las viñas de California, no existe aún un tratamiento efectivo contra ella. Por eso, una de las principales formas de combatirla es eliminar las plantas susceptibles de contagio. En nuestro continente, la Comisión Europea establece actualmente que deben arrancarse todas aquellas plantas susceptibles que se encuentren en un radio de 100 metros alrededor de un ejemplar infectado.

La erradicación de árboles trae consigo cuantiosas pérdidas económicas para el sector agrícola y tiene un impacto muy negativo en el medio ambiente, ya que aumenta el riesgo de erosión y degradación de los suelos. Por tanto, a los daños provocados por Xylella fastidiosa hay que sumar los causados por esta medida.

Cigarrillas, insectos frecuentes pero desconocidos

La bacteria no se propaga por sí sola, sino a través de un grupo de insectos conocidos popularmente como cigarrillas. Aunque son muy comunes en los cultivos y zonas forestales, estos insectos han sido prácticamente unos desconocidos en Europa hasta hace pocos años. Como no habían ocasionado problemas graves, la información disponible sobre su biología, ecología y comportamiento era muy escasa.

Ejemplar de ‘Neophilaenus campestris’, uno de los vectores de ‘X. fastidiosa’. / A. Fereres.

Sin embargo, gracias a la investigación vamos conociendo mejor su papel en la propagación de esta plaga. A día de hoy, sabemos que en nuestro continente solo hay tres especies de cigarrillas con capacidad demostrada de transmitir la bacteria: Philaenus spumarius, Philaenus italosignus y Neophilaenus campestris. Además, recientemente, en el Instituto de Ciencias Agrarias del CSIC hemos observado que esta última puede recorrer una distancia mucho mayor de lo que se pensaba. Los ejemplares de Neophilaenus campestris estudiados fueron capaces de avanzar en 35 días más de 2,4 km en un trayecto realizado desde olivares a pinares limítrofes, una zona que utilizan como refugio durante los meses más cálidos del año.

Esto significa que el área de influencia del vector de propagación de Xylella fastidiosa excede con creces una superficie de 100 metros de radio. Por tanto, resulta arbitrario intentar erradicar la enfermedad eliminando los árboles que se encuentran a esa distancia de un ejemplar infectado. Además, sabemos que no es viable arrancar árboles en áreas tan extensas como las abarcadas por la cigarrilla Neophilaenus campestris. Así pues, para luchar de un modo más eficiente contra la bacteria tendremos que idear otros métodos para controlar los insectos que la propagan.

Es evidente que aún queda mucho por hacer. Sin embargo, los resultados obtenidos por el CSIC pueden servir para cambiar las medidas que tratan de combatir la plaga. Todo apunta a que próximamente la Comisión Europea recortará de 100 a 50 metros el área de erradicación en torno a un árbol infectado y permitirá replantar especies arbóreas en zonas afectadas que lleven dos años libres del patógeno. Con ello disminuirá considerablemente el impacto económico de la medida y se reducirá la superficie afectada en un 75%, lo que aliviará notablemente los riesgos de erosión y degradación del suelo.

 

* Alberto Fereres dirige el grupo ‘Insectos vectores de patógenos de plantas’ en el Instituto de Ciencias Agrarias del CSIC. El estudio sobre el comportamiento de la cigarrilla Neophilaenus campestris ha sido financiado por el Ministerio de Ciencia e Innovación (AGL2017-89604-R) y es parte de la tesis doctoral de Clara Lago.