BLOGS
Ciencia para llevar Ciencia para llevar

CURIOSIDADES CIENTÍFICAS PARA COMPARTIR

Archivo de la categoría ‘Biología’

Cuando el arsénico se usaba para decorar los hogares

Por M. Teresa Telleria (CSIC)*

En el siglo XIX se puso de moda el color verde intenso que proporcionaban algunos pigmentos elaborados a base de arsénico y cobre. Primero fue el verde Scheele (arsenito cúprico), sintetizado por el químico sueco Karl W. Scheele en 1775, y después, en 1814, el verde Scheweinfurt (acetoarsenito de cobre), también conocido como verde París, verde Veronese, verde Viena y, sobre todo, como verde esmeralda. Su fabricación, sencilla y barata, lo hizo asequible a todos los bolsillos y su uso trascendió al del mundo del arte. Pasó así de los paisajes de Joseph Turner y la obra de Edouard Manet a la manufactura de papeles pintados, envoltorios, tapicerías, cortinas, vestidos, juguetes e incluso a los alimentos. Todo se vistió de verde esmeralda, un verde que en su fórmula llevaba más de un 40% de arsénico. Tal fue la magnitud de su uso, que llegó a estimarse en varios millones de km2 la superficie de pared en los hogares británicos que, allá por 1860, estaba recubierta por papeles pintados con verde Scheweinfurt.

Detalle de papel pintado, según diseño de William Morris, hacia 1880. Denisbin/Flickr.

El arsénico nunca ha gozado, y con razón, de buena fama y, poco a poco, diferentes casos de indisposición, enfermedad y alguna que otra muerte comenzaron a ser atribuidos a las paredes empapeladas con trazos de este temible elemento; el peligro se había filtrado en los hogares europeos de la mano de su decoración. No tardó el químico alemán Leopold Gmelin en percatarse de que las habitaciones así decoradas, máxime si eran húmedas y mal ventiladas, despedían un olor desagradable que definió como “olor a ratón”. Gmelin atribuyó este tufo a un componente volátil del arsénico, que llamó “alkorsin”. En noviembre de 1839, el científico remitió una carta al Karlsruher Zeitung dando cuenta del hecho. No fue casual el medio utilizado para hacer circular la noticia, ya que lejos de elegir una publicación científica optó por un periódico y, además, en su edición dominical.

Los hongos hacen su entrada en esta historia de la mano de Bartolomeo Gosio, médico y microbiólogo italiano que entre 1899 y 1944, fue director de los laboratorios científicos de la Direzione di Sanità en Roma. Conocía Gosio algunas teorías previas sobre el posible origen de los gases volátiles del arsénico; teorías que postulaban la capacidad de determinados microorganismos para volatilizar los compuestos de arsénico. Sobre esta base, Gosio propuso la siguiente hipótesis: la humedad y temperatura de las estancias favorecían el crecimiento de hongos y bacterias en las paredes forradas con papeles pintados; en su crecimiento, estos organismos producían hidrógeno que, al reaccionar con el arsénico del pigmento, lo transformaban en trihidruro de arsénico (AsH3), también conocido como arsano o arsina, un gas incoloro, inflamable, reductor y altamente tóxico que despide un ligero olor a ajo.

Hongo Scopulariopsis brevicaulis. J. Scott/EOL.

Gosio se encargó de demostrar que, en estos menesteres, era particularmente activo un hongo que identificó, en principio, como Penicillium brevicaule y que hoy conocemos como Scopulariopsis brevicaulis. Para llegar a esta conclusión diseñó el siguiente experimento: en un sótano colocó distintos medios de cultivo expuestos al aire que contenían patata y diferentes compuestos de arsénico, incluidos los pigmentos; hizo crecer en ellos las especies de hongos y bacterias que pretendía testar y quedó a la espera de que estas prosperaran y produjeran el buscado material volátil. Él lo detectaría gracias a su característico olor a ajo. El ensayo resultó un éxito; el cultivo de Scopulariopsis brevicaulis emanaba este particular olor, lo que claramente demostraba, en opinión de Gosio, la presencia del arsénico volatilizado.

En 1901, Gosio y su colega, el químico Pietro Biginelli, lo identificaron como dietilarsina. Treinta años después, Frederick Challenger y colaboradores lo identificaron definitivamente como trimetilarsina. Así quedó ya desvelada definitivamente la naturaleza química de este arsénico volatilizado que se conoce como “gas Gosio”, en honor a su descubridor. Bartolomeo Gosio siempre estuvo convencido de la toxicidad del gas que lleva su nombre y, aunque las pruebas realizadas para demostrarlo nunca fueron del todo concluyentes, la balanza acabó decantándose de su lado.

Las paredes de las estancias decoradas con llamativos tintes esmeralda y, por tanto, cargadas de acetoarsenito de cobre, un ambiente húmedo que favorecía el crecimiento de S. brevicaulis y el proceso de biometilación que este hongo era capaz de generar eran los elementos y circunstancias necesarios para que el gas hiciera acto de presencia. Los culpables de los envenenamientos ya estaban identificados: el verde Scheweinfurt y S. brevicaulis.

XYZ Buildings en la 6th Avenida de
Nueva York. Wally Gobetz/Flickr.

Pero en el relato de la funesta conjunción del verde esmeralda y S. brevicaulis quedaban aún algunos cabos sueltos. En un trabajo publicado en 1914 se plasmaban los resultados de un detallado estudio sobre varios microorganismos que volatilizaban el arsénico utilizando para ello diferentes sustratos. Su autor R. Huss, del Pharmaceutical Institute de Estocolmo, realizó además una serie de pruebas clínicas sobre el posible efecto que estos gases producían en ratones, conejos y cobayas. Tras el estudio, demostró la falta de efecto nocivo que tenían los gases sobre los animales e incluso sobre él mismo, que durante medio año había estado expuesto diariamente en el laboratorio a los nocivos vapores. Gracias a las conclusiones de este y otros estudios contemporáneos, la hipótesis del gas tóxico comenzó a desinflarse por la evidencia de los hechos. Que muchos de los compuestos de arsénico sean altamente tóxicos no quiere decir, necesariamente, que lo sean todas sus formas gaseosas. Hoy se sabe que la trimetilarsina es un genotóxico, pero también se sabe que su tasa de letalidad por inhalación es relativamente baja.

Casi un siglo después, una publicación de William R. Cullen y Ronald Bentley (2005) desmontó lo que ellos consideraron una leyenda urbana, la toxicidad del gas Gosio y la relación entre el verde esmeralda (acetatoarsenito de cobre), los hongos y las muertes por envenenamiento. En su opinión, estas bien pudieron estar más relacionadas con los desórdenes que origina lo que hoy se conoce como “síndrome del edificio enfermo”, un conjunto de afecciones de etiología desconocida como ronquera, erupciones cutáneas, náuseas o vértigos, que afecta a ocupantes de edificios no industriales, siendo los síntomas difícilmente objetivables mediante pruebas diagnósticas. De nuevo la mezcla de un mal sistema de ventilación, humedad y  la consecuente proliferación de hongos y bacterias podría ser un cóctel nocivo para la salud. En este caso también se quiso establecer, no sin controversia, una relación directa entre Stachybotrys chartarum y el mencionado síndrome. Un hongo volvía a ser el culpable, ahora sin el arsénico, y como en otro tiempo, también sin pruebas concluyentes.

María Teresa Telleria es investigadora del CSIC en el Real Jardín Botánico y autora del libro Donde habitan los dragones y de Los hongos, disponibles en la Editorial CSIC Los Libros de la Catarata.

Semana de la Ciencia del CSIC: viajar al pasado, hacer catas científicas y más

Por Mar Gulis (CSIC)

Viajar al pasado a través de los restos orgánicos de un yacimiento navarro (Instituto de Ciencias de la Vid y el Vino), aprender sobre los caballitos de mar (Instituto de Investigaciones Marinas) o realizar catas catas de queso para conocer sus propiedades nutricionales (Instituto de Productos Lácteos de Asturias) son tres de las 331 actividades con las que el CSIC abre este año la Semana de la Ciencia. A través de los más de 81 centros de investigación participantes, esta iniciativa, organizada con apoyo de la Fundación Española para la Ciencia y la Tecnología (FECYT), ofrecerá propuestas para todos los públicos en torno a diversas áreas del conocimiento.

Muchas de las actividades de la Semana de la Ciencia del CSIC han sido diseñadas para que el público asuma un papel activo e interactúe con el personal investigador.

Las actividades, gratuitas y dirigidas al público general, se presentan en formatos clásicos, como exposiciones, rutas científicas o conferencias, y en otros más novedosos, como degustaciones, cafés científicos, concursos o los innumerables talleres diseñados para que el público interactúe con la ciencia. Así, ‘Convierte tu móvil en un microscopio’, organizada por el Instituto de Recursos Naturales y Agrobiología de Sevilla, el taller ‘Experimenta con partículas’, del Centro Nacional de Aceleradores, o ‘Iluminación estroboscópica’, una iniciativa del Laboratorio de Investigación en Fluidodinámica y Tecnologías de la Combustión, reflejan la vertiente práctica de la Semana de la Ciencia.

En esta edición, el CSIC también ha incorporado la ciencia ciudadana a su programación, a través de iniciativas como ‘Plásticos 0 en la playa’, un taller del Instituto Mediterráneo de Estudios Avanzados. El objetivo en este caso es que la propia sociedad recabe datos valiosos para evaluar los efectos de los residuos marinos sobre los ecosistemas costeros.

El pasado 2 de noviembre arrancó la cita anual con la divulgación científica en muchas comunidades autónomas. En la mayoría de ellas, la Semana de la Ciencia se prolongará hasta finales de mes. ¡Consulta la programación y participa!

¿Por qué se quema antes una sabana que un bosque? Cinco cuestiones sobre inflamabilidad e incendios

Por Juli G. Pausas (CSIC)*

La inflamabilidad de las especies vegetales es relevante en los incendios, aunque su papel depende de diversas condiciones. Vamos a intentar aclarar algunas cuestiones al respecto:

  • La inflamabilidad es la capacidad de prender y propagar una llama

La inflamabilidad no se debe confundir con la cantidad de biomasa, que es la carga de combustible. Es decir, una planta, una comunidad vegetal o una plantación es más inflamable que otra si, teniendo aproximadamente una misma biomasa, prende y propaga mejor el fuego.

  • Hay especies de plantas más inflamables que otras

Todas las plantas son inflamables, pero unas más que otras. Una aliaga o un brezo arde mejor que un lentisco o un alcornoque. Entre las características que incrementan la inflamabilidad nos encontramos, por ejemplo, tener hojas y ramas finas, madera ligera, retener ramas secas o tener elevado contenido en compuestos volátiles. En cambio, tener hojas gruesas y pocas ramas, gruesas y bien separadas, reduce la inflamabilidad. Árboles con abundantes ramas basales son más inflamables que árboles con las primeras ramas elevadas y con espacio entre el sotobosque y la copa.

Aliaga_incendios

La aliaga (Ulex parviflorus) es una planta muy inflamable porque casi toda la biomasa es muy fina y acumula ramas secas. / Juli G. Pausas

No obstante,  todas estas características no tienen por qué estar correlacionadas entre sí; las plantas pueden tener diferente grado de inflamabilidad según la escala en que se mire. Por ejemplo, hay algunas especies de pino que tienen una alta inflamabilidad a escala de hojas pero baja inflamabilidad en la estructura del árbol, por tener la copa elevada. Por lo tanto, en incendios poco intensos el fuego se propagará superficialmente pero no alcanzará la copa, como en el caso de incendios de sotobosque.

  • Hay comunidades vegetales más inflamables que otras

En algunas comunidades pueden dominar especies más inflamables que en otras, lo que condiciona la inflamabilidad de toda la comunidad vegetal, ya sea natural o una plantación.

Además, hay otras características que incrementan o reducen la inflamabilidad a escala de comunidad. Entre ellas podemos mencionar:

    • la continuidad y distribución de las especies muy o muy poco inflamables
    • el número de plantas muertas por sequía, por ejemplo
    • las condiciones microclimáticas que se generan dentro de la comunidad. En bosques densos dichas condiciones pueden inhibir la probabilidad de fuego
    • las condiciones topográficas. Una mayor humedad en depresiones topográficas reduce la inflamabilidad de las plantas.

Así, se quema más fácilmente un aulagar o un brezal mediterráneo que un bosque denso y sombrio; o una sabana que un bosque. Los sistemas sabana-bosque tropicales son claros ejemplos de mosaicos determinados por diferente inflamabilidad.

Pinar de pino carrasco (Pinus halepensis). No solo las hojas son bastante inflamables sino que la continuidad entre el suelo y las copas hace que todo el árbol y el pinar sea muy inflamable, y genere incendios intensos de copa. / Juli G. Pausas

  • La gestión forestal puede modificar la inflamabilidad

La gestión forestal puede modificar la estructura de los árboles, de la comunidad, y del paisaje. Reduce la cantidad de biomasa, el combustible, pero también la continuidad, y por lo tanto, la probabilidad de que se propague el fuego. Por ejemplo, tanto en bosques como en plantaciones forestales, a menudo se realizan cortas del sotobosque y de ramas inferiores de los árboles, se introduce pastoreo o se realizan quemas prescritas, todo con el objetivo de estimular el crecimiento en altura de los árboles y generar una discontinuidad vertical entre el sotobosque y la copa. De esta manera, el fuego se propaga sólo por el sotobosque, los incendios son menos intensos, y la mayoría de árboles sobrevive.

Pinar de pino_incendios

Pinar de pino laricio (Pinus nigra) con árboles que tienen baja inflamabilidad, ya que hay una discontinuidad entre el sotobosque y la copa, de manera que el fuego se propaga por la superficie y no llega a alcanzar las copas (incendios de sotobosque). / Juli G. Pausas

En matorrales, la gestión puede reducir la biomasa, pero no es fácil reducir la inflamabilidad. Las plantaciones forestales a menudo son masas densas y homogéneas de árboles, muchas veces de especies muy inflamables como eucaliptos, y por lo tanto propensas a propagar incendios. Por lo tanto, la gestión forestal es clave para reducir la cantidad de combustible y la inflamabilidad de estas plantaciones. Además, a escala de paisaje, se puede disminuir la capacidad de propagación de un incendio mediante cortafuegos y generando paisajes en mosaicos.

 

  • El tamaño de los incendios puede estar  determinado por la inflamabilidad de las especies

En general, el tamaño de un incendio está condicionado por la cantidad, continuidad, y homogeneidad de la vegetación, sea natural o plantaciones, el grado de humedad de esta, y por el viento. La inflamabilidad de las especies también es relevante en el comportamiento del fuego y el tamaño de los incendios, pero su papel relativo depende de las condiciones. En incendios poco intensos, diferencias en la inflamabilidad (ya sea por cambios en la estructura forestal debidos a la gestión, o por diferencias naturales de las especies), pueden condicionar que una zona arda o no, y por lo tanto, el tamaño del incendio. En condiciones extremas de sequía y fuertes vientos, las diferencias en inflamabilidad serán poco relevantes. Igualmente, dependiendo de las condiciones, un cortafuegos puede o no frenar un incendio.

 

Juli G. Pausas  es investigador del CSIC en el Centro de Investigaciones sobre Desertificación Incendios Forestales (CIDE), y autor del libro Incendios forestales (CSIC-La Catarata) perteneciente a la colección ¿Qué sabemos de?, disponible en la Editorial CSIC Los Libros de la Catarata.

 

Las legumbres, aliadas en la lucha contra el cambio climático

Por Mar Gulis

Las legumbres son un alimento muy popular en nuestro país por su alto valor nutricional (pese a que su consumo está decayendo en los últimos años). Quizás menos conocido es que con ellas se producen harinas como sustituto del cacao, como el algarrobo, o que sus raíces se utilizan como especias (por ejemplo, el regaliz). Muchas legumbres se emplean además como alimento para animales (alfalfa, veza y trébol) o para la producción de principios activos medicinales, aceites, tinturas y fibras, entre otros productos. Como consecuencia, las leguminosas se encuentran entre los cultivos más importantes a nivel mundial, solo detrás de los cereales. Pero además las legumbres pueden ser aliadas en la lucha contra el cambio climático. Tal y como cuentan los autores del libro de divulgación Las legumbres (CSIC-Catarata), la clave está en que ayudan a fijar el nitrógeno orgánico, uno de los nutrientes, después del agua, más necesarios para el crecimiento de las plantas.

Cartel de la FAO realizado con motivo del Año Internacional de las Legumbres 2016.

En agricultura es muy habitual el uso de abonos nitrogenados. Sin embargo, además de su elevado coste, estos abonos tienen consecuencias medioambientales, ya que una cantidad significativa de ellos son emitidos al aire como óxido de nitrógeno, uno de los gases causantes del efecto invernadero y que, mezclado con el vapor de agua, produce la lluvia ácida. Su sustitución no es baladí si recordamos que, según el Panel Intergubernamental de Expertos sobre el Cambio Climático de la ONU, la agricultura es responsable de cerca del 14% de las emisiones globales de gases de efecto invernadero, un volumen similar al originado por el transporte.

El nitrógeno atmosférico es la forma más abundante de nitrógeno. Los únicos organismos capaces de transformarlo en nitrógeno orgánico son aquellos que poseen la enzima nitrogenasa. Estos organismos pueden realizar la transformación en solitario o en asociación con otros organismos, principalmente con plantas. En este sentido, la asociación simbiótica más importante se da entre unas bacterias del suelo denominadas rizobios y plantas de la familia leguminosae, de las que forman parte las legumbres. Su unión aporta cerca del 80% del total del nitrógeno atmosférico fijado de forma biológica.

La interacción leguminosa-bacteria y el establecimiento de la simbiosis son procesos de gran complejidad en los que intervienen numerosos factores estructurales, bioquímicos y genéticos. El establecimiento de la simbiosis comienza con el reconocimiento entre un rizobio determinado y su planta hospedadora, que consiste en un intercambio de señales químicas que activan recíprocamente programas genéticos específicos. El resultado exitoso de esta interacción es la formación de un órgano nuevo en la planta, el nódulo, donde se lleva a cabo la fijación biológica del nitrógeno atmosférico. La Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO) calcula que las leguminosas pueden llegar a fijar entre 72 y 350 kilos de nitrógeno por hectárea y año.

Este proceso, además de ayudar al crecimiento de la planta, mejora la calidad nutricional de los suelos. Ese suelo queda ‘abonado’ y sigue siendo útil para cultivos posteriores, lo que permitirá a su vez reducir el uso de fertilizantes nitrogenados.

Además de enriquecer los suelos, incluir legumbres en los cultivos reduce el riesgo de erosión y aumenta su potencial de absorción de carbono. Igualmente, las leguminosas soportan mejor los climas extremos y son más resistentes que otros cultivos. Por su amplia diversidad genética permiten obtener variedades mejoradas capaces de adaptarse mejor a condiciones climáticas adversas. ¿Se les puede pedir más?

Mucho más sobre estas plantas en el libro Las legumbres  (CSIC – Catarata), coordinado por Alfonso Clemente y Antonio M. de Ron, de la Estación Experimental del Zaidín del CSIC y la Misión Biológica de Galicia del CSIC, respectivamente.

¿Para qué sirve el reloj interno de las plantas?

Por Ana María Butrón Gómez (CSIC)*

Las llamadas plantas anuales, aquellas que completan su ciclo de vida en un año o menos, deben ser capaces de florecer, ser polinizadas y granar en el momento adecuado dentro del ciclo anual. Solo así pueden garantizar su supervivencia. Pero ¿cómo saben exactamente cuándo es el momento de florecer? La respuesta tiene que ver con la sensibilidad; las plantas suelen ser sensibles a ciertas claves estacionales, como la duración del día o de la noche, y a la temperatura.

Las plantas de ‘día largo’ son aquellas que florecen cuando el día se alarga por encima de un determinado umbral. Este tipo de plantas, aunque puede haber excepciones, también perciben las bajas temperaturas como una señal para seguir en el estado vegetativo, que es más tolerante al frío que el estado reproductivo (el que va desde floración hasta la formación de la semilla). De modo que seguirán en estado vegetativo hasta que hayan acumulado un determinado número de horas por debajo de cierta temperatura umbral, lo que les asegurará el florecimiento cuando las bajas temperaturas ya hayan pasado. Entre las plantas de ‘día largo’ están el trigo, la cebada, el guisante, la cebolla, la espinaca, la lechuga, la remolacha, etc.

Flores de trigo, cebada, cebolla y guisante. / Lavin y Pixabay

En cambio, las plantas de ‘día corto’, como el arroz, el maíz, el sorgo, la caña de azúcar, o el tabaco, necesitan largos e ininterrumpidos periodos de oscuridad para que se produzca la inducción de la floración. Muchos cultivos de día corto como el maíz y el arroz tienen su origen y/o fueron domesticados en regiones tropicales y subtropicales. En dichas regiones, la época seca suele coincidir con el invierno y la selección ha favorecido a aquellas plantas en las que la floración se induce cuando la duración de la noche supera un umbral (en el curso del verano) y granan antes de la estación seca.

Por último, también hay plantas insensibles a la duración del ciclo día/noche o fotoperiodo, como el pepino y el tomate, entre otras. Estas son llamadas plantas neutrales al fotoperiodo y en ellas la floración es inducida por la edad o por estímulos alternativos.

A medida que el ser humano fue extendiendo los cultivos a áreas distintas de los lugares de origen y domesticación (proceso por el cual una planta deja de ser silvestre y adquiere características propias de las plantas cultivadas), en muchos de ellos, a priori sensibles al fotoperiodo, se pudieron seleccionar variedades insensibles que se adaptaban mejor a las nuevas condiciones ambientales. Es el caso del maíz que, en su camino hacia latitudes más altas, fue fijando variantes genéticas que le conferían insensibilidad al fotoperiodo y le permitían adaptarse al cultivo en las zonas templadas del planeta. Como resultado, hoy este recién llegado es un cultivo habitual en Europa y otras regiones muy alejadas de su origen, América Central.

En gran medida la sensibilidad al fotoperiodo es el resultado de interacciones entre un ‘reloj interno’ de la planta llamado reloj circadiano, y las señales luminosas de su entorno que son captadas por diversos fotorreceptores presentes en las hojas. Así, sólo se encenderá la ‘alarma’ que activa la floración cuando la señal externa coincida con un momento concreto del ritmo interno de la planta.

Fases de floración de la amapola (Papaver rhoeas). / Hunda

Por ejemplo, se sabe que en una pequeña planta que se utiliza como modelo en muchos estudios, Arabidopsis, la acumulación de una proteína que pone en marcha el mecanismo de inducción de la floración está controlada por el reloj interno. Cuando  los días son cortos, este pico de acumulación de la proteína coincide con la noche y la oscuridad hace que la proteína se degrade. Sin embargo, cuando la acumulación se produce antes del anochecer, que es lo que sucede cuando se alarga el día, hay varios fotorreceptores sensibles a la luz blanca, azul y roja lejana que estabilizan la proteína. En estas circunstancias, la proteína activa el proceso de inducción de la floración en el que intervienen muchos otros genes.

En resumen podría decirse que los estímulos externos por sí solos no son capaces de marcar el ritmo biológico de las plantas, sino que para ello es necesario que haya sintonía entre dichos estímulos y el reloj interno que poseen las plantas.

 

 

 

*Ana María Butrón Gómez es vicedirectora de la Misión Biológica de Galicia y científica titular del Grupo de Genética y Mejora de Maíz.

Feromonas: cuestión de (algo más que) sexo

Por Laura López Mascaraque (CSIC)* y Mar Gulis (CSIC)

En 1959, un grupo de químicos alemanes, liderado por Adolf Butenandt, reunieron 313.000 mariposas hembras y les cortaron el extremo del abdomen. Como si de una poción de brujería se tratara, trituraron estas porciones y las disolvieron en diferentes sustancias para observar la respuesta que provocaban los brebajes en los machos de esta especie. De este modo, comprobaron que bastaba con una trillonésima parte de un gramo (10-18 gramos) de mezcla para conseguir algún tipo de reacción por parte del macho. Gracias a este experimento identificaron por primera vez una feromona, a la que denominaron bombicol y que es la responsable de que el macho de la mariposa de la seda (Bombyx mori) mueva sus alas al percibirla.

Mariposa de la seda (Bombyx mori)/ Csiro.

Las feromonas son claves para determinadas relaciones sociales, y sobre todo sexuales, entre varias especies animales, ya sean organismos simples, invertebrados o vertebrados. ¿Qué es y cómo funciona esta potente herramienta capaz de favorecer la comunicación entre individuos en unas concentraciones tan bajas?

Se trata de un tipo de estímulos químicos que transmiten información específica entre individuos de la misma especie, generando normalmente una respuesta tipo. En los casos más evidentes provocan un cambio inmediato en el comportamiento del animal receptor o un cambio en su desarrollo: generan movimientos determinados, actúan sobre la fisiología reproductiva o transmiten un estado de salud determinado o un estatus social dentro de una comunidad.

Las feromonas pueden ser compuestos específicos o mezclas de ellos. En cualquier caso, son compuestos con propiedades físicas y químicas concretas. Una vez liberada se podría decir que la feromona tiene vida propia. La duración de su mensaje dependerá de la persistencia de las moléculas en el ambiente, y el alcance dependerá tanto de esa vida media como de la facilidad de ser transportada por el aire o por una corriente de agua.

En general son sustancias pequeñas, volátiles, que se dispersan con facilidad en el ambiente y que generan efectos en cantidades minúsculas. Según sea su función, así serán sus características: estables y poco volátiles cuando el objetivo es marcar los límites de un territorio, o bien de corta vida y rápida difusión cuando lo que se busca es alarmar ante una situación de peligro…En definitiva, el requisito indispensable es que sean capaces de generar una reacción determinada dentro de la misma especie.

Protozoo, lombriz de tierra y ratón doméstico/ EPA, Holger Casselmann y George Shulkin.

Existen feromonas en organismos simples, como ciertos protozoos (Chlamydomonas) que producen esta sustancia en sus flagelos para conseguir que otros protozoos se agreguen a él. También existen estos compuestos en invertebrados, como la lombriz de tierra (Lumbricus terrestres), que bajo situaciones de estrés segrega una feromona que alerta al resto sobre algún peligro inminente. O en algunos vertebrados, como el macho del ratón doméstico (Mus musculus domesticus), que emite una feromona que genera agresividad en el resto de machos a la vez que atrae a las hembras maduras y acelera la pubertad en las más jóvenes. Pero, ¿qué pasa con los humanos? ¿existen feromonas que influyan en nuestro comportamiento?

Parece mentira, pero aún se desconoce la existencia de feromonas en los seres humanos. Hay diversos estudios que pueden relacionar las feromonas con fenómenos como el reconocimiento recíproco entre una madre y su hijo recién nacido, la denominada sincronía menstrual que ocurre entre las mujeres que viven o trabajan juntas o la reacción que puede provocar sobre los que nos rodean el olor corporal que emitimos en situaciones de estrés. Sin embargo, la creencia es que los olores personales están influidos por la dieta, el ambiente, la salud y la genética. Se piensa que tienen demasiadas sustancias para ser descritos como feromonas y, de hecho, no se ha podido identificar una molécula que se haya definido como feromona humana. Eso no ha disuadido a un grupo de emprendedores para montar empresas que venden pociones de amor que supuestamente contienen feromonas, aunque en realidad, en el mejor de los casos, contienen feromonas, sí, pero de cerdo.

* Laura López Mascaraque es investigadora del Instituto Cajal  del CSIC y autora, junto con José Ramón Alonso de la Universidad de Salamanca, del libro El olfato de la colección ¿Qué sabemos de?, disponible en la Editorial CSIC y Los Libros de la Catarata.

 

¿Qué es la marea roja que afecta a algunas playas?

Por Elena Ibáñez y Miguel Herrero (CSIC)*

En La Jolla (San Diego, California), el mar adquiere un tono rojizo debido a las proliferaciones algales / Alejandro Díaz.

A veces, el mar cambia su tonalidad azul hacia el verde, el marrón, el rojo o el blanco. Este episodio, conocido como marea roja, se debe al crecimiento masi­vo de unas algas microscópicas: el fitoplancton. La proliferación masiva de las algas se produce cuando se dan condiciones ambientales favora­bles de luz, temperatura, salinidad y disponibilidad de nu­trientes. Bajo estas circunstancias, algunas algas pueden crecer y alcanzar concentraciones muy elevadas (del orden de miles o millones de células por litro) en comparación a su concentración natural en el ambiente (decenas o centenas de células por litro). A este suceso se le denomina prolife­ración algal y su color (si lo posee) dependerá del tipo de pigmento predominante del alga, así como de su concentración.

Muchas proliferaciones algales son beneficio­sas, ya que proporcionan alimento a peces y organismos marinos; sin embargo, algunas algas con características nocivas para otros seres vivos generan proliferaciones algales nocivas (PAN) o algal Bloom. Estas especies perjudiciales pueden impactar negativamente en la salud tanto del ser humano como de animales debido a la producción de potentes toxinas naturales y/o provocar graves pérdidas económicas y ecológicas. De entre las 5.000 especies descritas de fito­plancton marino, unas 300 son susceptibles de provocar proliferaciones capaces de cambiar el color del mar, y solo unas 60 pueden pro­ducir toxinas, algunas de ellas con un elevado potencial tóxico.

Los impactos de las PAN son diversos. Las algal Bloom asociadas a un elevado contenido en bio­masa suelen implicar la reducción del oxígeno disponible en el fondo de las aguas. Cuando la proliferación llega a su fin, las algas se hunden y son las bacterias quienes las descomponen y consumen todo el oxí­geno disponible en el agua, por lo que los peces y otros organismos no pueden respirar. Si las concentraciones de biomasa son tan grandes que las podemos ver a simple vista, la luz no podrá penetrar en la columna de agua, alcanzando solo la su­perficie. Esto provoca que otras plantas, fuente de alimento para muchos peces, no puedan crecer y se altere el hábitat natural.

Las algal bloom, también presentes en agua dulce, pueden ser una amenaza para los seres vivos que habitan en las aguas afectadas / Lamiot.

También existen especies que producen PAN con bajas concentraciones de biomasa y que pueden ser nocivas debido a la producción de biotoxinas paralizantes, diarreicas, amnésicas, etc., que provocan un envenenamiento con efectos sobre el sistema nervioso y digestivo de mejillones, almejas, navajas y otros organismos que se alimentan de fitoplancton. Por tanto, las toxinas pueden llegar a afectar al ser humano por ingesta de marisco contaminado.

Aunque los organismos responsables de las PAN existen desde hace siglos, ahora se observa una mayor actividad de los mismos. Esto puede ser debido, en parte, a que disponemos de mejores métodos de detección e identifica­ción de toxinas y más observadores pendientes de estos sucesos. Al mismo tiempo, la mayor parte de la comuni­dad científica cree que la polución y la actividad humana son responsables del aumento de las PAN. Sin embargo, no siempre existe una relación directa. En muchos casos, la introducción inicial de las especies tó­xicas se ha debido a corrientes oceánicas u otros fenómenos naturales como los huracanes. No obstante, no podemos obviar la relación entre un aumento en los nutrientes de las aguas costeras con la proliferación de algas que pueden originar los blooms. Algunos investigadores argumentan que los nutrientes que llegan a las aguas coste­ras, producto de las actividades humanas, son tan distintos a los que habría de forma natural que solo algunos grupos de algas ven favorecido su crecimiento, por su mejor capacidad de adaptación. Entre estos grupos se encuentran algunas de las especies responsables de las PAN, como el dinoflagelado Pfiesteria, cuya proliferación se ve fa­vorecida en aguas contaminadas.

También las crecientes áreas de recreo cos­teras (playas con espigones o puertos deportivos) dan lugar a zonas donde la tasa de renovación del agua es baja, una de las condiciones para que los blooms se desarrollen. Otro factor importante es la dispersión geográfica de especies tóxicas mediante embarcaciones de recreo, residuos de plásticos flo­tantes, etc. Pero tampoco hay que caer en el alarmismo. Aunque parece que las PAN son cada vez más comunes en nuestras playas, la mayoría de estas proliferaciones no son tóxicas y sólo producen un cambio de coloración en el agua. Esto puede resultar desagradable, pero no peligroso.

 

* Elena Ibáñez y Miguel Herrero trabajan en el Instituto de Investigación en Ciencias de la Alimentación (CSIC) y son autores del libro Las algas que comemos (CSIC-Catarata).

Menús de algas contra el cambio climático y la superpoblación

Por Mar Gulis (CSIC)

Si eres fan de la cocina japonesa, te habrás hartado a comer nori, wakame o espaguetis de mar. Y si no, puede que acabes degustando estas y otras algas más pronto que tarde. Hablamos de un alimento que, aunque aquí se vincule aún con restaurantes modernos, en el continente asiático se consume habitualmente desde tiempos remotos. En Japón, por ejemplo, “se emplean más de 20 especies diferentes de algas en platos comunes”, afirman los investigadores del CSIC Elena Ibáñez y Miguel Herrero. Y en textos chinos de hace más de 2.500 años se describe a estos organismos como “una delicia para los huéspedes más selectos”, señalan en su libro Las algas que comemos (CSIC-Catarata). En la obra, Ibáñez y Herrero, del Instituto de Investigación en Ciencias de la Alimentación –centro mixto del CSIC y la Universidad Autónoma de Madrid–, describen en tono divulgativo las propiedades nutricionales de las algas, su potencial en la alimentación o su papel en la lucha contra el cambio climático.

Microscopía del cocolitóforo unicelular de la alga Gephyrocapsa oceanica / Neon ja

“Las algas son organismos fotosintéticos que poseen estructuras reproductivas simples y que pueden existir en forma de organismos unicelulares microscópicos o de organismos multicelulares de gran tamaño”, explican. Tienen características únicas que las diferencian de otros seres vivos, como su gran capacidad de adaptación a las condiciones ambientales y su rápido crecimiento, por lo que pueden obtenerse en grandes cantidades.

De su enorme diversidad da idea el siguiente dato: se considera que existen al menos 40.000 especies diferentes, con propiedades y composiciones químicas muy diversas. Hay también muchas clasificaciones, como la que diferencia entre microalgas (unicelulares y microscópicas) y macroalgas, más parecidas a lo que podríamos denominar plantas acuáticas. Dentro de esta última categoría comúnmente se habla de algas rojas, marrones, verdes… Sin embargo, desde el punto de vista nutricional sí pueden observarse algunas características comunes. En general, estos organismos “son ricos en polisacáridos y poseen muy poca grasa”, de ahí que se les considere alimentos saludables. En otras palabras, aportan fibra, que favorece el tránsito intestinal, y tienen poco aporte calórico.

Diferentes presentaciones culinarias a base de algas / Ewan Munro y Max Pixel

Además, Ibáñez y Herrero subrayan que algunas especies de algas son bastante ricas en proteínas. “Mientras que en las algas verdes y rojas la cantidad de proteína puede oscilar entre un 10% y un 30% de su peso seco, las algas marrones son más pobres en este tipo de componentes”. En concreto, los autores destacan las algas rojas, como Porphyra tenera (Nori), por su elevado contenido proteico. Respecto a su aporte vitamínico, este varía mucho según la especie y la estación del año, pero en general la vitamina C se encuentra presente en muchas algas en cantidades importantes.

Y aún hay más: los polisacáridos de algas pueden incluir otros componentes como los alginatos, utilizados por la industria alimentaria como espesantes para elaborar helados, salsas o las sofisticadas ‘esferificaciones’ propias de la cocina molecular. O los carragenanos, muy presentes en la alga roja Chondrus crispus, para formar geles. Asimismo, las algas más consumidas suelen “tener una buena cantidad de ácidos grasos poliinsaturados omega-3 y omega-6”, que pueden reducir el riesgo de desarrollar cáncer de colon, próstata y mama.

Algas empleadas en la preparación de maki sushi / Lizzy

Más allá de sus propiedades nutricionales, los investigadores inciden en otro aspecto: lo fácil que es su cultivo y lo rápido que crecen. Algo crucial a la luz de los pronósticos demográficos de la ONU. Según este organismo, para 2030 la población mundial aumentará en 1.000 millones de personas, situándose en unos 8.600 millones. Ante la necesidad de incrementar la producción de alimentos con valor nutritivo y cuyo cultivo sea sostenible mediambientalmente, los autores recuerdan la importancia de los recursos marinos, en particular las algas, para las próximas décadas. Estos seres vivos pueden ser una alternativa “a la síntesis química para la obtención a gran escala de determinados compuestos”, plantean.

Finalmente, su gran capacidad para absorber CO2, el principal gas causante del cambio climático, hace que el cultivo de algas se contemple como otra vía para reducir las emisiones a la atmósfera. Incluso el tratamiento de aguas residuales podría abordarse recurriendo a estos microorganismos, ya que son capaces de utilizar como nutrientes sustancias contaminantes que aparecen disueltas en este tipo de aguas, como el CO2, el nitrógeno y el fósforo.

¿Influyen nuestras bacterias en la forma en que nos comportamos?

Por Mar Gulis (CSIC)

Imagina un villano que logra controlar la voluntad de la gente mediante la manipulación de su microbiota intestinal, es decir, el conjunto de microorganismos –en su mayoría bacterias– que habitan en nuestro intestino y nos ayudan a digerir los alimentos. Tore Midtvedt, del Instituto Karolinska de Estocolmo, sugirió en clave de humor que éste podría ser el argumento de una novela negra. Cuentan la anécdota Carmen Peláez y Teresa Requena, investigadoras del CSIC, en su libro La microbiota intestinal (CSIC-Catarata). Tal y como señalan en la obra, hoy existe un creciente interés en torno a ese fascinante eje cerebro-intestino-microbiota.

Una parte de la comunidad científica está investigando la relación bidireccional que se da entre la microbiota y el funcionamiento del cerebro o incluso nuestros comportamientos. Se trata de un campo sumamente interesante, pero también muy complejo. La pregunta que espera respuesta es “si podemos conceder a los microorganismos cierto papel como participantes en nuestra inconsciencia”, que a su vez imperceptiblemente puede dictar nuestra conducta, señalan Peláez y Requena.

Las investigadoras recogen en el libro algunos ejemplos de esta tesis. John Cryan y Timothy Dinan, de la Universidad de Cork (Irlanda), sostienen que “las bacterias influyen en nuestro comportamiento alimentario”. Desde esta perspectiva, “la microbiota lanzaría alguna señal al cerebro para informarle de que le aporte tal o cual tipo de nutrientes, que son los que habitualmente ingerimos y a los que se ha adaptado su metabolismo”. Es más, el que nos apetezcan determinados alimentos se debe a la ‘expectativa de recompensa’ (el placer anticipado que nos aporta la elección), algo que depende de los niveles de dopamina en el cerebro. Y precisamente “algunas bacterias como H. pylori modulan la producción de dopamina y, por tanto, los niveles de recompensa. ¿Estaría esta bacteria del estómago diciéndonos qué es lo que nos apetece comer?”, se preguntan las investigadoras.

Helicobacter Pylori es una de las bacterias que habitan en nuestro estómago KGH / Wikipedia

Pero las relaciones entre el cerebro y la microbiota pueden ser más sofisticadas. Algunos autores consideran que esos millones de microorganismos serían capaces de manipular otros comportamientos. Por ejemplo, “influir en nuestro estado de ánimo a través de la serotonina, conocida como hormona de la felicidad, o tener el papel contrario y producir malestar o incluso dolor”. Peláez y Requena aluden a estudios recientes que han vinculado el estrés de los recién nacidos que sufren de cólicos con un desequilibrio intestinal producido por una pérdida de diversidad bacteriana.

Y aún más sorprendente es la siguiente hipótesis que plantean: la posibilidad de que las bacterias puedan manipular los comportamientos sociales, es decir, “nuestras preferencias para relacionarnos incluso sexualmente o para vivir en grupos sociales”. Las investigadoras se refieren a la mosca del vinagre, un insecto que, a la hora de aparearse, parece estar influido por la bacteria Lactobacillus plantarum, ubicada en su tracto intestinal. “Aparentemente esta bacteria produce metabolitos a partir de la fermentación del almidón que ingiere la mosca y que inducen la producción de feromonas, influyendo así en sus preferencias sexuales de apareamiento al solo elegir moscas que también ingieren almidón. Podríamos decir que la bacteria ayuda a la mosca a buscar pareja y, además, una pareja con sus mismos gustos alimentarios”.

Ahora bien, ¿se pueden extrapolar estas teorías a los seres humanos? Según algunos expertos, sí. Concretamente, las investigadoras citan a Michael Lombardo, de la Universidad Grand Valley (EE UU). Este autor defiende que la evolución de los seres vivos invertebrados y vertebrados hacia el comportamiento gregario y social “no ha respondido solo a la necesidad común de defensa, optimización de recursos alimentarios o crianza de la prole. Podría existir también otro factor más sutil como la necesidad de transmisión interindividual de una microbiota beneficiosa que aporta múltiples beneficios”.

Peláez y Requena coinciden en que, teniendo en cuenta los beneficios nutricionales y protectores que la microbiota intestinal nos aporta y la facilidad de transmisión vertical y horizontal en el ámbito familiar y social, estas teorías también pueden ser válidas para la especie humana. No obstante, advierten, “aún hay que profundizar en los mecanismos concretos por los que la microbiota afecta a la salud humana y a nuestro comportamiento”.

¿Se pueden clasificar los olores?

Por Laura López Mascaraque (CSIC)* y Mar Gulis (CSIC)

En los últimos años nos han llegado noticias de la posible existencia de nuevos sabores. A los que ya nos son conocidos (dulce, salado, amargo, ácido y umami), se van sumando otros como el ‘oleogustus’ o sabor a grasa o el ‘sabor a almidón’ de los alimentos ricos en carbohidratos o azúcares complejos. No obstante, ninguno de estos sabores está confirmado, dado que todavía no se han descubierto receptores específicos en la lengua que los identifiquen. Pero, ¿qué pasa con los olores? Ambos sentidos, el gusto y el olfato han estado siempre muy ligados. Somos capaces de detectar infinidad de olores, eso es cierto, pero, ¿somos capaces de definirlos? ¿Percibimos todos los humanos los mismos olores y nos provocan a todos la misma sensación?

De los cinco sentidos, el olfato es el más desconocido, pero también el más primitivo, el más directo, el que más recuerdos evoca y el que perdura más en nuestra memoria. Nos da información de nuestro mundo exterior; aunque con frecuencia esto sucede de forma inconsciente. Cuando olemos, las moléculas emitidas por una determinada sustancia viajan por el aire y llegan a las neuronas sensoriales olfativas, situadas en la parte superior de la nariz, que son las responsables de reconocer el olor y hacer una conexión directa entre el mundo exterior y el cerebro.

El olfato es el sentido más primario. / Christoph Schültz.

El mecanismo es el siguiente: en nuestra nariz se encuentra el epitelio olfativo donde hay millones de células denominadas neuronas sensoriales olfativas.  En los cilios que tienen estas neuronas (receptores olfativos) es donde ocurre la interacción entre el compuesto volátil y el sistema nervioso. Las moléculas de olor encajan en los receptores olfativos como una llave en una cerradura. Cuando esto ocurre, se libera una proteína y tras una serie de acontecimientos se crea una señal que finalmente es procesada por el encéfalo. Parece un mecanismo relativamente sencillo, pero si tenemos en cuenta que nuestra nariz conserva aproximadamente 400 tipos de receptores olfativos o que las neuronas olfativas se renuevan constantemente a lo largo de nuestra vida, la única población neuronal donde esto sucede, la cosa se complica.

En nuestra cultura el valor que se le atribuye al sentido del olfato es muy bajo. Es casi imposible explicar cómo huele algo o describir cómo es un olor a alguien que carece de olfato, que es anósmico. Ya que no existe un nombre para un olor determinado, es generalmente el objeto lo que da nombre a ese olor: a limón, a jazmín…pero, ¿existe alguna clasificación? A lo largo de la historia los olores se han tratado de clasificar de diferentes maneras. Platón ya distinguía entre olores agradables y desagradables y, más adelante, el naturalista Linneo distinguía hasta siete tipologías de olores basándose en que los olores de ciertas plantas nos evocan olores corporales o recuerdos. Así, teníamos olorosas o perfumadas, aromáticas, fuertes o con olor a ajo, pestilentes o con olor a cabra o sudor, entre otras. En 1895, Zwaardemaker agregó a la lista de Linneo dos olores (etéreo y quemado) y en 1916, Hans Henning presentó un diagrama en forma de prisma donde colocaba seis olores básicos en la base y olores intermedios en las aristas y caras. John Amoore, ya en el siglo XX, clasificaba siete olores primarios en la naturaleza basándose en el tamaño y forma de sus moléculas: alcanfor, almizcle, menta, flores, éter, picante y podrido.

Ninguna de estas clasificaciones ha llegado a aceptarse universalmente. Una de las más recientes utiliza métodos matemáticos y, tras el estudio de 144 olores, los clasifica en diez categorías: fragante/floral, leñoso/resinosa, frutal no cítrico, químico, mentolado/refrescante, dulce, quemado/ahumado, cítrico, podrido y acre/rancio. Sin embargo, probablemente ninguna de estas clasificaciones representa las sensaciones primarias verdaderas del olfato. Los aromas son mezcla de olores primarios formados por diferentes compuestos químicos y cada estructura molecular confina un olor propio. Hasta la orientación de las moléculas afecta a su olor, ya que cuando una molécula es quiral o espejo (sin eje de simetría), en una forma huele a una cosa y en su forma especular, a algo distinto. Este es el caso de la carvona, que puede oler a comino o a menta según su orientación, o del limonelo, que asociamos a la naranja o al limón.

Esquema funcional de olor. / Lluis Fortes.

A estas alturas ya habrá quedado claro que es muy complejo llegar a una clasificación concreta y a gusto de todos. Además hay que tener muy en cuenta la importancia de la componente social, cultural y personal de los olores. Al percibir determinados olores, estos evocan imágenes, sensaciones o recuerdos. Esto se debe a que el olfato forma parte del llamado sistema límbico, el centro de emociones del cerebro, formado por varias estructuras que gestionan las respuestas fisiológicas ante estímulos emocionales.

La información olfativa se procesa en la corteza olfatoria primaria, que tiene una conexión directa con la amígdala y el hipocampo. Dado que la amígdala está relacionada con la memoria emocional y el hipocampo con la memoria y el aprendizaje, ambos tienen un potencial enorme para evocar recuerdos. Los recuerdos asociados a olores no son tanto hechos o acontecimientos, como las emociones que estos olores pudieron haber provocado en nosotros en un momento determinado de nuestras vidas.

En definitiva, el olfato tiene unas implicaciones sociales y emocionales muy importantes: determinados olores pueden cambiar nuestro humor, despertar emociones o evocar recuerdos ¿Podremos llegar en un futuro a poder guardar olores en alguna ‘caja de recuerdos’? Esto nos permitiría destaparlos y desencadenar un torrente de emociones en todos los sentidos.

* Laura López Mascaraque es investigadora del Instituto Cajal  del CSIC y autora, junto con José Ramón Alonso de la Universidad de Salamanca, del libro El olfato de la colección ¿Qué sabemos de?, disponible en la Editorial CSIC y Los Libros de la Catarata.