Archivo de la categoría ‘Biología’

Ecosistemas de carbono azul: grandes aliados frente al calentamiento global

Por Noemí Guillem Planella (CSIC)*

Casi todo el mundo sabe que la vegetación terrestre capta dióxido de carbono de la atmósfera y nos devuelve oxígeno. Pero, sin duda, es menos conocido el papel de mares, océanos y ecosistemas costeros en la captación y retención de este compuesto, el que más contribuye al calentamiento global.

Árboles y plantas terrestres emplean CO2 para hacer la fotosíntesis y acumulan el carbono en forma de hojas, tallos y troncos, así como en los suelos. Este carbono que retienen se conoce como ‘carbono verde’. Las plantas acuáticas ―las que encontramos bajo el mar y en espacios costeros― hacen exactamente lo mismo. Captan CO2 y lo utilizan para realizar el proceso que les permite obtener energía. Guardan carbono en sus hojas, rizomas y raíces, y entierran cantidades importantes de este elemento en los sedimentos en que crecen. Es el llamado ‘carbono azul’.

Investigador del CEAB trabaja en praderas de posidonia. / CEAB

Investigador del CEAB trabaja en praderas de posidonia. / CEAB

Los ecosistemas que realizan esta función son conocidos como ‘ecosistemas de carbono azul’ y tienen la particularidad de retener durante miles de años el CO2 capturado. Esta familia de ecosistemas incluye:

  • Las praderas o ‘bosques’ marinos: extensiones de plantas en los fondos costeros marinos como, por ejemplo, Posidonia oceanica, Zostera marina, Zostera noltii, Cymodocea nodosa o Halophila stipulacea.
  • Las marismas: terrenos costeros muy llanos que permanecen inundados o se inundan periódicamente como consecuencia del flujo y reflujo de las mareas o de la filtración del agua del mar.
  • Los manglares, que se encuentran en latitudes tropicales y subtropicales, en las desembocaduras al mar de ríos o arroyos. Las especies que los habitan son plantas y árboles acuáticos que resisten la alta salinidad de las aguas marinas que se mezclan con las dulces.
Investigadores del CEAB-CSIC realizan trabajo de campo. / CEAB

Investigadores del CEAB-CSIC realizan trabajo de campo. / CEAB

Sumideros naturales de carbono

Los ecosistemas de carbono azul cubren menos del 2% de la superficie de nuestro planeta, ya que han sido gravemente maltratados a lo largo de la historia ―y aun hoy en día― por los seres humanos. A pesar de ello, cumplen un importantísimo papel en el ciclo del carbono.

Miguel Ángel Mateo, investigador del CSIC en el Centro de Estudios Avanzados de Blanes (CEAB), explica por qué: “A pesar de su reducida extensión, capturan entre 300 y 800 millones de toneladas de CO2 cada año, es decir entre el 0,8 y el 2% del CO2 que los seres humanos emitimos anualmente. Es la mitad de todo el carbono orgánico enterrado por los océanos del planeta. Y, aún más importante, secuestran y retienen ese carbono de cientos a miles de años”.

El científico señala que los hábitats que forman estas plantas acuáticas son auténticos sumideros naturales de carbono: “aunque capturan el CO2 de forma más lenta que los bosques, son mucho más eficientes almacenándolo”. Esto es así porque los suelos de los ecosistemas de carbono azul están permanentemente cubiertos de agua, lo que hace que la materia se descomponga de forma mucho más lenta que la mayoría de los ecosistemas terrestres. “El ecosistema guarda ese carbono, y va almacenando más y más, todo el tiempo que se mantiene vivo y sano”, apunta el investigador. “Hemos llegado a datar depósitos de carbono azul de hasta 12.000 años de antigüedad”, añade.

Miguel Ángel Mateo investiga en una pradera de posidonia. / CEAB

Miguel Ángel Mateo investiga en una pradera de posidonia. / CEAB

Ecosistemas amenazados

El carbono almacenado por estos ecosistemas equivale, como mínimo, a todo un año de las emisiones provocadas por los seres humanos. Sin embargo, “seguimos destruyendo estos valiosos ecosistemas”, lamenta Fernando Brun, investigador de la Universidad de Cádiz. “Se han desecado, hemos construido encima de ellos, se contaminan, se han arrasado con la pesca de arrastre, con el fondeo sin control de embarcaciones…”, enumera el especialista.

Los expertos calculan que el deterioro o la destrucción de estos espacios hacen que cada año se liberen unos 300 millones de toneladas de CO2. “Cuando destruimos uno de estos ecosistemas, el carbono que estaba almacenado se remineraliza y se devuelve a la biosfera, agravando el cambio climático”, explica Brun.

La necesidad y urgencia de preservar estos ecosistemas ha llevado a estos dos científicos a liderar el Grupo Español de Expertos en Ecosistemas de Carbono Azul (G3ECA), que reúne a profesionales de ámbitos diversos especializados en carbono azul. De reciente creación, el grupo no solo investiga y sensibiliza sobre la función de estos ecosistemas en el ciclo del carbono. También da a conocer otros de los servicios ecosistémicos que proporcionan.

Los especialistas recuerdan que la vegetación acuática es el primer eslabón de la cadena trófica, crea espacios claves para la biodiversidad ―son el hábitat o refugio de muchas especies―, filtran el agua eliminando contaminantes y protegen las costas de la erosión y de los fenómenos extremos, cada vez más frecuentes con el cambio climático. “Muchos beneficios que, a menudo, parecen que no se tienen en cuenta”, sentencian.

* Noemí Guillem Planella pertenece al equipo de comunicación del Centro de Estudios Avanzados de Blanes (CEAB-CSIC).

Microplásticos: uno de los mayores problemas ambientales del siglo XXI

Por Ana Torres-Agulló (CSIC) *

En 2018, ‘microplástico’ fue elegida como palabra del año por la Fundación del Español Urgente y, desde entonces, su popularidad no ha parado de crecer. La RAE, que aceptó el término oficialmente a finales de 2022, define ‘microplástico’ como “pieza de plástico extremadamente pequeña, manufacturada como tal o resultante de la fragmentación de plásticos más grandes, no soluble en agua y muy poco degradable”. Científicamente, los microplásticos engloban partículas plásticas con un tamaño inferior a 5 milímetros, lo que equivale, aproximadamente, al tamaño de un grano de arroz.

A día de hoy, la mayoría de nosotros estamos familiarizados con esta palabra, ya que por desgracia encontramos microplásticos en todo lo que nos rodea: mares, suelos, alimentos, bebidas e, incluso, el aire que respiramos. Su presencia masiva en nuestro entorno los convierte en uno de los mayores problemas medioambientales del siglo XXI, pero… ¿de dónde salen tantos microplásticos?

Plásticos que se degradan, detergentes o purpurina

La producción de plásticos ha aumentado un 212% en los últimos 70 años, hasta llegar a los 360 millones de toneladas al año. Una de las principales fuentes de microplásticos, y quizás la más conocida, es la degradación de grandes plásticos que se encuentran acumulados en el medio ambiente. La abrasión, la luz solar y otros mecanismos de erosión ‘fabrican’ microplásticos a partir de plásticos más grandes.

Pero, por si la degradación de millones de plásticos no fuese suficiente, existe otra importante fuente de este pequeño contaminante: los plásticos directamente fabricados en este rango de microtamaños. En esta categoría se incluyen microplásticos que consumimos de forma habitual, aunque quizás no de forma consciente, en nuestro día a día: geles exfoliantes, limpiadores faciales, detergentes o productos de limpieza, entre otros.

Un ejemplo paradójico de este tipo contaminación es la purpurina que, de aspecto colorido y brillante, comúnmente asociamos a celebraciones, fiestas y diversión. Sin embargo, es un microplástico altamente contaminante debido a su pequeño tamaño y su amplia utilización, por lo que la Unión Europea ha prohibido su uso y fabricación.

Comerse una tarjeta de crédito cada semana

La abundante presencia de microplásticos en nuestro alrededor hace que estemos constantemente expuestos a ellos y que, como consecuencia, puedan afectar a nuestra salud. Y es que también se han encontrado en la mayoría de compartimentos de nuestro organismo, como los pulmones, la sangre, la orina y hasta la placenta.

Las cantidades que se detectan son variables, pero, por ejemplo, según un informe encargado en 2019 por el Fondo Mundial para la Naturaleza (WWF), si considerásemos únicamente los microplásticos que ingerimos a través de alimentos y bebidas… podríamos estar acumulando el plástico equivalente a una tarjeta de crédito cada semana. Y todo esto sin tener en cuenta otras vías de entrada al organismo como la inhalación o el contacto dérmico.

Más investigación, más regulación

Para conocer los efectos de los microplásticos sobre nuestro cuerpo todavía necesitamos más investigación, pero todo apunta a que están directamente relacionados con efectos cancerígenos y procesos inflamatorios. Aunque los resultados sobre la toxicidad de los microplásticos todavía no son concluyentes, sí se ha demostrado la peligrosidad para la salud humana de los aditivos plásticos o metales pesados que se introducen en el organismo junto a los microplásticos . Hoy en día, más de 13.000 compuestos químicos se utilizan como aditivos plásticos. Unos de los más conocidos son los ftalatos, que pueden llegar a suponer hasta el 40% del peso total de algunos polímeros como el PVC. Se ha demostrado que esta familia de compuestos, comúnmente utilizados como plastificantes y retardantes de llama en los plásticos que utilizamos, pueden, además de influir en patologías como la diabetes u obesidad, estar relacionados con enfermedades respiratorias, cardiovasculares y neurológicas o afectar al sistema reproductivo.

La problemática de los microplásticos no ha hecho más que comenzar y, siguiendo con las tendencias de producción de plásticos actuales, se incrementará de forma exponencial en los próximos años. La Comisión Europea está trabajando en su regulación y restricción de su consumo. ¿Conseguirán evitar que nos convirtamos en parte de Barbieland?

*Ana Torres-Agulló es investigadora predoctoral en el Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA) del CSIC.

 

Illustraciencia 11 presenta las mejores ilustraciones científicas del año

¿Sabías que el desierto de Chihuahua vive una culebra con un ‘parche’ en el ojo? ¿Y que los flamencos se alimentan filtrando el agua a través de su pico? ¿Habías oído que nuestro cerebro es un ‘bosque neuronal’? Estos son solo algunos de los fenómenos que las imágenes premiadas en Illustraciencia 11 te invitan a descubrir.

El certamen internacional de ilustración científica y naturalista organizado por el Consejo Superior de Investigaciones Científicas (CSIC) y la Asociación Catalana de Comunicación Científica (ACCC) acaba de anunciar las ocho obras ganadoras de su undécima edición, seleccionadas entre las cerca de 500 que se presentaron. Infografías, acuarelas, ilustraciones digitales, dibujos a tinta o a lápiz… las propuestas escogidas por el jurado y el público demuestran un año más que cualquier técnica es válida para transmitir el conocimiento científico.

Culebra chata del desierto. / Alejandro González Gallina (México)

La culebra ‘pirata’ del desierto de Chihuahua

Premio Ilustración Naturalista

La culebra chata del desierto (Salvadora deserticola) es endémica del desierto chihuahuense, ubicado entre México y Estados Unidos. Se trata del desierto más grande en Norteamérica y el segundo con mayor diversidad a nivel mundial, e incluye los estados mexicanos de Chihuahua, Coahuila, Nuevo León, Durango, Zacatecas y San Luis Potosí y, en Estados Unidos, Arizona, Nuevo México y Texas. De complexión esbelta y tamaño mediano, la Salvadora deserticola es un animal ágil y veloz, reconocible por la singular característica que le da su nombre común: una escama prominente en el rostro y que recuerda a un parche. Algunos investigadores especulan que se trata de una adaptación para cavar en busca de huevos de reptiles (Degenhardt, et al, 1996), aunque la mayor parte de su dieta la componen lagartijas que caza activamente durante el día.

Alimentación por filtración del flamenco común. / Ana Fernández Pero (España)

Pelícanos filtradores

Premio Ilustración Científica

Los flamencos comunes (Phoenicopterus roseus) filtran el agua con su pico para obtener las algas, el plancton y los moluscos de los que se alimentan. Cuando quieren comer, sumergen su cabeza y se desplazan o la mueven de un lado a otro (f). El agua entonces atraviesa su robusto y curvado pico, que posee una serie de laminillas filtradoras y, a continuación, se encuentra con una carnosa lengua provista de pilosidades que facilitan la ingesta de alimento (c). La infografía representa también la cabeza de estos animales (a), el cráneo (b) y la parte superior (d) y las terminaciones nerviosas de su pico (e).

Bosque neuronal. / Blanca Gimeno Capmany (España)

Un bosque de neuronas

Premio Año Cajal

El cerebro es un gigantesco y complejo bosque neuronal. En un milímetro cúbico, el tamaño de la cabeza de un alfiler, hay 27.000 neuronas y mil millones de conexiones sinápticas: un intrincado sistema donde múltiples redes neuronales trabajan en conjunto para resolver problemas complejos, manejar grandes conjuntos de datos y adaptarse a nuevas situaciones. Esta ilustración digital representa este frondoso entramado celular.

Instrumentos musicales cerámicos del pueblo extinto Muisca. / Ariadna Valenzuela (Colombia)

Instrumentos con formas humanas y animales de un pueblo extinto

Mención especial Ilustración Científica

Los muiscas habitaron en el centro de la actual Colombia durante cerca de 2.000 años, pero su civilización se extinguió tras la conquista española. Esta lámina reproduce, con técnicas tradicionales de ilustración arqueológica, algunos de sus instrumentos musicales, que se caracterizan por incluir representaciones de formas humanas y animales. La mayoría son flautas de cuerpo circular (b, d, e y f) que aparentan ser aves con alas extendidas, una forma de representar el vuelo y la cercanía al Sol que la mitología de este pueblo atribuía a estos animales. La imagen también incluye tres instrumentos de percusión: una estatuilla sonajero con forma de mujer (a), un cascabel con forma de ave (c) y una copa sonajero que representa un ser híbrido entre felino y serpiente (g).

Colores del chile de árbol. / Gabriela Zamora Martinez (México)

Los colores del chile

Mención especial Ilustración Naturalista

Picante y de buen aroma, el chile de árbol (Capsicum annuum L. var. annuum) es un ingrediente básico de la gastronomía mexicana. Se trata de un fruto carnoso, brillante y de forma alargada que puede alcanzar los 15 centímetros de longitud. Su etapa de maduración se reconoce por el color. La tonalidad verde intenso es señal de que el fruto se encuentra inmaduro, pero listo para ser recolectado. Con el paso del tiempo, adquiere tonalidades amarillas y naranjas hasta llegar a un rojo brillante, que indica que llegó a su madurez.

Bull Kelp (‘Nereocystis leutkeana’). / Amanda García García (España)

Una macroalga mitológica

Mención especial Ilustración Naturalista

El nombre científico de este organismo, Nereocystis leutkeana, viene del latín y quiere decir ‘vejiga de sirena’. Se trata de una macroalga que puede llegar a medir hasta 36 metros. Su estructura la forman unas raíces (a) que se agarran a las rocas de las profundidades. Les sigue un tallo hueco (b) terminado en un bulbo (c) que contiene monóxido de carbono, lo que permite que se mantenga erguida. De este órgano brotan entre 30 y 64 hojas (d) que ondulan con el movimiento de las mareas, lo que le da el aspecto mitológico que inspira su nombre. Nereocystis leutkeana es la única alga que produce parches de esporas (e), que caen en la cercanía de sus progenitores. De esta forma, surgen los llamados ‘bosques de Kelp’, localizados en el Océano Pacífico. Estas algas sirven como hábitat para muchas especies y son consideradas un preciado bien económico, ecológico y cultural. También podemos encontrarlas en la gastronomía de América y Asia, donde son consideradas un manjar, así como en múltiples referencias del imaginario popular.

‘Cistanche phelypaea – C. violacea’. / Juan Luis Castillo Gorroño (España)

La belleza de las plantas parásitas

Mención especial Ilustración Científica

Existe un grupo fascinante de plantas incapaces de realizar la fotosíntesis y que obtienen sus nutrientes de otras plantas: las plantas parásitas. Estos organismos representan alrededor del 1%, unas 4.000 especies, de todas las plantas con flor y sobreviven conectándose al sistema vascular de sus huéspedes. Cistanche phelypaea (a-k) y C. violacea (l-m) son dos plantas parásitas presentes en la península ibérica. Su tallo subterráneo emerge a la superficie en primavera, exhibiendo una colorida inflorescencia formada por decenas de flores de color amarillo, blanco-amarillento o violáceo en el caso de C. phelypaea y púrpura o violeta en el de C. violacea. Parasitan la raíz de diferentes especies de la familia Chenopodiaceae.

‘Ara glaucogularis’: el guacamayo azul de los Llanos de Moxos. Patricia Nagashiro Vaca (Bolivia)

El guacamayo barbazul, en peligro de extinción

Mención especial del público

El guacamayo azul o guacamayo barbazul (Ara glaucogularis) destaca por su colorido plumaje, pero se caracteriza por el azul con tonalidades turquesa bajo su pico, de ahí su nombre. Las parejas monógamas de esta especie pueden gestar hasta tres huevos al año. Sin embargo, esto no garantiza el nacimiento de polluelos, ya que los huevos son acechados por monos y otros animales. Lamentablemente, esta ave endémica de Bolivia se encuentra en riesgo crítico de extinción debido al tráfico ilegal, los incendios forestales y el cambio climático. La población descubierta en 1993 no superaba los 36 ejemplares, pero, gracias a proyectos de protección y a la creación de cajas nido, su número ascendió a 600 ejemplares libres en 2022. Habitan en los huecos de palmeras (Attalea princepsphalerata, Acrocomia aculeata y Mauritia flexuosa), aprovechando los frutos que les proporcionan como parte de su alimentación.

Si te has quedado con ganas de más ilustraciones científicas, puedes ver las cuarenta imágenes que formarán parte de la exposición Illustraciencia 11 en la web del certamen.

Selección sexual desbocada: cuando los caminos de la seducción son inciertos

Por Gonzalo M. Rodríguez (CSIC)* y Mar Gulis

En Australia, un macho de pergolero satinado (Ptilonorhynchus violaceus) con su plumaje azulado despeja una zona de terreno, construye una especie de escenario y lo tapiza con elementos del mismo color: plumas, piedras, hojas, cristales o plásticos. A continuación, recoge ramitas secas y hace dos paredes que forman algo similar a un pasillo por el que entrar triunfante. Todo ello para deslumbrar a la hembra de su especie.

Macho de pergolero satinado (‘Ptilonorhynchus violaceus’) / Ken Griffiths

Por su parte, en Nueva Guinea y con el mismo propósito, un macho de pergolero pardo (Amblyornis inornata) construye una cabaña de ramitas techada y con aspecto de teatro. Limpia su interior con sumo cuidado para dejar únicamente la tierra a la vista y, sobre ella, va colocando montoncitos de distintos elementos coloridos que dispone como alfombras a la entrada de la pérgola.

En Sri Lanka, un ejemplar de pavo real (Pavo cristatus) despliega su cola en forma de abanico para sorprender a la hembra. Una cola llena de colores, pero aparentemente inútil para el vuelo.

Pavo real (‘Pavo cristatus’) / Jose Miguel Sanchez

Sin duda, procesos fisiológicos o comportamientos tan extravagantes como los descritos han sido seleccionados genéticamente porque provocan una fuerte influencia en las hembras. Pero, ¿por qué pasa esto? ¿Qué tienen esos comportamientos que tanto gustan a las hembras?

Un coste que es necesario asumir

Los ornamentos, los cantos, las mejores cabriolas… son rasgos que se consideran ostentosos, exagerados. Suponen tal riesgo o derroche de energía que, aparentemente, sería más lógico que no existiesen. Sin embargo, pueden explicarse por una relación coste-beneficio en el proceso de comunicación.

Desde el punto de vista del emisor, el macho en este caso, los costes radican en la emisión de la señal, mientras que los beneficios dependen de si el receptor, la hembra, responde o no a la señal enviada.

Por ejemplo, en relación con el coste, cuando el macho de ruiseñor (Luscinia megarhynchos) canta para atraer a la hembra, puede perder hasta un 10% de masa corporal por el esfuerzo que hace. Algo parecido sucede con los machos de muchas especies de lagartos, mamíferos, aves e insectos cuando destinan compuestos muy necesarios para su metabolismo a las secreciones químicas que, a modo de perfume, les permiten llamar la atención de las hembras. Es el caso de las lagartijas lusitana y carpetana (Podarcis guadarramae e Iberolacerta cyreni, respectivamente), que segregan sustancias con ácido oleico y provitamina D3, muy apreciadas por sus parejas.

Macho de lagartija carpetana (‘Iberolacerta cyreni’) / Matthijs Kuijpers

Otros costes a los que el emisor se enfrenta son más indirectos y se relacionan con el riesgo de ser detectado o atraer a individuos indeseados, como depredadores o competidores. Cuando un macho expresa una señal de colores muy llamativos para atraer a una hembra, como la cola del pavo real, asume un riesgo muy grande, ya que no solo será llamativo para la hembra sino que también puede ser visto y cazado por un depredador.

Sin embargo, todos estos costes se compensan con el beneficio que supone fecundar a la hembra. En este caso, el desgate y el riesgo valen la pena.

Cabría preguntarse por qué en los ejemplos citados es el macho el que tiene que hacer tantos esfuerzos para reproducirse. ¿Acaso la hembra no tiene el mismo interés en dejar descendencia? Sí, lo que pasa es que entre ambos sexos hay una diferencia fundamental que da lugar a un conflicto de interés: al macho le cuesta poco producir gametos, y lo hace en gran cantidad, mientras que los de la hembra son pocos y caros. Por eso, para asegurarse descendencia, el macho usa una estrategia basada en conseguir el mayor número de cópulas posibles, mientras que la hembra elige el mejor macho posible. Cantidad frente a calidad.

Cuando la selección se desboca

Lo dicho hasta aquí aclara algunas cosas, pero no acaba de explicar por qué las hembras de algunas especies prefieren machos con rasgos o comportamientos que van en detrimento de sus posibilidades de supervivencia. Para entender esto Ronald Fisher, uno de los genios de la matemática estadística y la biología del siglo XX, expuso la teoría del run-away, es decir selección desbocada.

Pongamos un ejemplo: imaginemos una población de aves en la que los machos son variables en sus rasgos y en la que el emparejamiento se hace completamente al azar, de manera que cada hembra sigue una preferencia distinta al resto. Imaginemos también que, en un momento dado, aparece un nuevo depredador que se mueve por el suelo y que los individuos con una cola más larga y que vuelan mejor consiguen escapar más a menudo de ese depredador.

¿Qué pasará? En pocas generaciones, las hembras con más descendencia serán aquellas que, aunque sea por azar, prefieran aparearse con machos con la cola más larga, porque sus crías también volarán mejor y tendrán más probabilidades de sobrevivir.

Si esa preferencia está ligada a un gen y se hereda, las hembras que elijan machos de cola larga, tendrán hijas que también los prefieran. En este caso, el rasgo del macho (cola larga) y la preferencia de las hembras se habría unido en los mismos individuos y sus genes se heredarían conjuntamente.

Los nuevos individuos se reproducirían más y tendrían más crías y, por tanto, se entraría en un proceso de retroalimentación positiva que desembocaría en que las colas de los machos serían cada vez más largas. Es decir, que ese rasgo se iría exagerando de manera desbocada (de ahí el nombre de esta teoría).

Podría llegarse a un punto en que la cola fuera tan grande que ocasionara un impedimento para la huida de ese depredador. Esto podría parar este proceso de selección, pero no necesariamente. Fisher planteaba que, aunque el rasgo ya no sea óptimo, dado que la preferencia en la hembra sigue existiendo, esos machos seguirán siendo elegidos y el rasgo continuará exagerándose.

Sin embargo, en algún momento entraría la selección natural: la cola sería tan larga que no permitiría volar al ave y los machos con este rasgo serían devorados por el depredador antes de tener oportunidad de reproducirse. Esto supondría el freno definitivo a la exageración.

Está claro que para gustos los colores, olores o sonidos. La preferencia o la atracción puede seguir derroteros muy complicados, variables e impredecibles; también en el juego de la seducción animal para observadores externos como nosotros. En cualquier caso, las preferencias que observamos hoy en las hembras de cualquier especie animal seguramente sean un reflejo del pasado, de ventajas evolutivas que se heredaron por ser beneficiosas y contribuir a incrementar la eficacia biológica de los individuos que las portaban y de aquellos con los que se emparejaban.

 

* Gonzalo M. Rodríguez es colaborador del Museo Nacional de Ciencias Naturales (MNCN-CSIC) y autor del libro ‘Cómo se comunican los animales’, con un podcast en Ciencia para leer.

¿Cómo influyen los bosques en el clima?

Por J. Julio Camarero (CSIC)*

Seguramente has apreciado alguna vez cómo el clima afecta a los bosques cuando, tras una sequía, una nevada, una helada o una fuerte ola de calor, algunas especies de árboles y arbustos pierden vigor, crecen menos o incluso mueren. Quizá vienen a tu memoria las fuertes olas de calor del verano del 2022, la tormenta de nieve Filomena al inicio del 2021 o las sequías de los años 1994-1995, 2005 y 2016-2017. Los árboles toleran unos márgenes limitados de temperatura y humedad del suelo y del aire, por lo que pueden morir si se superan esos umbrales vitales como consecuencia de fenómenos climáticos extremos. Pero podemos darle la vuelta a la pregunta y plantearnos si la interacción clima-bosque sucede en los dos sentidos: ¿pueden los bosques cambiar el clima? Pues bien: la respuesta a este interrogante es afirmativa. Sabemos que los bosques pueden modificar (amortiguar o amplificar) los efectos del clima sobre la biosfera y que esas modificaciones cambian según las escalas espaciales y temporales a las que se observe esta interacción.

Nimbosilva o bosque mesófilo de montaña en la Reserva de la Biosfera El Triunfo, México. / Luis Felipe Rivera Lezama (mynaturephoto.com)

Los árboles almacenan grandes cantidades de agua y de carbono en sus tejidos, sobre todo en la madera, y conducen y transpiran mucha agua hacia la atmósfera. Esto explica que se hayan observado caídas en el caudal de los ríos en respuesta a los aumentos de la cobertura forestal a nivel de cuenca. Existen datos de este proceso en el Pirineo donde, como en el resto de la península, se ha producido un abandono del uso tradicional del territorio (cultivos, pastos, bosques) desde los años 60 del siglo pasado, cuando la mayoría de la población española emigró a núcleos urbanos. Ese abandono ha favorecido la expansión de la vegetación leñosa y propiciado que bosques y matorrales ocupen más territorio y retengan más agua, la llamada ‘agua verde’, a costa de reducir el caudal de los ríos, la llamada ‘agua azul’.

Hayedo y río (Cataluña). / Luis Felipe Rivera Lezama (mynaturephoto.com)

Pero tampoco podemos ignorar que al aumentar las temperaturas la vegetación transpira más y se evapora más agua. Ese aumento de temperaturas incrementa también la demanda de agua por parte de grandes usuarios como la agricultura, a veces centrada en cultivos que requieren mucha agua, y esto contribuye a que los caudales de los ríos y el nivel freático de los acuíferos desciendan. Por tanto, a escalas locales se ha comprobado cómo la reforestación conduce a un menor caudal de los ríos. Sin embargo, la historia cambia bastante a escalas espaciales más grandes.

Según la teoría de la bomba biótica, los bosques condensan la humedad y con ello impulsan los vientos y por tanto la distribución de la humedad en el planeta. (1) Si talamos los bosques tropicales, el mecanismo de la bomba biótica se altera y las precipitaciones se trasladan a la costa y en zonas tropicales (2). Según esta teoría los bosques extensos y diversos permiten captar y generar precipitación tierra adentro, especialmente cerca de la costa (3). / Irene Cuesta (CSIC)

Bomba biótica y bosques tropicales

A escalas regionales y continentales, gracias a un mecanismo llamado bomba biótica, la evapotranspiración de los bosques aumenta los flujos de humedad atrayendo más aire húmedo. Esta teoría defiende que los bosques atraen más precipitaciones desde el océano, tierra adentro, mientras generen suficiente humedad a nivel local. Fueron Anastassia Makarieva y Víctor Gorshkov, del Instituto de Física Nuclear de San Petersburgo (Rusia), quienes propusieron la hipótesis de la bomba biótica en 2006. Además, sugerían reforestar algunas zonas para hacerlas más húmedas aumentando así la precipitación y el caudal de los ríos. La bomba biótica explica en gran medida la existencia de las elevadas precipitaciones y los grandes bosques en las cuencas tropicales más extensas, como las de los ríos Amazonas y Congo. Por tanto, nos alerta sobre la posible relación no lineal entre deforestación y desertificación ya que, según esta teoría, una región o un continente que cruzara un determinado umbral de deforestación podría pasar muy rápidamente de condiciones húmedas a secas.

Bosque nublado en Cundinamarca, Colombia. / Juan Felipe Ramírez (Pexels.com)

También se observan grandes diferencias en la relación clima-bosque entre los distintos biomas forestales. Los bosques tropicales pueden mitigar más el calentamiento climático mediante el enfriamiento por evaporación que los bosques templados o boreales. Además, los bosques templados tienen una gran capacidad de captar dióxido de carbono de la atmósfera, reduciendo en parte el calentamiento climático causado por el efecto invernadero. Sin embargo, si el calentamiento climático favorece la expansión de bosques boreales en las regiones árticas favoreciendo su crecimiento y reproducción, la pérdida de superficie helada disminuirá el albedo (el porcentaje de radiación solar que cualquier superficie refleja), ya que los bosques reflejan menos radiación que la nieve y, en consecuencia, aumentarán las temperaturas en esas regiones frías. Además, gran parte del carbono terrestre se almacena en suelos y turberas de zonas frías, que podrían liberarlo si aumentan las temperaturas, con el consiguiente impacto sobre el efecto invernadero, generando más calentamiento a escala global.

Nubes sobre bosque templado en el Bosque Nacional Tongass, Alaska. / Luis Felipe Rivera Lezama (mynaturephoto.com)

A nivel global, nuestro conocimiento de las interacciones entre atmósfera y biosfera proviene de modelos, pero nos faltan aún muchos datos para mejorar esas simulaciones y saber cómo interaccionan el clima y los bosques con los ciclos del carbono y del agua. Por ejemplo, no sabemos cómo los bosques boreales y tropicales responden a la sequía y al calentamiento climático en términos de crecimiento y retención de carbono. Necesitamos más investigación para mejorar esas predicciones en el contexto actual de calentamiento rápido.

Picogordo amarillo (‘Pheucticus chrysopeplus’) y bromelias bajo la lluvia, nimbosilva o bosque nuboso Reserva de la Biosfera El Triunfo, México. / Luis Felipe Rivera Lezama (mynaturephoto.com)

Todos los papeles que juegan los bosques como reguladores del clima a escalas locales, regionales y continentales, pueden verse comprometidos si la deforestación aumenta en algunas zonas, especialmente los bosques tropicales, o si extremos climáticos como las sequías reducen el crecimiento de los árboles y los hacen más vulnerables causando su muerte, como observamos en la cuenca Mediterránea y en bosques de todos los continentes.

Pinos rodenos o resineros (‘Pinus pinaster’) muertos en un bosque situado cerca de Miedes de Aragón (Zaragoza) tras la sequía de 2016-2017. En primer plano, las encinas (‘Quercus ilex’), árboles más bajos, apenas mostraron daños en sus copas. / Michele Colangelo

* J. Julio Camarero es investigador en el Instituto Pirenaico de Ecología (IPE) del CSIC.

**Ciencia para llevar agradece especialmente al fotógrafo Luis F. Rivera Lezama por su generosa colaboración con las imágenes que acompañan al texto.

Bacterias y aminoácidos: ¿para qué esforzarse cuando lo tienes todo a tu alcance?

Por Comunicación CEAB-CSIC*

Muchas personas que se dedican a la salud insisten en que debemos comer de forma equilibrada. Uno de los motivos para hacerlo es que los seres humanos dependemos de la alimentación para obtener muchas de las sustancias imprescindibles para el buen funcionamiento de nuestro organismo. Es el caso de los nueve aminoácidos esenciales: aminoácidos que nuestro organismo no puede sintetizar por sí mismo. Estos componentes básicos de las proteínas, una especie de “ladrillos” que las construyen, son clave para, entre otros, el mantenimiento de los músculos, la función cognitiva o la regulación del estado de ánimo.

En el mundo microbiano esto es un poco distinto. Hay bacterias que, como en nuestro caso, dependen de lo que comen para obtener los aminoácidos esenciales, las llamadas ‘auxótrofas’. Y otras, en cambio, son autosuficientes, es decir, pueden producírselos todos por sí mismas. Son las denominadas ‘protótrofas’.

Modelo 3D de diversas bacterias rodeadas de aminoácidos. / CEAB-CSIC

Modelo 3D de diversas bacterias rodeadas de aminoácidos. / CEAB-CSIC

¿Cuáles son la más comunes? ¿Qué microorganismos siguen la estrategia ‘protótrofa’ y cuáles optan por la ‘auxótrofa’? ¿Dónde viven unos y otros? ¿Influye el ambiente en el que viven la ‘elección’ de una u otra estrategia?

Estas son algunas de las preguntas que se formuló un equipo formado por personal investigador del Centro de Estudios Avanzados de Blanes (CEAB-CSIC) y de las universidades de Colorado, Aalborg y el Lawrence Berkeley Lab. Sus integrantes analizaron con supercomputación más de 26.000 genomas de bacterias y el ADN ambiental de entornos naturales tan diversos como lagos, océanos, plantas de tratamiento de agua, microbiota humana e incluso alimentos como la masa madre o el queso. Los resultados de su estudio se han publicado recientemente en la revista científica Nature Communications.

Representación 3D que muestra comunidades bacterianas en combinación con ADN. / CEAB-CSIC

Representación 3D que muestra comunidades bacterianas en combinación con ADN. / CEAB-CSIC

Nuestro intestino: un “buffet libre”, ideal para las bacterias auxótrofas

La investigación desvela el gran peso del entorno en la evolución y la adaptación genética de las bacterias. En aquellos ambientes en los que siempre hay nutrientes disponibles, en estos ‘buffets libres’ abiertos las 24 horas, triunfan las auxótrofas.

Josep Ramoneda y Emilio O. Casamayor, investigadores del CEAB-CSIC, lo explican así: “¿Por qué tendrían que esforzarse para fabricar los aminoácidos si siempre los tienen disponibles en su entorno? En estos ambientes la estrategia de autoproducírselos deja de ser una ventaja. Renunciar a ella, en cambio, sale muy a cuenta: significa gastar mucha menos energía y eso ayuda a prosperar, a proliferar en estos ambientes”.

Alimentos como los productos lácteos o nuestro intestino son ejemplos claros de estos ambientes, ricos en aminoácidos, en los que triunfan los microbios auxótrofos, los que han aligerado su carga genética perdiendo, entre otros, los genes implicados en la autoproducción de aminoácidos. Su estrategia evolutiva de racionalización del genoma les da una clara ventaja en estos entornos.

En el lado opuesto están los ambientes con pocos nutrientes disponibles. Aquí, por la dificultad y/o temporalidad de acceso a los aminoácidos esenciales, ganan las bacterias protótrofas, las que tienen genes que les permiten fabricarse por sí mismas lo que necesitan para funcionar. Es el caso del 80% de los microorganismos, que encuentran en la autosuficiencia una ventaja para poder sobrevivir en ambientes donde la disponibilidad de alimento es muy baja.

La investigación se ha realizado con herramientas de supercomputación. Biology Computational Lab CEAB-CSIC

La investigación se ha realizado con herramientas de supercomputación. Biology Computational Lab CEAB-CSIC

El trabajo apunta además un ejemplo radical: un género de bacterias que tienen genomas muy, muy pequeños y que nos parasitan. Se trata de los micoplasmas, que obtienen los aminoácidos de nuestras células y que están implicados en numerosas enfermedades como, por ejemplo, la neumonía.

La mejor comprensión de las condiciones idóneas de vida para los microbios que aporta esta investigación es de gran interés para diferentes campos, como el de la salud. Un conocimiento profundo de las bacterias y de las conexiones con el ambiente en el que viven puede ayudar a desarrollar nuevos fármacos para combatir aquellas que son patógenas.

* Equipo de comunicación del Centro de Estudios Avanzados de Blanes (CEAB-CSIC). Este post está basado en el artículo: Ramoneda, J., Jensen, T.B.N., Price, M.N. et al. Taxonomic and environmental distribution of bacterial amino acid auxotrophies. Nat Commun 14, 7608 (2023).

¿Qué vemos al contemplar un paisaje?

Por Fernando Valladares* y Mar Gulis (CSIC)

“Verdes montañas” o “campos de cultivo” son expresiones con las que a menudo describimos el paisaje que configura el «campo», un campo que visitamos en nuestros recorridos cotidianos o viajes vacacionales. Apreciamos bosques y plantaciones, pero ¿podemos leer algo más sobre lo que estamos viendo? ¿Qué árboles pueblan esos bosques? ¿Son bosques complejos autóctonos o plantaciones productivas de un solo tipo de árbol? ¿Cuánto tiempo llevan ahí? ¿Qué había antes de las amplias extensiones de regadío? ¿Afectan las redes de autopistas y carreteras a la flora y fauna? Veamos algunos apuntes para entender el paisaje a través de los ojos de la ecología.

Paisaje en Alcubilla de las Peñas, Soria, España (2015). / Diego Delso

El paisaje, como la vida, no es estático: ha ido cambiando a medida que se han modificado la demografía, los hábitos y nuestra interacción con el medio. Claro, que no todas las civilizaciones se han relacionado de la misma manera con su entorno. Algunas culturas en diferentes regiones del globo aún conviven de manera más o menos sostenible con sus territorios. A pesar de ello, se puede decir que, a día de hoy, existen muy pocos ecosistemas sobre la superficie terrestre que no hayan sido modificados. La extensión de un modelo social y económico basado en la extracción desmedida y concentrada de recursos naturales, sumada al alto crecimiento de la población humana, han hecho que hoy podamos afirmar que más del 45% de la superficie terrestre ya está profundamente alterada por el ser humano.

Granja solar. / Anonim Zero, Pexels

Un poco de historia: mucho más que domesticación de especies

Año 7.000 antes de Cristo. En el Levante mediterráneo ya se cosechan los ocho cultivos neolíticos fundadores: farro, trigo escanda, cebada, guisantes, lentejas, yero, garbanzos y lino. Hacia el este, en el interior, entre los ríos Tigris y Éufrates, los pueblos de la antigua Mesopotamia crían cerdos para obtener alimento y pastorean ovejas y cabras en la estación húmeda de invierno. El arroz está domesticado en China. En la actual Nueva Guinea se cultivan la caña de azúcar y verduras de raíz, y en los Andes la papa, los frijoles y la coca, mientras se cría ganado de llamas, alpacas y cuyes. Se trata de la revolución neolítica, que comenzó hace unos 13.000 años: la sedentarización y el surgimiento de las ciudades hecho posible por la agricultura y la ganadería, la domesticación de animales y plantas. Fue el inicio de lo que hoy se conoce como Antropoceno. Desde entonces hasta ahora, el impacto de los seres humanos en el planeta no ha hecho más que aumentar y extenderse a ritmo creciente.

Los paisajes primigenios, los que había antes de la revolución neolítica, se transformaron en ‘paisajes históricos’. En ellos, remanentes muy simplificados de vegetación natural se mantuvieron como manchas forestales de poblaciones de árboles con estructuras muy alteradas, como consecuencia de la explotación de la madera y otros recursos que ofrecen estos hábitats.

Restos del sistema de terrazas agrícolas circulares incas en Moray, Perú, siglos XV-XVI. / McKay Savage (Worldhistory.org)

El caso de la península ibérica

En el territorio peninsular, esos remanentes de vegetación natural coexistían con ecosistemas seminaturales, como los prados de siega. En el interior, se intercalaban zonas en las que la acumulación de agua permitía hábitats con mayores recursos para el ganado con hábitats más degradados, como los campos de cultivo extensivos de secano. La pérdida de especies y el colapso de muchos ecosistemas debió de ser algo generalizado. Los grandes herbívoros y carnívoros fueron los primeros en extinguirse, pero de la mano debieron perderse muchas especies de todo tipo de grupos biológicos que no han dejado su rastro en el registro fósil. Emergieron nuevos paisajes que poco tenían que ver con los que existían durante nuestra época nómada de cazadores recolectores.

‘Cosechadores’, óleo de Pieter Bruegel ‘el viejo’, 1565 / Google Art Project

Afortunadamente, algunos procesos funcionales y evolutivos de aquellos hábitats primigenios se mantuvieron gracias a que los cambios introducidos podían mimetizar procesos que habían existido hasta entonces. Por ejemplo: el pastoreo recordaba la presión de los grandes herbívoros; el manejo del fuego mantenía cierta estructura y dinámica ecológica a la que las especies y sus interacciones se fueron adaptando; el arado de tierras podía recordar a ciertas perturbaciones naturales que dejaban los suelos expuestos para ser nuevamente colonizados por la vida. Todo ello permitió mantener, pese a todo, tasas elevadas de diversidad y buena parte de la funcionalidad ecosistémica de estos paisajes y hábitats; es decir, los procesos biológicos, geoquímicos y físicos que tienen lugar los ecosistemas y que producen un servicio al conjunto. La potencia de la naturaleza para sobreponerse a los impactos es siempre asombrosa.

Con el tiempo y la expansión del modelo mercantilista, surgieron las minas y explotaciones industriales con sus huellas físicas, químicas y biológicas en el paisaje y en los ciclos de la materia y de la energía. Estos ciclos son como una suerte de metabolismo planetario que se apoya en equilibrios dinámicos, donde todo se transforma, pero el conjunto permanece estable. En esta movilización juega un papel vital la biosfera.

Imagen: Pxhere.com

De la superproducción a la escasez

El impacto mayor sobre la biosfera y la alteración de estos ciclos llegó con la agricultura intensiva. Se pasó de una agricultura que eliminaba hábitats, pero mantenía buena parte de las funciones ecosistémicas, a otra que conlleva altos niveles de contaminación, agotamiento de recursos y graves problemas para nuestra salud y la de los ecosistemas.

Y es que pocas cosas son menos sostenibles que la agricultura actual. No sólo por su elevada huella ambiental en forma de ecosistemas eutrofizados, es decir, con un exceso de nutrientes que provoca su colapso, y de emisiones colosales de gases de efecto invernadero, sino también por su necesidad de recursos que ya son limitantes como el fósforo, esencial para los fertilizantes y cuya provisión no se puede asegurar, o el agua de riego, cada día más escasa en cada vez más regiones del planeta. Además, se calcula que sin la ruptura metabólica global que supuso la agricultura del siglo XX, en lugar de ser actualmente casi ocho mil millones de personas en el planeta, apenas llegaríamos a cuatro, es decir, la mitad.

Imagen satélite de El Ejido y sus alrededores (Almería), con capturas de 2015. / Google Earth

Por otra parte, durante estos últimos 100 años el territorio no solo ha visto crecer exponencialmente y a ritmo vertiginoso la población mundial y el consumo de recursos naturales, también las ciudades, las carreteras y las autopistas, y por ende la reducción a mínimos nunca antes conocidos del espacio disponible para la vida silvestre.

Pero este ritmo no se da de la misma manera en todas las partes del globo. En los países desarrollados vivimos sobrecargando los ecosistemas, pero externalizamos las consecuencias a los países sin recursos. Es decir, utilizamos los recursos de otros para mantener nuestras demandas de recursos naturales.

Pocas veces nos paramos a ver todos estos procesos en el paisaje que visitamos o vemos a través de la ventanilla del coche. Vivimos tiempos que requieren reflexión y recuperar otros modos de relacionarnos con las demás especies y con el entorno. Si lo hacemos, seremos los primeros en beneficiarnos.

* Fernando Valladares es investigador del CSIC en el Museo Nacional de Ciencias Naturales (MNCN-CSIC) y autor, entre otros muchos títulos, del libro La salud planetaria, de la colección ¿Qué sabemos de? (CSIC-Catarata).

Descubre las 10 mejores imágenes científicas de 2023 con FOTCIENCIA20

Por Mar Gulis (CSIC)

El corte transversal de una cáscara de huevo, la eclosión de un gecko terrestre malgache fotografiada con un smartphone o un ovillo de gusanos parásitos anisakis son algunas de las imágenes más destacadas del año en la iniciativa FOTCIENCIA, que cumple con esta su 20ª edición recopilando fotografías científicas gracias a la participación ciudadana.

Esta iniciativa del Consejo Superior de Investigaciones Científicas (CSIC) y la Fundación Española para la Ciencia y la Tecnología (FECYT) ha dado a conocer las mejores fotografías del año 2023. El pelo del estambre de una flor (Erodium moschatum), la simetría del brócoli o tres muestras de epidermis de flor de caléndula captadas por estudiantes de secundaria son otros de los fenómenos retratados en las imágenes seleccionadas de entre más de 475 fotografías. Un comité multidisciplinar formado por 13 profesionales de la ciencia, la microscopía, las artes visuales o la divulgación científica, entre otras especialidades, ha sido el encargado de seleccionar estas imágenes que han sido galardonadas por su belleza, impacto y capacidad para reflejar y describir hechos científicos.

De izquierda a derecha: “Cubismo plutónico”, “Polinización y la agricultura”, “Un ovillo de gusanos parásitos Anisakis extraídos de pescado fresco”, “La sal de la muerte (celular)”, “Biomineralización”, “Un triángulo imposible”, “Biosensores”, “Eclosión en laboratorio”, “Recordando a Cajal para tratar la neurodegeneración” y “Revelación simétrica del brócoli”.

De izquierda a derecha: “Cubismo plutónico”, “Polinización y la agricultura”, “Un ovillo de gusanos parásitos Anisakis extraídos de pescado fresco”, “La sal de la muerte (celular)”, “Biomineralización”, “Un triángulo imposible”, “Biosensores”, “Eclosión en laboratorio”, “Recordando a Cajal para tratar la neurodegeneración” y “Revelación simétrica del brócoli”.

Estas 10 mejores imágenes, que puedes ver en el vídeo de más abajo, junto con una selección más amplia de fotografías, conformarán un catálogo y una exposición itinerante, disponible para su préstamo gratuito, que recorrerá museos, centros de investigación, universidades y espacios culturales de todo el país durante el próximo año.

En esta vigésima edición, a las modalidades de participación habituales –Micro, General, Alimentación y nutrición, Agricultura sostenible y La ciencia en el aula– se han sumado las modalidades especiales Año Cajal, Física de partículas y Sinergias (Arte, Ciencia, Tecnología y Sociedad, ACTS). La difícil captura nanométrica de un radical libre captado al microscopio de efecto túnel y la observación al microscopio de una roca ígnea plutónica de La Cabrera (Madrid) han sido las fotografías galardonadas por primera vez en estas dos últimas modalidades, respectivamente.

La modalidad Sinergias (Arte, Ciencia, Tecnología y Sociedad, ACTS) pretende mostrar trabajos conjuntos del ámbito científico y artístico con el objetivo de ampliar nuevos horizontes inter y transdisciplinarios entre las ciencias y las artes. Este año, una madre geóloga y su hijo estudiante de bellas artes han mostrado en una fotografía esta conexión con una imagen que resulta de un proceso de investigación donde ambos comparten microscopio en busca de colores e imágenes inspiradoras para futuros bocetos en otros soportes.

Como en la anterior edición, FOTCIENCIA contempla la modalidad especial Año Cajal para recoger imágenes que tengan que ver con las neurociencias, sumándose así a la celebración del Año Cajal, impulsado a nivel nacional. La inmunofluorescencia de una sección de cerebelo con dos células de Purkinje, que recuerda a los dibujos de Ramón y Cajal, quien ya describió su estructura, ha sido la imagen seleccionada en esta modalidad.

FOTCIENCIA es una iniciativa del CSIC y la FECYT que invita a que cualquier persona, se dedique o no a la investigación, plasme su visión de la ciencia y la tecnología a través de fotografías. Además, FOTCIENCIA20 cuenta con la colaboración de Fundación Jesús Serra, de GCO (Grupo Catalana Occidente) y, por primera vez, de Leica.

Más información, en este enlace.

Imágenes seleccionadas:

  • Modalidad General:
  1. Polinización y la agricultura / Eduardo Cires Rodríguez
  2. Eclosión en laboratorio / Fernando García Moreno
  • Modalidad Micro:
  1. Biosensores / Concepción Hernández Castillo, Lola Molina Fernández, Isabel María Sánchez Almazo
  2. Biomineralización / María Jesús Redrejo Rodríguez, Eberhardt Josué Friedrich Kernahan
  • Modalidad Año Cajal:
  1. Recordando a Cajal para tratar la neurodegeneración / Pablo González Téllez de Meneses
  • Modalidad Alimentación y nutrición:
  1. Un ovillo de gusanos parásitos Anisakis extraídos de pescado fresco / José Ramos Vivas
  • Modalidad Agricultura sostenible:
  1. Revelación simétrica del brócoli /Samuel Valdebenito Pérez, María Villarroel, Patricia Peñaloza
  • Modalidad La ciencia en el aula:
  1. La sal de la muerte (celular) / Hala Lach Hab El Keneksi, Rebeca Jiménez Uvidia, Chaimae El Idrissi Loukili
  • Modalidad Física de partículas:
  1. Un triángulo imposible / Alejandro Berdonces Layunta, Dimas García de Oteyza
  • Modalidad Sinergias (ACTS):
  1. Cubismo plutónico / Bruno Fernández Delvene, Graciela Delvene Ibarrola

¿Cómo se originó el agua de la Tierra?

Por Javier Carmona (CSIC)*

Cerca del 70% de la superficie de nuestro planeta está cubierta por océanos, mares, ríos, glaciares… ¿Te has preguntado alguna vez de dónde ha salido toda esta cantidad de agua?

Sabemos que el agua líquida no estaba presente en los momentos iniciales de formación de la Tierra hace 4.500 millones de años, y lo sabemos precisamente porque el planeta estaba tan caliente que el agua solo podía existir en forma de vapor. Tuvieron que pasar 800 millones de años para que la superficie se enfriase lo suficiente como para poder contener agua líquida de forma estable. En ese momento, las lluvias procedentes de una primitiva atmósfera habrían comenzado a formar los primeros ríos y océanos.

Existen dos teorías que intentan explicar el origen del agua en nuestro planeta: una que dice que esta sustancia es de origen extraterrestre y otra que establece que proviene del interior del planeta.

La primera apunta a un tipo de meteoritos que de vez en cuando impactan en la superficie de la Tierra: las condritas carbonáceas. Estos meteoritos contienen agua o minerales alterados por ella, y su procedencia exterior al Sistema Solar sugiere que esta sustancia posiblemente es más abundante en el universo de lo que se creía.

Condrita carbonácea / Wikimedia Commons (H. Raab)

La teoría de que el agua procede del interior de nuestro planeta nos habla de la desgasificación de los volcanes. Sabemos que el vapor de agua es el gas más abundante en una erupción volcánica. Así pues, la atmósfera habría ido enriqueciéndose en este compuesto con el paso del tiempo, erupción tras erupción.

Posiblemente el origen del agua en la Tierra se deba a los dos mecanismos: el impacto indiscriminado de meteoritos en los estadios iniciales de la formación de nuestro planeta y la continua desgasificación a lo largo del tiempo por las erupciones volcánicas.

Un escudo protector llamado magnetosfera

Hoy sabemos que el agua no es una sustancia tan exótica fuera de la Tierra como se pensaba antes. Existe en la Luna, y en Marte llegó a formar océanos en un pasado remoto. Por tanto, lo que hace único a nuestro planeta no es la presencia de agua, sino la presencia de agua líquida en su superficie.

La distancia al Sol y la composición de la atmósfera de la Tierra permiten temperaturas en las que el agua permanece en forma líquida. Sin embargo, el campo magnético de nuestro planeta ha sido el responsable de que este agua se haya mantenido en la superficie durante miles de millones de años.

El escudo protector que genera, llamado magnetosfera, impide que la atmósfera y el océano sean arrastrados por el viento solar. En el caso de Marte, se cree que su menor tamaño provocó el debilitamiento y la desaparición de su campo magnético, lo que a su vez propició la pérdida de su atmósfera y, posteriormente, la de sus océanos.

¿Un planeta realmente único?

La Tierra no solo es el único planeta conocido con agua en su superficie, sino también el único que alberga vida. Fue precisamente un océano primitivo el lugar donde se originó la vida hace más de tres mil millones de años. Por eso, encontrar otros lugares del universo donde el agua se halle en estado líquido despierta un gran interés científico.

La investigación espacial ha descubierto hielo en otros planetas y asteroides, pero la atención de quienes trabajan en la búsqueda de vida extraterrestre se ha centrado en algunas lunas heladas de Júpiter y Saturno. Europa y Encélado contienen un océano líquido bajo su superficie helada, que, junto a la presencia de volcanismo o zonas geotérmicas, podrían haber generado las condiciones idóneas para la presencia de vida.

Tal vez el futuro nos muestre que nuestro planeta es uno más de tantos otros donde hay agua líquida y vida.

 

* Javier Carmona es responsable de comunicación y cultura científica del Instituto de Geociencias (CSIC-UCM).

El redescubrimiento de las zanahorias moradas

Por Laura Sáez Escudero, Gracia Patricia Blanch Manzano, María Luisa Ruiz del Castillo (CSIC)* y Mar Gulis

Los primeros cultivos de zanahoria datan del año 3.000 a. C. en la zona que hoy ocupa Afganistán. Sin embargo, la variedad más popular en la actualidad, la zanahoria naranja, no apareció hasta el siglo XVII, cuando agricultores holandeses cruzaron de forma deliberada varias zanahorias cultivadas y silvestres para que el color de esta hortaliza coincidiese con el de la casa real holandesa de Orange.

Hasta entonces la variedad dominante había sido la zanahoria morada. Las primeras zanahorias cultivadas eran de un color morado oscuro, casi negro. A medida que los comerciantes árabes fueron llevando su semilla por África y Oriente Próximo, surgieron nuevas variedades blancas, amarillas y rojizas, pero el dominio de la zanahoria naranja tardaría aún varios siglos en llegar.

Sin embargo, el consumo de zanahoria morada está volviendo a adquirir cierta popularidad. Esto se explica por su sabor, similar al de las zanahorias naranjas pero un poco más dulce y con cierto toque picante, y por sus propiedades nutricionales. Al igual que las zanahorias naranjas, las moradas contienen carotenoides, compuestos antioxidantes y precursores de la vitamina A que son responsables del color naranja y amarillo de estas hortalizas. Pero la zanahoria morada, además, contiene antocianinas, unos polifenoles responsables del color rojo, violeta o azul que hace atractivos a muchos vegetales y que tienen también efectos antioxidantes. Hasta el momento, se han descubierto hasta 500 antocianinas diferentes en las plantas.

Tanto a los carotenoides como a las antocianinas se les ha atribuido una acción preventiva frente a ciertos tipos de cáncer, enfermedades cardiovasculares y patologías relacionadas con la edad. Ambos compuestos forman parte de los denominados fitonutrientes: moléculas defensivas que las plantas generan en respuesta al estrés ambiental y que nos aportan sus propiedades protectoras cuando las ingerimos. Se trata de sustancias bioactivas que no nos proporcionan calorías pero que pueden tener muchos efectos positivos para el organismo humano.

Zanahorias hervidas, horneadas o liofilizadas

En el Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN) del CSIC hemos estudiado cómo diferentes formas de cocinar la zanahoria morada afectan al contenido de sus compuestos bioactivos (carotenoides y polifenoles, como las antocianinas) y a su capacidad antioxidante.

En concreto, hemos considerado el hervido, la cocción al vapor, el horneado durante diferentes tiempos y la deshidratación mediante liofilización (un proceso que da lugar a zanahoria en polvo, que se emplea como colorante natural). Si comparamos el hervido y la cocción al vapor, ambos procedimientos provocan un aumento de carotenoides, pero en el hervido se observó una disminución drástica de antocianinas por arrastre de estos compuestos al agua de cocción. La liofilización dio lugar a un aumento de antocianinas, pero provocó la pérdida de los carotenoides. El horneado fue el método de cocinado que dio lugar a resultados más equilibrados, ya que no se observó aumento de ninguno de los pigmentos bioactivos estudiados, pero tampoco pérdida.

También es interesante resaltar la correlación directa entre la presencia de antocianinas y la actividad antioxidante de la muestra. Las antocianinas son los antioxidantes que contribuyen en mayor medida a las propiedades biológicas de esta variedad de zanahoria

En conclusión, la zanahoria morada es un alimento muy interesante por sus propiedades promotoras de la salud. Sin embargo, seleccionar su forma de consumo es vital si queremos aprovechar estas propiedades. Aunque cada tipo de cocinado presenta ventajas e inconvenientes, en general, la cocción a vapor y el horneado ofrecen un producto más equilibrado y completo.

 

* Laura Sáez Escudero, María Gracia Blanch Manzano y María Luisa Ruiz del Castillo forman parte del grupo de investigación ENANTIOMET en el Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN) del CSIC.