BLOGS
Ciencia para llevar Ciencia para llevar

CURIOSIDADES CIENTÍFICAS PARA COMPARTIR

Archivo de la categoría ‘Biología’

Estas vacaciones llévate la ciencia en el móvil con las apps del CSIC

Por Mar Gulis (CSIC)

Reconocer árboles que encuentres en la naturaleza, poner a prueba tus conocimientos científicos en un juego de preguntas y respuestas o participar en la lucha contra mosquitos que transmiten enfermedades. Las apps del CSIC te proponen diferentes formas de acercarte a la ciencia, aprender e incluso colaborar con proyectos de investigación a través de tu móvil o tablet. Estos días de descanso, tiempo libre y paseos por la naturaleza ofrecen una excelente oportunidad para descubrirlas. Aquí te presentamos cinco de ellas:

ArbolappArbolapp Canarias yArbolapp Canarias. El verano es una época muy propicia para visitar espacios naturales. Si en tus excursiones no logras identificar los árboles que encuentras a tu paso, estas dos aplicaciones, que en conjunto suman ya cerca de 750.000 usuarios y usuarias, te serán de gran ayuda. Con Arbolapp podrás reconocer los árboles silvestres –es decir, los que crecen de forma natural– de la península ibérica y las Islas Baleares; y con Arbolapp Canarias, los del archipiélago canario. Para ello, tienes a tu disposición dos sistemas de búsqueda (guiada y abierta) y fichas de todas las especies autóctonas y las no autóctonas que se asilvestran con más frecuencia en cada territorio. Arbolapp y Arbolapp Canarias cuentan además con numerosas fotografías e ilustraciones que facilitan su uso y, una vez descargadas, no necesitan conexión a internet, por lo que podrás utilizarlas en lugares a los que no llegan los datos a través de la red móvil.

Hi Score SciemceHi Score Science. ¿Cómo hacer más entretenidos los largos viajes o las horas de la siesta, cuando el calor no deja más opción que refugiarse a la sombra? Con esta aplicación puedes alternar las lecturas veraniegas, los crucigramas o los juegos de cartas poniendo a prueba tus conocimientos científicos. “¿Cómo se llama el cambio de estado sólido a líquido? ¿Cuál es el metal más ligero de la tabla periódica? ¿Cuál es el pH normal de la sangre?” Hi Score Science es un juego de preguntas y respuestas sobre química y materiales elaboradas por personal investigador del CSIC al que puedes jugar por tu cuenta o en compañía. Si además estudias ESO o Bachillerato, podrás participar en concursos proponiendo nuevas preguntas para que se incluyan en la aplicación.

polinizappPolinizapp. En los tiempos muertos veraniegos también puedes ponerte en la piel de insectos polinizadores como la abeja, el abejorro o la mosca, y aprender de paso sobre la polinización, un proceso vital para la biodiversidad vegetal de nuestro planeta y para nuestra propia supervivencia. En este juego de simulación tendrás que obtener polen y néctar de las flores para conseguir alimento y generar semillas en distintos escenarios (montaña, ciudad, cultivos, etc.). Además, deberás hacer frente a amenazas varias, como especies invasoras, predadores y pesticidas, que podrán debilitarte o incluso causar tu muerte.

Mosquito alert

Mosquito Alert. Este proyecto de ciencia ciudadana conecta a ciudadanía, comunidad científica y personal gestor en salud pública y medio ambiente para luchar contra la expansión del mosquito tigre y el mosquito de la fiebre amarilla, dos especies invasoras que son vectores de enfermedades como zika, dengue o chikungunya. Con la aplicación de Mosquito Alert podrás avisar y enviar fotos si en alguno de tus paseos veraniegos encuentras alguna de estas especies o sus lugares de cría, y también validar fotos de otros participantes o ponerte en contacto con los responsables del proyecto. Gracias a esta iniciativa, ya se han registrado más de 10.000 observaciones de mosquito tigre en España y se ha detectado por primera vez la presencia en España de un nuevo mosquito invasor de origen asiático.

NatusferaNatusfera. La ciencia ciudadana también inspira este proyecto, que invita a cualquier persona con un móvil a tomar fotografías, recoger datos y geolocalizar los seres vivos que encuentre a su paso. Los datos son compartidos en la web de Natusfera, validados por los responsables y colaboradores de la iniciativa y posteriormente serán incluidos en la base de datos GBIF, la Infraestructura Mundial de Información en Biodiversidad, para que estén a disposición de toda la comunidad científica. En este proceso, si has subido una foto y no tienes claro de qué especie se trata, recibirás los comentarios y ayudas de otros participantes. Si te gusta observar y hacer fotos de otros seres vivos, no lo dudes: a partir de este verano puedes compartir tus imágenes con todo el mundo a través de Natusfera.

Todas estas aplicaciones, que pueden descargarse de forma completamente gratuita en Google Play y Apple Store, aúnan el rigor científico con un lenguaje sencillo y directo y son el fruto de la colaboración de centros del CSIC con otras entidades. En concreto, las cuatro primeras han recibido fondos de la Fundación Española para la Ciencia y la Tecnología, adscrita el Ministerio de Ciencia, Innovación y Universidades.

Illustraciencia VI anuncia sus premios: descubre las mejores ilustraciones científicas del año

Por Mar Gulis (CSIC)

El certamen internacional Illustraciencia, organizado por la Asociación Catalana de Comunicación Científica y el Museo Nacional de Ciencias Naturales (MNCN) del CSIC, ha dado a conocer las ilustraciones premiadas en su sexta edición. ¡No te las pierdas!

Ciervo Volante

Ciervo volante, de Rita Cortês de Matos (Portugal)
Ganadora de la categoría de ilustración científica

El ciervo volante (Lucanus cervus), el coleóptero más grande de Europa, es bien conocido por las largas mandíbulas de los machos. Las larvas se alimentan de madera podrida y tardan entre 4 y 6 años en llegar al estadio de su metamorfosis conocido como pupa. Los adultos emergen de la tierra en verano para aparearse y viven tan solo unas pocas semanas. En la península ibérica el ciervo volante se alimenta de árboles de hoja caduca como robles (Quercus) y castaños (Castanea sativa). Esta especie se encuentra protegida en Europa porque la actividad humana está provocando la desaparición de su hábitat. En particular, Lucanus cervus se ve afectado por las malas prácticas de gestión forestal, en las que se tiende a retirar la madera muerta de los bosques.

Siberian taiga

Siberian taiga, de Julia y Eugene Porotov (Rusia)
Ganadora de la categoría de ilustración naturalista

Este trabajo ilustra el entorno y las principales especies animales y vegetales que habitan en la taiga siberiana. Sus autores, que han crecido en Siberia, conocen perfectamente el ambiente y han avistado repetidas veces y dibujado directamente del natural a todos sus habitantes. Además, han tomado apuntes de su comportamiento y sus diferentes estrategias de supervivencia. En esta ilustración, han utilizado programas de dibujo digital.

Sudan

Sudán, el último rinoceronte macho blanco, de Larissa Ribeiro Lourenço Fernandes (Brasil)
Premio del público

Sudán fue el último rinoceronte macho blanco del mundo. Tras su fallecimiento, solo quedan dos miembros vivos de su especie: la hija y la nieta de Sudán. Para la autora de esta ilustración, que necesitó cuatro días para su elaboración, Sudán es “un símbolo de las especies en peligro de extinción y una señal de que si la forma en la que consumimos no cambia, tarde o temprano destruiremos el planeta y el proceso ecológico del cual dependemos los humanos”.

Hetermorphic

Heteromorphic Ammonoids of the Matanuska Formation, Turonian, Alaska, de Kate LoMedico Marriott (Estados Unidos)
Mención especial

La imagen es una reconstrucción de dos cefalópodos extintos que vivieron en el Cretácico Superior –época que se extendió desde hace 100 a 66 millones de años atrás–, y cuyas conchas son endémicas de los estratos de ese periodo hallados en algunas zonas de Alaska y Japón: Eubostrychoceras japonicum (izquierda) y Muramotoceras matsumoto.

RamphastosRamphastos, diversidad de picos del Neotrópico, de Santiago Forero Avellaneda (Colombia)
Mención especial

El género Ramphastos es uno de los cinco que componen la familia de los tucanes (Ramphastidae). Este género está compuesto por ocho especies de grandes y coloridos picos que se encuentran distribuidas a lo largo de las selvas de Centroamérica y Sudamérica.

Papagaios

Papagaios, de Wilma Ander (Brasil)
Mención especial

El papagayo del Amazonas o papagayo verdadero es un ave típica de Brasil muy apreciada como animal de compañía por su capacidad de hablar. Eso hace que muchos ejemplares sean capturados y comercializados clandestinamente. Habita en bosques, palmeras e incluso en áreas de cultivo de árboles; aunque es cada vez más común encontrarlo en áreas urbanas. En la naturaleza, evita a los depredadores quedándose inmóvil y callado.

megasoma

Megasoma elephas, de Carlos Ortega Contreras (México)
Mención especial

Megasoma elephas es un escarabajo que habita los bosques tropicales de México. Su ciclo de vida es largo: de 2 a 3 años en la etapa larval, que transcurre en árboles en descomposición y estiércol; y otros tantos en la vida adulta.

Illustraciencia, un proyecto creado por Connecta Ciència que cuenta con el apoyo de la Fundación Española para la Ciencia y la Tecnología, premia y divulga la ilustración científica y naturalista desde 2009. En la última edición se presentaron más de 500 obras.

Si te han gustado estas imágenes, en la web de Illustraciencia puedes encontrar las 40 que compondrán la exposición itinerante del certamen. La muestra se inaugurará el 4 de octubre en el MNCN y estará acompañada por actividades paralelas, como talleres infantiles y encuentros profesionales.

¿Qué nos dicen los anillos de los árboles sobre el calentamiento global?

Por Elena Granda (Universitat de Lleida) *

Una de las características más increíbles de los árboles es su longevidad; son seres vivos capaces de vivir muchísimos años. Sin ir muy lejos, en el Pirineo se pueden encontrar pinos de alta montaña que tienen más de 800 años y que, por tanto, germinaron en el siglo XIII. Incluso se han encontrado en Estados Unidos árboles con unos 5.000 años. Dado que los árboles son capaces de almacenar información (ecológica, histórica y climática) en cada año de crecimiento, encontrar un árbol viejo es como descubrir un archivo muy antiguo repleto de información. La dendroecología (rama de la biología especializada en el estudio de la ecología de los árboles a través del análisis de los anillos de crecimiento) se encarga de recopilar esa información para responder preguntas de ecología general y abordar problemas relacionados con los cambios ambientales a nivel local y global.

Para poder acceder a dicha información se obtiene un testigo de madera (o core en inglés), ”pinchando” el tronco con una barrena desde la corteza hasta el centro del árbol (médula). Así, se extrae un cilindro de madera en el que se ven todos los anillos de crecimiento. El estudio de estos cilindros ayuda a desvelar cómo ha sido el funcionamiento de distintos individuos y especies durante toda su vida.

De estos análisis se obtiene una valiosísima información que nos ayuda a comprender a qué peligros están expuestos actualmente nuestros bosques, cómo han actuado en el pasado ante factores de estrés y qué peligro corren en el futuro si no conseguimos reducir sus principales amenazas, como las emisiones de gases de efecto invernadero a la atmósfera, los incendios provocados, las especies invasoras o la desaparición de sus hábitats.

Gracias a la dendroecología podemos estudiar las causas de la mortalidad de los árboles, como el pino albar de las siguientes fotografías, a través de la comparación de árboles muertos (primera imagen) con aquellos vivos, mediante la extracción y posterior análisis de los anillos de crecimiento que se pueden observar en los testigos de madera (segunda imagen).

 

Los beneficios que aportan las plantas terrestres son incontables: dan cobijo a los animales, absorben contaminantes, favorecen las características del suelo, evitan la erosión, etc. Pero, sobre todo, son las responsables de generar gran parte del oxígeno (O2) que respiramos y de absorber de la atmósfera el dióxido de carbono (CO2), que es uno de los principales causantes del calentamiento global. Y, en el caso particular de las plantas leñosas, árboles y arbustos, su importancia radica en que son perennes; es decir, que no mueren tras la estación de crecimiento y reproducción. Esto implica que la cantidad de CO2 que pueden captar es muy grande y que este queda almacenado en los bosques, retenido en la madera, raíces, ramas y hojas durante mucho tiempo.

Durante las últimas décadas, y debido al aumento de gases de efecto invernadero en la atmósfera como el CO2 , se han producido alteraciones de la temperatura y las precipitaciones a nivel global. En países de clima mediterráneo, por ejemplo, se han registrado aumentos de temperatura en torno a 1,3 grados centígrados desde la revolución industrial, cuando se aceleró la emisión de estos gases a la atmósfera. Además han aumentado recientemente las condiciones extremas de sequía y hay mayor riesgo de incendios y lluvias torrenciales.

Cabría pensar que un aumento de CO2 atmosférico podría ser beneficioso para los árboles, ya que son organismos que se alimentan de dióxido de carbono. Sin embargo, esto normalmente no ocurre porque el aumento de CO2 está asociado a la sequía y al calentamiento global, y estos son factores que pueden producir estrés en las plantas. Dicho estrés da lugar al cierre de los estomas (poros que hay en las hojas por donde entran y salen moléculas de CO2 y agua) y, como consecuencia, no pueden aprovechar esa mayor cantidad de alimento. Si lo comparamos con los humanos, sería como si nos encontráramos ante una mesa llena de comida pero tuviéramos la boca cerrada y no pudiésemos comer nada. Dado que el cambio climático y la alteración de la atmósfera pueden perjudicar al funcionamiento de las especies leñosas, se esperan cambios en la composición de los bosques como los conocemos en la actualidad.

Por eso es importante conocer qué árboles están estresados, las causas y consecuencias, así como la forma en la que actúan ante ese estrés. Con el fin de predecir qué va a pasar en el futuro con nuestros bosques para poder minimizar las consecuencias del cambio climático, es de gran utilidad el estudio del crecimiento de los árboles a lo largo del tiempo: cuánto carbono han consumido y utilizado cada año, cómo han influido en ellos los cambios de temperaturas, las plagas, las sequías o los incendios, de manera que podamos desarrollar modelos de evolución de los futuros bosques.

Ilustración que representa las distintas fases en el estudio de los anillos de crecimiento: extracción del testigo de madera con una barrena (a); datación de los anillos para saber a qué año corresponde cada uno (b) y análisis de la información contenida en los mismos (c)

Gracias a la dendroecología podemos estudiar las causas de la mortalidad de los árboles, como el pino albar en la fotografía, a través de la comparación de árboles muertos (a) con aquellos vivos (b), mediante la extracción y posterior análisis de los anillos de crecimiento que se pueden observar en los testigos de madera.

 

Elena Granda es investigadora postdoctoral de la Universitat de Lleida y colaboradora del Instituto Pirenaico de Ecología (CSIC).

 

Organismos a la fuga: ¿escapan los seres vivos de la contaminación?

Por Ignacio Moreno-Garrido y Cristiano Venicius de Matos Araujo (CSIC)*

Pez cebra / Flickr-Photo-by-Lynn-Ketchum

Pez cebra / Flickr-Lynn Ketchum

Faraones, reyes, emperadores y nobles de tiempos pretéritos descubrieron, hace ya siglos, cómo funcionaban los ensayos de toxicidad. Ya que siempre hay gente interesada en cambiar unos gobernantes por otros, y dado que la mayor parte de los venenos preferidos por los asesinos actuaban por vía digestiva, era frecuente que los pretendientes al trono o sus aliados añadieran algunos simpáticos polvitos a las comidas de estos dirigentes con la aviesa intención de allanarles el camino a sus correspondientes sepulturas. Como el problema es que todo el mundo conoce el manual, estos gobernantes hacían probar la comida a sus sirvientes, y si estos ponían mala cara, mudaban el color epidérmico a tonos más verdosos y, acto seguido, se morían, aquellos solían pasar directamente a los postres obviando los segundos platos. Por supuesto, tales ensayos adolecían de rigor científico (aunque algunos tuvieran rigor mortis), y bastaba con procurarse un veneno de efecto retardado para solucionar el ligero inconveniente (y si no, que se lo cuenten al pobre emperador Claudio, por ejemplo).

Como quiera que sea, la base de los ensayos de toxicidad estaba servida: para conocer cómo de tóxica es una sustancia casi no nos queda otra que exponer material biológico a distintas concentraciones de tal sustancia, y observar qué pasa. Estos materiales biológicos, hoy día, pueden ser simples enzimas, cultivos celulares, tejidos, organismos, conjuntos de organismos o incluso ecosistemas, más o menos complejos. Sin embargo, los ensayos de toxicidad “clásicos” casi siempre se han centrado en la mortalidad (en el caso de organismos superiores) o en la inhibición del crecimiento (en el caso de poblaciones de microorganismos).

Pero, ¿qué pasa si los organismos, a concentraciones más bajas de las que les producen un efecto nocivo, detectan la contaminación y se fugan a sitios más limpios? Desde el punto de vista de la ecología, la fuga de los organismos de una zona equivale a su extinción, de modo que tal vez hayamos subestimado los efectos tóxicos de los contaminantes durante todos estos años.

Sistema lineal para estudiar el desplazamiento de los organismos / ICMAN-CSIC

Sistema lineal para estudiar el desplazamiento de los organismos / Cristiano Araújo

El primer paso que nos permite evaluar la capacidad de los organismos para huir de los contaminantes consiste en ponerlos en condiciones de elegir entre diferentes ambientes. En el Instituto de Ciencias Marinas de Andalucía (CSIC), miembros del grupo de investigación EEBAS (Ecotoxicología, Ecofisiología y Biodiversidad de Sistemas Acuáticos) estamos desarrollando dispositivos que simulan gradientes o manchas de contaminación en sistemas que permiten el libre desplazamiento de los organismos entre sus compartimentos, tanto en diseños lineales como en pequeños laberintos, como muestran las imágenes.

Con estos sistemas hemos realizado en el grupo de investigación diversos estudios que involucraban diferentes organismos. Ya se han llevado a cabo ensayos sobre microalgas (como la diatomea bentónica Cylindrotheca closterium), crustáceos (como el camarón Atyaephyra desmaresti o el anostráceo Artemia salina), peces (como Danio rerio –pez cebra– o Poecilia reticulata –guppy–) y renacuajos de tres especies de anfibios (Leptodactylus latrans, Lithobates catesbeianus y Pelophylax perezi). Los resultados, algunos ya publicados en revistas de ámbito internacional (Chemosphere, Environment International, Science of the Total Environment, Aquatic Toxicology o Plos One) muestran de manera inequívoca que prácticamente todos los organismos ensayados detectan la mayoría de los contaminantes y buscan las zonas menos contaminadas.

Sistema de laberinto / ICMAN-CSIC

Sistema de laberinto / Cristiano Araújo

Estos estudios de selección de hábitats también indican que, a pesar de ser la contaminación un factor capaz de expulsar organismos de una zona, la presencia de potenciales competidores en los tramos limpios o la presencia de comida en la zona contaminada pueden variar en gran medida la decisión, por parte de los organismos expuestos, de evitar o no los tramos con mayores cargas de contaminantes.

Este novedoso enfoque de estudio, que simula gradientes o manchas de contaminación, nos ha permitido incluir un nuevo concepto en los estudios medioambientales: la fragmentación química de los hábitats, basada en los efectos que un vertido contaminado puede tener impidiendo el paso de los organismos entre dos zonas limpias.

En resumen, nuestros resultados indican que los estudios sobre los efectos de los contaminantes no deberían estar exclusivamente enfocados en evaluar cómo los contaminantes dañan los organismos, ya que se ha puesto de manifiesto que el potencial “repelente” de las sustancias contaminantes, incluso a concentraciones muy por debajo de los valores letales, puede acarrear serias consecuencias para la estructura y dinámica de los ecosistemas, así como para la distribución espacial de los organismos.

* Ignacio Moreno-Garrido y Cristiano Venicius de Matos Araujo son investigadores en el Instituto de Ciencias Marinas de Andalucía (CSIC).

Cerebros de plastilina: ¿es posible conseguir una “supermemoria”?

Por Sandra Jurado Sánchez (CSIC)*

Ilustración de Silvia Jurado Sánchez

       Ilustración de Silvia Jurado Sánchez

En estas fechas de junio ya casi se pueden tocar las tan ansiadas vacaciones… Durante este mes, miles de estudiantes se han tenido que enfrentar a los exámenes de fin de curso, a la temida EBAU (antes Selectividad o PAU) o incluso a los exámenes de recuperación. En estas semanas el alumnado pone a prueba su templanza, pero sobre todo su memoria y conocimiento. Algunos demuestran una excelente capacidad de retención de manera innata (o, más probablemente, producto del trabajo continuado durante el curso), mientras que otros creen “conveniente” mejorar sus posibilidades con la ayuda de suplementos alimenticios. También hay quienes, dudando de su propia capacidad, se dedican al diseño de complejas formas de outsourcing intelectual o “chuletas” de última generación.

En estos momentos de incertidumbre, qué no daríamos por conocer los secretos de la memoria: ¿cómo aprendemos?, ¿cómo se forman nuestras memorias y recuerdos? Y sobre todo, ¿cómo podemos potenciar estas capacidades y generar una “supermemoria”? El cerebro guarda la clave de estos misterios, y la neurociencia, la ciencia encargada de estudiar el funcionamiento cerebral, trabaja sin descanso para entenderlos.

El desarrollo temprano durante la infancia es un momento crítico para el aprendizaje, pero las personas adultas seguimos aprendiendo y formando recuerdos sin que se produzcan cambios significativos en nuestro volumen cerebral. Una posible estrategia del cerebro adulto para codificar nueva información implicaría remodelar las conexiones neuronales ya existentes en función de su frecuencia de uso. Por ejemplo, consideremos el aprendizaje de un instrumento musical principalmente adquirido a través de constante repetición. Aquellos contactos neuronales o sinapsis que comienzan a emplearse con mayor frecuencia podrían verse potenciados, mientras que si abandonamos el entrenamiento, estos contactos o conexiones podrían comenzar a debilitarse, llegando incluso a desaparecer. Los puntos de contacto entre neuronas, o sinapsis, son regiones extremadamente flexibles que tienen la capacidad de responder a distintas necesidades según los estímulos que reciben, potenciándose o debilitándose en función de la frecuencia de uso durante un proceso conocido  como plasticidad sináptica.

El concepto del cerebro como una estructura plástica se introduce por primera vez en el siglo XIX por el psicólogo estadounidense William James, y posteriormente es asimilado por los padres de la neurociencia moderna, con su máximo exponente en la figura de Santiago Ramón y Cajal. Meticulosas observaciones de las redes neuronales en cerebros embrionarios convencieron a Cajal de que el tejido neuronal era lo suficientemente flexible como para permitir la formación y desaparición de conexiones dependiendo del momento del desarrollo, y que posiblemente esta flexibilidad se encontrara en la base de la formación de memorias y recuerdos en el cerebro adulto.

Dibujo de corteza cerebelosa realizado por Santiago Ramón y Cajal en 1904. / Ministerio de Ciencia, Innovación y Universidades

Dibujo de corteza cerebelosa realizado por Santiago Ramón y Cajal en 1904. / Ministerio de Ciencia, Innovación y Universidades

Aunque plausible e interesante, la plasticidad cerebral acabó siendo un concepto puramente teórico. Habría que esperar hasta principios de los años setenta para que los investigadores Timothy Bliss y Terje Lømo, de la Universidad de Oslo, detectaran por primera vez un fenómeno de plasticidad sináptica. Así, lograron demostrar que en respuesta a un aumento de la frecuencia de estimulación, la fuerza de las sinapsis en el hipocampo, una región cerebral importante para la memoria y afectada severamente en la enfermedad de Alzheimer, aumentaba muy rápidamente: ¡en cuestión de segundos podía aumentar hasta un 200%! Lo más importante era que estas conexiones permanecían potenciadas durante horas. Este aumento en la frecuencia de estimulación en el laboratorio mediante técnicas de electrofisiología in vivo pretendía mimetizar el aumento de la actividad de determinadas conexiones durante el proceso de aprendizaje. El resultado fue que estas conexiones eran capaces de adaptarse muy rápidamente y facilitarse tal y como se venía especulando desde el siglo XIX.

Este hallazgo revolucionó la neurociencia, ya que proporcionaba evidencias experimentales para el concepto de plasticidad cerebral, que hasta entonces era una mera hipótesis. En los años sucesivos, numerosos laboratorios profundizaron en el estudio de la plasticidad sináptica y, gracias al avance de las técnicas de biología molecular, electrofisiología y microscopía, se pudieron identificar diferentes moléculas claves para este fenómeno neuronal.

La identificación de estas moléculas abre la puerta al diseño de nuevas estrategias y fármacos destinados a potenciar los procesos cognitivos, principalmente en individuos afectados por patologías que afectan a la memoria, como las enfermedades neurodegenerativas. Aunque la tan ansiada “píldora de la memoria” aún está fuera de nuestro alcance, es intrigante pensar qué efectos podrían provocar estos fármacos en individuos sanos. Intuitivamente podríamos imaginar la aparición de una “supermemoria”. Sin embargo, es probable que llegar a obtenerla no sea tan sencillo. Consideremos que el efecto de estos fármacos, aún en vías de desarrollo, podría ser diferente en un cerebro sano y en un cerebro afectado por neurodegeneración, en donde el entorno neuronal se ve profundamente alterado con la aparición de agregados moleculares inexistentes en situaciones normales. En este escenario, es esperable que el uso de fármacos que modulan moléculas cuyo efecto es predominante en el cerebro enfermo no tendría por qué afectar positivamente a las capacidades de memoria de un cerebro saludable que carece de estas dianas.

Todas estas cuestiones han de ser analizadas meticulosamente, incluyendo la reflexión acerca de si es necesario desarrollar una “píldora para la memoria” en un mundo en donde gran parte de nuestros recuerdos se almacenan de manera digital. Tal vez mucha memoria no suponga ya una ventaja pues, como dijo Nietzsche, “la buena memoria es a veces un obstáculo al buen pensamiento”.

* Sandra Jurado Sánchez es investigadora en el Instituto de Neurociencias de Alicante, del CSIC y la Universidad Miguel Hernández. Más sobre su trabajo en: https://www.juradolab.com/

Especies en peligro de extinción… en tu intestino

*Por Carmen Peláez y Teresa Requena (CSIC)

La pérdida de biodiversidad no afecta solo a los grandes ecosistemas; también estamos perdiendo diversidad en nuestro propio cuerpo, en las especies que pueblan nuestro intestino. Paradójicamente, los notables avances sanitarios y tecnológicos que han experimentado las sociedades industrializadas pueden estar conduciendo a una pérdida de diversidad microbiana intestinal en las sociedades industrializadas, paralela a los aumentos de resistencia a antibióticos o a la incidencia de enfermedades autoinmunes.

El ecosistema microbiano humano está perdiendo especies bacterianas ancestrales que evolucionaron con nosotros desde el principio de los tiempos. Esta pérdida se perpetúa entre generaciones por una menor transferencia en el parto con la práctica de cesáreas, por una menor transmisión horizontal por contacto entre familias cada vez menos numerosas o por una mayor higienización del agua y procesado de alimentos que disminuyen su carga microbiana. La pérdida de esa microbiota ancestral se podría estar viendo reflejada en alteraciones de la fisiología humana y posiblemente en el aumento del riesgo de padecer enfermedades.

‘Helicobacter pylori’: las consecuencias de su progresiva desaparición

Un problema es que muchas de las especies bacterianas que están desapareciendo no son las más abundantes, por lo que su falta puede pasar inadvertida en cuanto al número, pero puede ser muy relevante por la función que realizan. La bacteria Helicobacter pylori es el modelo utilizado por Martin Blaser, especialista en el papel que juegan las bacterias en el organismo humano, para apoyar su ‘hipótesis de las especies en extinción’. Microbiota intestinal

H. pylori se encuentra en el estómago humano y ha evolucionado con él como animal mamífero monogástrico. Las primeras referencias sobre H. pylori indicaban que aparecía de forma bastante extendida en la especie humana, pero hacia los años setenta del siglo XX ya solo estaba presente en el 50% de individuos adultos en países desarrollados y en menos del 6% de los niños y las niñas. Este aspecto es importante porque H. pylori no se adquiere en etapas adultas de la vida. Por otro lado, el análisis de individuos en poblaciones rurales africanas, asiáticas o sudamericanas indica que casi todos los adultos contienen H. pylori. La especie parece estar extinguiéndose en las sociedades industrializadas.

Las causas de la desaparición de la bacteria en el estómago humano se asocian, según Blaser, a las dificultades para transmitirse entre individuos y para persistir en el organismo humano en el entorno de la vida moderna. La transmisión de H. pylori sucede solo entre humanos, por contacto directo alimentario de madres a hijos o por contaminación fecal de alimentos y agua. Estas vías de transmisión son muy frecuentes en países en desarrollo, donde muchas madres alimentan a sus hijos e hijas después del destete masticando los alimentos que ponen en su boca. En países desarrollados donde no existe esta práctica y además existe saneamiento de aguas potables y canalización de las fecales, la transmisión y, por tanto, la incidencia de esta bacteria es mucho menor.

La inflamación causada por H. pylori en el estómago sería consecuencia de la respuesta del sistema inmune a esta bacteria, por lo que de alguna forma estaría estimulando la maduración inmunológica en edades tempranas. Se trata de una respuesta equilibrada y controlada que, por otra parte, ayuda a contrarrestar la acidez estomacal. El hecho de que estemos eliminando la bacteria puede desencadenar alteraciones en ese equilibrio y aparición de acidez y reflujo gastroesofágico, que en última instancia puede causar adenocarcinoma de esófago. Este tipo de cáncer ha aumentado muy rápidamente en los países desarrollados: se ha multiplicado prácticamente por seis en los últimos 30 años. También el aumento de casos de reflujo gastroesofágico se ha asociado a la ausencia de H. pylori en el estómago.

Helicobacter pylori

Helicobacter pylori en biopsia gástrica/ Giemsa Stain.

Aunque son más conocidas las consecuencias negativas de tener esta bacteria, H. pylori supone un caso de anfibiosis, tipo Dr. Jekyll y Mr. Hyde. Con la edad, la presencia de la bacteria aumenta la posibilidad de desarrollar úlcera y a continuación cáncer gástrico, pero a la vez previene el reflujo y el desarrollo de cáncer de esófago. La disminución de la bacteria se ha asociado también con un aumento de asma infantil, rinitis alérgica infantil y eczema o dermatitis atópica. La hipótesis de Blaser es que la presencia de H. pylori ejercería una modulación inmunológica en el individuo, regulando la inflamación y disminuyendo las respuestas alérgicas autoinmunes.

Menos lombrices intestinales

Otros  habitantes tradicionales del ecosistema intestinal humano en peligro de extinción serían las lombrices, que están desapareciendo al mejorar las condiciones de higiene. Este hecho también se relaciona con el incremento de enfermedades de base inmune. A diferencia de las bacterias que causan respuestas inflamatorias enérgicas, la respuesta frente a estos helmintos o gusanos es más suave y está fuertemente regulada. Habitualmente no causan síntomas y tienen un nivel de patogenicidad muy bajo. De hecho, se están empleando experimentalmente en el tratamiento de enfermedades autoinmunes como la esclerosis múltiple y las enfermedades inflamatorias intestinales.

La fortaleza del ecosistema intestinal se apoya en la diversidad de sus especies microbianas, que dependen de los nutrientes no digeridos de la dieta que alcanzan el colon. El descenso en el consumo de fibra en la dieta humana ha reducido la diversidad de la microbiota intestinal: estas bacterias son desaparecidas anónimas. Esta pérdida requiere una atención apremiante para superar la brecha del consumo reducido de fibra y promover dietas saludables. Es un mandato para nuestra salud y, en especial, para la de las futuras generaciones.

Carmen Peláez y Teresa Requena son investigadoras del CSIC en el Instituto de Investigación en Ciencias de la Alimentación (CIAL) y autoras de La microbiota intestinal, de la colección de divulgación ¿Qué sabemos de?, disponible en la Editorial del CSIC y Los Libros de la Catarata.

El altramuz, de humilde aperitivo a “superalimento”

Por José Carlos Jiménez-López (CSIC)*

Altramuces en el mercado. / Tamorlan - Wikimedia Commons

Altramuces en el mercado. / Tamorlan – Wikimedia Commons

El altramuz (Lupinus albus) es una legumbre conocida popularmente por ser una planta ornamental en jardines rurales, con bellas y coloridas flores. Su semilla es denominada con varios términos como altramuces, lupín, lupinos, tremosos, así como “chochos” en determinadas localidades de la geografía española, concretamente en Andalucía. Es difícil que en algún momento, tomando una cerveza en el bar, no nos hayan puesto un cuenco de altramuces para picar.

Los altramuces se han consumido tradicionalmente en toda la región mediterránea durante miles de años. En España, las semillas del altramuz se convirtieron en un bien bastante preciado, y casi el único sustento que muchas familias tenían para “llevarse a la boca” tras la guerra civil. Hoy, 28 de mayo, se celebra el Día Nacional de la Nutrición (DNN), que este año está dedicado a promover el consumo de legumbres. Es un buen contexto para destacar los excelentes valores nutricionales de esta leguminosa que suele pasar inadvertida.

Las semillas del altramuz son consumidas típicamente como aperitivo en salmuera. Su harina se usa para la fabricación de horneados como pizza, pan, y repostería. Además de ser un buen acompañamiento en ensaladas, también es utilizado en la elaboración de humus, patés, quesos vegetales, y como integrantes principales de platos más elaborados, dignos de restaurantes renombrados con estrella Michelín. Numerosos productos basados en semillas de lupino están siendo actualmente introducidos comercialmente en tiendas de alimentación como alimentos fermentados, bebidas energéticas, snacks, leche, yogurt, productos de repostería, alimentación vegana, tofu, sustitutos de carnes, salsas, tempe, pastas y como base en dietas de adelgazamiento.

Pese a ello, el altramuz está infravalorado, siendo una legumbre que no está “de moda”, al contrario que otros alimentos como la soja, la quinoa o la chía, con un mayor auge debido a un marketing publicitario agresivo, haciéndolos llegar al consumidor de manera apetecible, para introducirlos en la dieta como productos saludables. Sin embargo, y respecto a beneficios para la salud y aporte nutricional, el altramuz no tiene nada que envidiar a estos alimentos tan publicitados, por ello se le puede adjudicar igualmente el término acuñado como “superalimento”, que puede ser sinónimo de alimento funcional, cuyo consumo proporciona beneficios para la salud más allá de los puramente nutricionales. Hay muchas razones por las cuales se puede incluir el altramuz en esa lista privilegiada, empezando porque es una fuente muy importante de proteínas, aproximadamente el 40%, lo que equivale al doble del contenido en proteínas que los garbanzos, y cuatro veces más que el trigo.

Plantas de lupino. /José Carlos Jiménez-López

Plantas de altramuz (Lupinus). /José Carlos Jiménez-López

Su contenido en fibra dietética es del 34%, que actúa como fibra soluble (como la de la avena) e insoluble (como la del salvado de trigo), incrementando la saciedad, reduciendo la ingesta calórica para un mejor control del peso corporal y ayudando además a la reducción del colesterol y la prevención de dislipemia (altos niveles de lípidos). Posee bajos niveles de grasa (menos de un 6%) y abundantes ácidos grasos insaturados, sobre todo omega-6 y omega-9. El 24% de su contenido es un tipo de hidratos de carbono que favorecen un índice glucémico más bajo que otros granos comúnmente consumidos, ayudando a equilibrar el nivel de glucosa en sangre y, de este modo, a prevenir la hiperglicemia, lo que está especialmente indicado para personas que padecen diabetes tipo 2.

El altramuz es una legumbre naturalmente libre de gluten, por lo que es un alimento apto para personas con intolerancia al mismo (celiaquía). Por otro lado, son una excelente fuente de minerales (hierro, calcio, magnesio, fósforo y zinc), vitaminas B1, B2, B3, B6, B9 (ácido fólico) y Vitamina C, además de contener todos los aminoácidos esenciales, indicado para una correcta actividad intelectual y del sistema inmune. La semilla del altramuz también tiene entre sus componentes compuestos prebióticos, que ayudan al crecimiento de microflora bacteriana beneficiosa para una correcta salud intestinal. Estas semillas son también una de las mejores fuentes naturales del aminoácido arginina, el cual mejora la funcionalidad de los vasos sanguíneos y ayuda a la disminución de la presión sanguínea. Al contrario que otras legumbres como la soja, su contenido en fitoestrógenos (componentes similares a las hormonas) es insignificante, lo que evita problemas potenciales asociados a ellos.

Son abundantes los estudios científicos realizados en los últimos cinco años que demuestran el valor de algunos componentes de estas semillas en la lucha contra enfermedades consideradas como las nuevas epidemias del siglo XXI. Algunos de estos estudios se han realizado en nuestro grupo de investigación de la Estación Experimental del Zaidín (EEZ-CSIC, Granada), donde proteínas denominadas beta-conglutinas podrían ser utilizadas para la prevención y tratamiento de la diabetes tipo 2. Se ha demostrado que estas proteínas favorecen la activación de la ruta de señalización de la insulina, con la consiguiente captación de glucosa por los tejidos (disminución de la glicemia), así como la reversión del estado de resistencia a la insulina por sus tejidos diana, todo ello favoreciendo que el organismo recupere un estado similar a una persona no diabética. Además, numerosas pruebas experimentales han indicado que estas mismas proteínas son capaces de disminuir el estado de inflamación de pacientes diabéticos. Debido a que determinadas enfermedades, cuyo progreso cursa mediante un estado inflamatorio crónico sostenido (síndrome metabólico, obesidad, diabetes, enfermedades cardiovasculares), los altramuces, y concretamente las proteínas beta-conglutinas, constituyen un componente funcional que puede jugar un papel crucial como una nueva opción terapéutica para la prevención y tratamiento de estas enfermedades que tienen una base inflamatoria.

Seguro que a partir de ahora y con todos estos argumentos, recuperaréis el buen hábito de “coger un puñado de altramuces para llevároslos a la boca”, o prepararéis sabrosos platos que sorprenderán incluso a los paladares más exigentes.

 

*José Carlos Jiménez-López es investigador en la Estación Experimental del Zaidín (CSIC) y actualmente desarrolla una línea de investigación sobre las propiedades potencialmente beneficiosas del consumo de altramuces.

Una bacteria volcánica de Canarias, entre las especies más sorprendentes de 2017

Por Mar Gulis (CSIC)

La bacteria Thiolava veneris, capaz de colonizar el material depositado tras la erupción del volcán Tagoro, en la isla del Hierro, es la aportación española al Top 10 de especies descubiertas el año pasado. El comité liderado por Quentin D. Wheeler, del International Institute of Species Exploration (IISE) y coordinado por el investigador del Museo Nacional de Ciencias Naturales del CSIC Antonio G. Valdecasas, ha publicado su selección a partir de las alrededor de 18.000 especies descubiertas a lo largo de 2017. La difusión de este ranking se difunde hoy para celebrar el aniversario del botánico Carlos Linneo y  nos recuerda la importancia que tiene conocer y clasificar la biodiversidad. “Hoy es ya evidente que los seres humanos estamos acelerando el calentamiento global  y la extinción masiva de especies  que pueden enseñarnos cómo afrontar el futuro incierto al que nos enfrentamos”, afirma Valdecasas.

Un inmenso árbol de 40 metros, un crustáceo con joroba y dos escarabajos se suman a esta lista de diez integrantes que repasamos a continuación:

1. Thiolava veneris, la bacteria que colonizó los depósitos del volcán Tagoro

Cuando  en 2011 el volcán submarino Tagoro estalló frente a la costa de El Hierro, aumentó abruptamente la temperatura del agua, disminuyó el oxígeno y liberó cantidades masivas de dióxido de carbono y sulfuro de hidrógeno, eliminando gran parte del ecosistema marino. Tres años después, se descubrieron los primeros colonizadores de los depósitos que dejó la erupción volcánica. Los llamaron ‘pelo de Venus’ y se trata de una bacteria que produce estructuras largas y parecidas a pelos que, a modo de alfombra, cubren una superficie de unos 2.000 metros cuadrados alrededor de la cima recién formada del volcán Tagoro, ubicado a unos 130 metros de profundidad. Parece que esta nueva especie tiene características metabólicas únicas que le permiten colonizar este fondo marino recién formado, allanando el camino para el desarrollo de futuros ecosistemas.

Miquel Canals, Universidad de Barcelona.

2. Ancoracysta twista, un ser diminuto descubierto en un acuario

Este organismo unicelular pertenece al orden de los protistas: es un organismo eucariota, es decir, que tiene células con núcleo diferenciado. Posee un flagelo que  utiliza para impulsarse, así como unos orgánulos con forma de arpón que utiliza para inmovilizar a los organismos de los que se alimenta. La gran cantidad de genes que contiene su genoma mitocondrial podría dar pistas sobre cómo comenzaron a evolucionar los primeros organismos eucariotas. Se desconoce el origen geográfico de este diminuto ser vivo ya que fue descubierto en un acuario tropical de San Diego, EE UU.

 

Denis V. Tikonenkov.

3. Dinizia jueirana-facao, el árbol de más de 40 metros de altura y 60 toneladas que permanecía ‘en la sombra’

Pese a medir más de 40 metros de altura y sobrepasar el dosel de los bosques de Brasil en los que habita, este gigante acaba de ser descrito. Pertenece al género de leguminosas Dinizia, del que hasta ahora sólo se conocía la especie D. excelsa, descubierta hace casi cien años en los bosques amazónicos. Actualmente solo se han localizado 25 ejemplares en la Reserva Natural Vale. Tiene frutos leñosos de medio metro de longitud y se estima que su peso puede llegar a las 60 toneladas. Forma parte de los bosques atlánticos que dan refugio a más de 2.000 especies de vertebrados, incluyendo más de la mitad de las especies amenazadas de Brasil. La superficie de este tipo de bosques se ha visto reducida en más del 15%, una situación que, unida a la fragmentación que sufre, pone en peligro a D. jueirana-facao y a cientos de especies más.

Gwilym P. Lewis

4. Epimeria Quasimodo, el crustáceo jorobado

Nombrado a partir del personaje creado por Víctor Hugo, Epimeria quasimodo  es un pequeño crustáceo de unos 5 centímetros de longitud con un exoesqueleto tan curvado que parece tener joroba. Es una de las muchas especies del género que pueblan el Océano Austral, y se caracteriza por tener una morfología y colores espectaculares, con adornos crestados que recuerdan a los dragones mitológicos. Los dos investigadores que han publicado el trabajo han demostrado lo poco que sabemos de estos sorprendentes invertebrados.

Cédric d’Udekem d’Acoz/Royal Belgian Institute of Natural Sciences.

5. Nymphister kronaueri, un escarabajo que se aloja en el abdomen de hormigas obreras

El orden más prolífico en número de especies, el de los coleópteros, cuenta con un nuevo miembro: Nymphister kronaueri. Este diminuto animal de menos de dos milímetros de longitud, vive camuflado entre las hormigas Eciton mexicanum, una especie nómada que pasa dos o tres semanas capturando presas y otras dos o tres en un solo lugar. N. kronaueri se agarra al abdomen de una hormiga obrera cuando la colonia necesita trasladarse, de modo que, a simple vista, la hormiga cargada con el escarabajo parece tener dos abdómenes.

D. Kronauer.

6. Pongo tapanuliensis, el simio más amenazado del planeta

En 2001, los orangutanes de Sumatra y Borneo fueron reconocidos como dos especies distintas, Pongo abelii y P. pygmaeus. Tras examinar parámetros genéticos y morfométricos así como analizar variables de comportamiento, un equipo internacional de investigadores concluyó en 2017 que en Batang Toru, al norte de Sumatra, hay otra especie diferente de orangutanes: P. tapanuliensis, de tamaño algo menor. Los datos genéticos sugieren que, mientras las especies de Sumatra y Borneo se separaron hace 674.000 años, esta especie divergió mucho antes, hace alrededor de 3,3 millones de años. A día de hoy, este gran simio es el más amenazado del planeta. Se estima que solo quedan alrededor de 800 individuos en un hábitat fragmentado repartido en unos 1.000 kilómetros cuadrados aproximadamente.

Andrew Walmsley.

7. Pseudoliparis swirei, el pez habitante de las profundidades marinas

En el oscuro abismo de la Fosa de las Marianas, el lugar más profundo de los océanos, se ha encontrado esta especie menor de 10 centímetros que parece ser uno de los depredadores de su hábitat. Fue capturado a profundidades de entre 6.800 y 8.000 metros. Se cree que 8.200 metros de profundidad es un límite fisiológico por debajo del cual los peces no pueden sobrevivir. P. swirei pertenece a la familia Liparidae, peces babosos, de la que se conocen más de 400 especies que habitan en todas las profundidades.

Mackenzie Gerringer, Universidad de Washington / Schmidt Ocean Institute.

8. Sciaphila sugimotoi, una planta japonesa que se alimenta de un hongo

Tiene una altura que ronda los 10 centímetros y unas hermosas flores con tiempos cortos de floración entre los meses de septiembre y octubre. Se ha descubierto en Japón, y la mayor particularidad de S. sugimotoi es su condición de heterótrofa, es decir, que se alimenta a partir de otros organismos en lugar de por medio de la fotosíntesis. En este caso, mantiene una relación simbiótica con un hongo, a partir del cual consigue alimentarse sin dañarlo. La especie, cuya supervivencia depende de un ecosistema estable, se considera en peligro crítico de extinción, ya que se ha encontrado en solo dos lugares de la isla con una representación total de unas 50 plantas.

Takaomi Sugimoto.

9. Wakaleo schouteni, un león marsupial australiano descrito a partir de material fósil

Hace unos 23 millones de años, en el Oligoceno tardío, vivió Wakaleo schouteni, un león marsupial que vagaba por el hábitat forestal abierto de Australia, en el noroeste Queensland. Gracias al material fósil recuperado por un equipo de paleontólogos de la Universidad de Nueva Gales del Sur, se ha podido determinar que este león marsupial pasaba alrededor de 25 kilos y pasaba parte de su tiempo subido a los árboles. Sus dientes sugieren que era omnívoro. Los paleontólogos creen que hubo dos especies de leones marsupiales. El otro, Wakaleo pitikantensis, era un poco más pequeño y se describió en 1961 a partir de huesos de dientes y extremidades descubiertos al sur de Australia.

Recreación de ‘Wakaleo schouteni’ / Peter Schouten.

 10. Xuedytes bellus, un escarabajo capaz de vivir en cuevas cerradas gracias a sus adaptaciones

Este pequeño escarabajo de unos 9 milímetros de largo es el habitante de Duan, al sur de China, un área llena de las cuevas características del paisaje kárstico. Los escarabajos que se adaptan a la vida en el interior oscuro y húmedo de las cuevas comparten a menudo muchas de sus de características: un cuerpo compacto, muy alargado, apéndices en forma de araña, y pérdida de alas funcionales, ojos y pigmentación. Estos seres vivos son un excelente ejemplo de evolución convergente, es decir, especies no relacionadas entre sí con atributos similares resultado de su adaptación a medios parecidos. En China ya se han descrito más de 130 especies, que representan casi 50 géneros. Xuedytes bellus  es una incorporación espectacular a la fauna que habita las cuevas.

Sunbin Huang y Mingyi.

El secreto de la Vetusta Morla: ¿por qué unos animales viven más que otros?

Por Marta Fernández Lara*

“Hay un ser en Fantasía que es más viejo que todos los otros. Lejos, muy lejos, al norte, está el Pantano de la Tristeza. En medio de ese pantano se alza la Montaña de Cuerno y allí vive la Vetusta Morla. ¡Busca a la Vetusta Morla!”

Con esta cita, un búfalo purpúreo animaba en sueños a Atreyu a buscar a la Vieja Morla en la Historia Interminable de Michael Ende. Este singular animal no solo es el más viejo de Fantasía. En nuestro mundo, las tortugas de las Galápagos están entre los vertebrados más longevos que existen, llegando a vivir cientos de años. Pero, ¿cuál es la razón por la que estos animales son tan longevos?, ¿por qué hay tanta disparidad entre los años que viven unos organismos y otros?

La ciencia se ha planteado muchas veces este tipo de preguntas pues, de conocer sus respuestas, estaríamos más cerca de alcanzar el ansiado ‘elixir de la juventud’ que permitiera alargar la vida a los seres humanos.

Las bases del envejecimiento

Para tratar de encontrar respuestas a estas preguntas, primero hay que entender qué es lo que determina la esperanza de vida o el envejecimiento.

El envejecimiento es un proceso biológico que evita que un organismo viva eternamente, incluso en condiciones ideales en las que no hay depredación, ni fenómenos ambientales que puedan producir la muerte de los individuos.

En los últimos años, la comunidad investigadora se han sumergido en las profundidades celulares para comprender qué mecanismos biológicos contribuyen al proceso de envejecimiento. Dentro de la maquinaria celular, la acumulación de mutaciones y de daños en el ADN, la molécula que contiene nuestra información genética, está asociada con el envejecimiento. Tanto es así, que científicos como Luis Blanco y su equipo, del Centro de Biología Molecular (UAM-CSIC), se dedican a estudiar los mecanismos de reparación de estos daños. Del mismo modo, la alteración de algunos orgánulos componentes clave de la célula también contribuye a este proceso. Por ejemplo, la modificación de los componentes de la pared que envuelve el núcleo, el orgánulo que contiene el ADN, está relacionada con un envejecimiento prematuro.

Por otra parte, la actividad celular también tiene una gran influencia en el envejecimiento, ya que algunos mecanismos biológicos generan unas moléculas denominadas especies reactivas del oxígeno (ROS), que pueden producir daños a proteínas, membranas celulares, etc. Esto se denomina estrés oxidativo, y en algunos experimentos se ha observado que su reducción puede alargar la vida de ciertos animales de laboratorio.

Estos son solo algunos ejemplos de procesos que se han visto implicados en el envejecimiento, pero todavía queda mucho por comprender de este complejo fenómeno biológico. Resolver estas incógnitas nos acercaría a conocer la clave de las diferencias entre la velocidad a la que envejecen las distintas especies o por qué algunas, como las bacterias, parecen no hacerlo nunca.

Coral cerebro (‘Diploria labyrinthiformis’).

La longevidad bajo una perspectiva evolutiva

Sin embargo, otros investigadores tratan de desvelar ‘el secreto de la Vieja Morla’ observando las características de los ciclos de vida de los organismos desde un punto de vista evolutivo.

En la naturaleza observamos que los organismos tienen diferentes estrategias vitales: algunos crecen más rápido, otros más lento; unos se reproducen antes, otros después y algunos viven más tiempo que otros. Estas diferencias han surgido como consecuencia de la actuación de procesos evolutivos a lo largo del tiempo.

En lo que se refiere al envejecimiento, los científicos han propuesto distintas hipótesis para tratar de explicar cómo ha evolucionado este proceso y por qué se mantiene.

Una de estas hipótesis explica que el envejecimiento se produce principalmente por la acumulación de mutaciones en el ADN cuyos efectos negativos se manifiestan con la edad. Una segunda teoría plantea que habría genes que, en etapas tempranas de la vida, tendrían efectos positivos en los organismos, por lo que se favorecería su transmisión a la siguiente generación por selección natural. Sin embargo, con el tiempo estos genes desencadenarían procesos negativos relacionados con el envejecimiento. Por último, otra de las principales hipótesis explica que las especies tienen una cantidad limitada de energía que deben repartir entre mantenerse vivos y reproducirse; y en reparar los daños del ADN que contribuyen a este proceso.

Todas estas hipótesis estarían relacionadas con un factor esencial que explicaría las diferencias de longevidad entre los animales: la mortalidad por causas ambientales. Por un lado, los animales que viven en ambientes en los que corren menos riesgo de morir por factores externos como la depredación, enfermedades, etc., la selección natural favorecerá un desarrollo más lento de los individuos, la expresión tardía de las mutaciones con efectos negativos y, en definitiva, retrasará el envejecimiento. Por otro lado, si las especies experimentan un riesgo alto de mortalidad por factores externos, su vida será más corta, la selección natural no tendrá tiempo de actuar para eliminar estas mutaciones perjudiciales que se acumularán antes, favoreciendo un envejecimiento temprano.

Un ejemplo de cómo influye el ambiente en la velocidad de envejecimiento de los animales es la investigación en la que ha participado recientemente Jordi Figuerola, investigador de la Estación Biológica de Doñana (EBD-CSIC). El estudio, realizado en mirlos, muestra que las poblaciones de zonas urbanas, que experimentan más estrés, presentan un mayor acortamiento de telómeros frente a las de zonas naturales. Los telómeros son regiones de los cromosomas que protegen el ADN de la degradación, y su acortamiento es un signo de envejecimiento.

Ejemplar de mirlo / Eloy Revilla (EBD-CSIC).

Así, se ha observado que los animales que poseen rasgos que les protegen de morir por causas ambientales presentan una longevidad mayor. Este es el caso de las aves y mamíferos voladores como los murciélagos, que en muchos estudios se ha visto que viven más que los que no poseen esta capacidad. Del mismo modo, parece que los mamíferos que habitan en los árboles viven más años que otros mamíferos terrestres, lo que explicaría que, por ejemplo, los primates tengan una vida tan larga en comparación con otras especies. La explicación que han propuesto las diversas investigaciones a estas observaciones es que la vida en las alturas proporciona una mayor protección frente a los depredadores, reduciendo así la mortalidad por factores externos y favoreciendo un envejecimiento tardío. Un último ejemplo, que nos acerca al enigma que nos proponíamos al principio, es el de los animales con caparazón o conchas protectoras que, como en el caso de las tortugas, presentan también una mayor longevidad.

¿Está resuelto, entonces, el misterio? Sin duda, estas teorías evolutivas dan un paso más en la comprensión de este proceso y de las diferencias de longevidad entre los organismos pero, una vez más, todavía quedan muchas incógnitas por resolver. Parece que aún nos queda un largo camino hasta llegar a la Montaña del Cuerno donde la Vetusta Morla guarda celosamente su secreto.

 

Marta Fernández Lara es colaboradora del Museo Nacional de Ciencias Naturales (CSIC).

‘Operación polinizador’: el imprescindible trabajo de los insectos para el futuro de la agricultura

Por Alberto Fereres (CSIC) *

Trichodes octopunctatus (Familia Cleridae) / Alberto Fereres

Trichodes octopunctatus (Familia Cleridae) / Alberto Fereres

Con la llegada de la primavera, en plena ‘operación polinización’, esta imagen se repite cada año en campos, parques y jardines. Insecto y planta cooperan para obtener un beneficio mutuo, fenómeno que en biología se llama simbiosis. Estas interacciones, de crucial importancia en los ecosistemas naturales y en los agrícolas, se iniciaron hace más de 200 millones de años, en el Jurásico.

Las primeras angiospermas, plantas con flor, dependían del viento para asegurar su reproducción, igual que las gimnospermas, pinos y especies relacionadas. El ovario producía una secreción pegajosa llamada exudado para atrapar los granos de polen que llegaban a él. Este exudado contenía proteínas y azúcares y servía de alimento a los insectos, que empezaron a transportar de manera accidental el polen de una flor a otra. Así comenzó la polinización.

Se ha estimado que este gesto, en apariencia insignificante, representa la nada desdeñable cifra del 9,5% del valor de la producción agrícola dedicada al consumo humano, lo que a nivel europeo supone un total de 5.000 millones de euros al año. Atendiendo a estos datos, no cabe duda de que el servicio ecológico que ofrecen los polinizadores posee una enorme repercusión ambiental, social y económica en nuestro planeta.

La biodiversidad de los insectos que actúan como potenciales polinizadores es muy elevada. El 20% de estos organismos, unas 200.000 especies, visitan las flores. Hay familias de insectos polinizadores importantes entre los coleópteros (escarabajos), dípteros (moscas) y lepidópteros (mariposas) entre otros órdenes, pero los polinizadores por excelencia son los himenópteros: las abejas y abejorros de la superfamilia Apoidea. Son especies en las que el polen se adhiere a sus característicos pelos corporales. Además, pueden disponer de adaptaciones para facilitar su transporte, como las corbículas o cestillos de las patas traseras. En el campo agrícola, las especies que destacan por su importancia son la abeja común Apis mellifera L., los abejorros del género Bombus sp. y otras abejas menos conocidas que son las llamadas abejas solitarias.

Apis mellifera (Familia Apidae) / Alberto Fereres

Apis mellifera (Familia Apidae) / Alberto Fereres

La abeja común produce miel, jalea real, propóleo, cera, y poliniza un amplio espectro de flora silvestre. Es vital para algunos cultivos como los frutales, ya que asegura la polinización cuando otros insectos están ausentes. Su ‘transferencia de polen’ garantiza una tasa elevada de cuajado de frutos, mayor resistencia a las heladas y mejor calidad en los mismos. Esta especie de abeja común, natural de Europa, Asia y África, incluye 26 subespecies agrupadas en cuatro linajes.

Por su parte, los Bombus o abejorros han supuesto una enorme revolución para el sector de la horticultura, especialmente bajo invernadero. A partir de 1987 se empezaron a usar en la polinización de tomate y otras hortícolas. En la actualidad se emplean en más de 40 países. Se conocen más de 240 especies de abejorros a nivel mundial, y la mitad de ellas viven en la región Paleártica (Europa y Norte de Asia). La especie que más se cría para su uso en agricultura es el Bombus terrestris L., ampliamente distribuida por casi toda la zona Paleártica. En España tenemos una especie endémica de las Islas Canarias, B. canariensis Pérez.

A pesar de su papel imprescindible, la población de polinizadores está en declive en todo el mundo. Entre los factores que han contribuido a esta situación, destacan las técnicas agrícolas de producción intensiva que han conducido a la desaparición de hábitats, lo que ha modificado notablemente la estructura del paisaje y ha llevado a la eliminación de recursos alimenticios y refugios esenciales para este importante grupo de artrópodos beneficiosos.

Para intentar compensar esta disminución, las investigaciones en este ámbito apuestan por el uso de márgenes florales, es decir, plantar setos y vegetación entre las parcelas de cultivo que permitan el incremento de los insectos polinizadores y otros artrópodos, a la vez que consiguen preservar y mejorar la biodiversidad en las zonas agrarias. Además de favorecer la polinización, los márgenes florales suavizan el rigor de los elementos climáticos protegiendo los cultivos contra las heladas y la insolación; mantienen la humedad y funcionan como cortavientos; protegen contra la erosión y también aportan valor paisajístico y cultural.

Entre otras iniciativas, desde el Instituto de Ciencias Agrarias del CSIC hemos desarrollado un protocolo para el establecimiento de márgenes y lindes de especies herbáceas con flores que atraen estos insectos beneficiosos y que están bien adaptados a los suelos y condiciones de cultivo de la zona Centro de la Península Ibérica.

 

* Alberto Fereres Castiel es investigador del Instituto de Ciencias Agrarias del CSIC. Junto a investigadores/as de la Universidad Politécnica de Madrid y la empresa Syngenta ha trabajado en el proyecto ‘Operación polinizador’.