Entradas etiquetadas como ‘carbono’

¿Cómo influyen los bosques en el clima?

Por J. Julio Camarero (CSIC)*

Seguramente has apreciado alguna vez cómo el clima afecta a los bosques cuando, tras una sequía, una nevada, una helada o una fuerte ola de calor, algunas especies de árboles y arbustos pierden vigor, crecen menos o incluso mueren. Quizá vienen a tu memoria las fuertes olas de calor del verano del 2022, la tormenta de nieve Filomena al inicio del 2021 o las sequías de los años 1994-1995, 2005 y 2016-2017. Los árboles toleran unos márgenes limitados de temperatura y humedad del suelo y del aire, por lo que pueden morir si se superan esos umbrales vitales como consecuencia de fenómenos climáticos extremos. Pero podemos darle la vuelta a la pregunta y plantearnos si la interacción clima-bosque sucede en los dos sentidos: ¿pueden los bosques cambiar el clima? Pues bien: la respuesta a este interrogante es afirmativa. Sabemos que los bosques pueden modificar (amortiguar o amplificar) los efectos del clima sobre la biosfera y que esas modificaciones cambian según las escalas espaciales y temporales a las que se observe esta interacción.

Nimbosilva o bosque mesófilo de montaña en la Reserva de la Biosfera El Triunfo, México. / Luis Felipe Rivera Lezama (mynaturephoto.com)

Los árboles almacenan grandes cantidades de agua y de carbono en sus tejidos, sobre todo en la madera, y conducen y transpiran mucha agua hacia la atmósfera. Esto explica que se hayan observado caídas en el caudal de los ríos en respuesta a los aumentos de la cobertura forestal a nivel de cuenca. Existen datos de este proceso en el Pirineo donde, como en el resto de la península, se ha producido un abandono del uso tradicional del territorio (cultivos, pastos, bosques) desde los años 60 del siglo pasado, cuando la mayoría de la población española emigró a núcleos urbanos. Ese abandono ha favorecido la expansión de la vegetación leñosa y propiciado que bosques y matorrales ocupen más territorio y retengan más agua, la llamada ‘agua verde’, a costa de reducir el caudal de los ríos, la llamada ‘agua azul’.

Hayedo y río (Cataluña). / Luis Felipe Rivera Lezama (mynaturephoto.com)

Pero tampoco podemos ignorar que al aumentar las temperaturas la vegetación transpira más y se evapora más agua. Ese aumento de temperaturas incrementa también la demanda de agua por parte de grandes usuarios como la agricultura, a veces centrada en cultivos que requieren mucha agua, y esto contribuye a que los caudales de los ríos y el nivel freático de los acuíferos desciendan. Por tanto, a escalas locales se ha comprobado cómo la reforestación conduce a un menor caudal de los ríos. Sin embargo, la historia cambia bastante a escalas espaciales más grandes.

Según la teoría de la bomba biótica, los bosques condensan la humedad y con ello impulsan los vientos y por tanto la distribución de la humedad en el planeta. (1) Si talamos los bosques tropicales, el mecanismo de la bomba biótica se altera y las precipitaciones se trasladan a la costa y en zonas tropicales (2). Según esta teoría los bosques extensos y diversos permiten captar y generar precipitación tierra adentro, especialmente cerca de la costa (3). / Irene Cuesta (CSIC)

Bomba biótica y bosques tropicales

A escalas regionales y continentales, gracias a un mecanismo llamado bomba biótica, la evapotranspiración de los bosques aumenta los flujos de humedad atrayendo más aire húmedo. Esta teoría defiende que los bosques atraen más precipitaciones desde el océano, tierra adentro, mientras generen suficiente humedad a nivel local. Fueron Anastassia Makarieva y Víctor Gorshkov, del Instituto de Física Nuclear de San Petersburgo (Rusia), quienes propusieron la hipótesis de la bomba biótica en 2006. Además, sugerían reforestar algunas zonas para hacerlas más húmedas aumentando así la precipitación y el caudal de los ríos. La bomba biótica explica en gran medida la existencia de las elevadas precipitaciones y los grandes bosques en las cuencas tropicales más extensas, como las de los ríos Amazonas y Congo. Por tanto, nos alerta sobre la posible relación no lineal entre deforestación y desertificación ya que, según esta teoría, una región o un continente que cruzara un determinado umbral de deforestación podría pasar muy rápidamente de condiciones húmedas a secas.

Bosque nublado en Cundinamarca, Colombia. / Juan Felipe Ramírez (Pexels.com)

También se observan grandes diferencias en la relación clima-bosque entre los distintos biomas forestales. Los bosques tropicales pueden mitigar más el calentamiento climático mediante el enfriamiento por evaporación que los bosques templados o boreales. Además, los bosques templados tienen una gran capacidad de captar dióxido de carbono de la atmósfera, reduciendo en parte el calentamiento climático causado por el efecto invernadero. Sin embargo, si el calentamiento climático favorece la expansión de bosques boreales en las regiones árticas favoreciendo su crecimiento y reproducción, la pérdida de superficie helada disminuirá el albedo (el porcentaje de radiación solar que cualquier superficie refleja), ya que los bosques reflejan menos radiación que la nieve y, en consecuencia, aumentarán las temperaturas en esas regiones frías. Además, gran parte del carbono terrestre se almacena en suelos y turberas de zonas frías, que podrían liberarlo si aumentan las temperaturas, con el consiguiente impacto sobre el efecto invernadero, generando más calentamiento a escala global.

Nubes sobre bosque templado en el Bosque Nacional Tongass, Alaska. / Luis Felipe Rivera Lezama (mynaturephoto.com)

A nivel global, nuestro conocimiento de las interacciones entre atmósfera y biosfera proviene de modelos, pero nos faltan aún muchos datos para mejorar esas simulaciones y saber cómo interaccionan el clima y los bosques con los ciclos del carbono y del agua. Por ejemplo, no sabemos cómo los bosques boreales y tropicales responden a la sequía y al calentamiento climático en términos de crecimiento y retención de carbono. Necesitamos más investigación para mejorar esas predicciones en el contexto actual de calentamiento rápido.

Picogordo amarillo (‘Pheucticus chrysopeplus’) y bromelias bajo la lluvia, nimbosilva o bosque nuboso Reserva de la Biosfera El Triunfo, México. / Luis Felipe Rivera Lezama (mynaturephoto.com)

Todos los papeles que juegan los bosques como reguladores del clima a escalas locales, regionales y continentales, pueden verse comprometidos si la deforestación aumenta en algunas zonas, especialmente los bosques tropicales, o si extremos climáticos como las sequías reducen el crecimiento de los árboles y los hacen más vulnerables causando su muerte, como observamos en la cuenca Mediterránea y en bosques de todos los continentes.

Pinos rodenos o resineros (‘Pinus pinaster’) muertos en un bosque situado cerca de Miedes de Aragón (Zaragoza) tras la sequía de 2016-2017. En primer plano, las encinas (‘Quercus ilex’), árboles más bajos, apenas mostraron daños en sus copas. / Michele Colangelo

* J. Julio Camarero es investigador en el Instituto Pirenaico de Ecología (IPE) del CSIC.

**Ciencia para llevar agradece especialmente al fotógrafo Luis F. Rivera Lezama por su generosa colaboración con las imágenes que acompañan al texto.

Plancton, el otro pulmón del planeta

Por Mar Gulis (CSIC)

zvdfvcv

‘Hyperia macrocephala’, uno de los miles de microorganismos que configuran el plancton. / Uwe Kils, via Wikipedia Commons.

Si decimos que el Amazonas y otras selvas y bosques son los pulmones de nuestro planeta, a nadie le extrañará. Estas grandes extensiones pobladas de árboles y otras plantas cumplen un papel esencial en la producción de oxígeno y en la captura del carbono. Pero, ¿hay otros pulmones en el planeta? Varios estudios científicos señalan al plancton como uno de los más importantes. Sí, ese conjunto de organismos –sobre todo microscópicos – que habita mares y océanos produce cantidades importantes del oxígeno que respiramos y absorbe en torno a un 30% del CO2 que generamos los humanos. Por eso desempeña un papel clave en la lucha contra el calentamiento global.

El plancton, que en griego significa ‘errante’, está constituido por seres vivos que viven en suspensión en el agua del mar. Aquí se incluyen virus, bacterias, arqueas, microalgas y animales como las medusas, si bien la mayoría son organismos tan pequeños que solo pueden verse bajo el microscopio. Pues bien, estos seres minúsculos son esenciales para el funcionamiento del ecosistema oceánico y el mantenimiento del clima en nuestro planeta.

Dado que el plancton engloba a organismos muy heterogéneos, existen diversas clasificaciones para diferenciarlos. Una de las más extendidas distingue al fitoplancton, constituido por vegetales, del zooplancton, integrado por animales como pequeños peces y crustáceos. Aquí nos interesa hablar del fitoplancton, que abarca desde bacterias menores de 0.001 mm hasta algas unicelulares de casi 1 mm. Como sucede con las plantas terrestres, el fitoplancton marino lleva a cabo la fotosíntesis. Este proceso transforma, gracias a la luz, materia inorgánica (agua y CO2) en orgánica, siendo la base de la red trófica oceánica, que incluye los peces de los que nos alimentamos. Además, durante la fotosíntesis se libera oxígeno a la atmósfera. Finalmente, el fitoplancton ejerce una función de control del clima mediante la denominada ‘bomba biológica de carbono’, que permite el ‘secuestro’ del carbono en las profundidades marinas.

Expedici—n Malaspina 2010 Im‡genes de zooplancton muestreado en el Leg 5 entre Auckland y Honolulu. Heter—poda. Hembra de la especie Pterosoma planum. Pertenecen a un grupo de caracolas depredadoras que viven en el OcŽano Pac’fico. Pueden crecer hasta los tres o cuatro cent’metros. Es una especie carn’vora que caza peces y otras caracolas y babosas. © JOAN COSTA

Hembra de la especie ‘Pterosoma planum’ que forma parte del zooplancton que habita en el Océano Pacífico.  / Imagen de la Expedición Malaspina 2010 (Joan Costa-CSIC)

El mecanismo es el siguiente: el CO2 es absorbido en las aguas superficiales iluminadas por el sol durante la fotosíntesis. Así, el carbono queda fijado en el tejido de los organismos o en las conchas de ciertos microorganismos; después esos materiales sufren una sedimentación en las aguas profundas, donde el carbono puede quedar ‘secuestrado’ durante miles de años antes de que vuelva a la atmósfera.

En otras palabras, este flujo vertical de carbono fuerza el paso de CO2 desde la atmósfera hacia la capa superficial del océano, y de ahí a las profundidades. De este modo se reduce la acumulación de dióxido de carbono de origen antropogénico en la atmósfera, causa principal del calentamiento global. Investigaciones recientes apuntan, además, que gracias al fitoplancton el océano podría actuar como sumidero del CO2 a un ritmo incluso más rápido de lo que se pensaba. Tras recoger múltiples muestras, la Expedición Malaspina, liderada por el CSIC y que se desarrolló en 2010-2011, concluyó que muchas de las células fotosintéticas que se hallaron en el océano profundo, habían estado viviendo en la superficie entre 5 y 20 días antes de ser muestreadas. Con ese dato, los investigadores calcularon que dichas células se hundían una media de 400 a 600 metros por día, cuando se pensaba que el ritmo diario era de un metro. Obviamente, eso supone una capacidad mayor a la hora de retirar el carbono de la atmósfera para su posterior ‘almacenamiento’ en el fondo del océano.

Esta tesis concuerda con lo planteado en una investigación internacional que se ha publicado en la revista Nature y en la que ha participado el Instituto de Ciencias del Mar del CSIC. Este trabajo describe la comunidad de organismos planctónicos que participan en la eliminación de carbono de las capas superiores del océano. La principal conclusión es que “el papel desempeñado por ciertos microorganismos (parásitos unicelulares, cianobacterias y virus) en la exportación de carbono había sido subestimado”, explica la delegación del CSIC en Cataluña en su revista R+D.

Así que, aunque no los veamos, millones de seres vivos microscópicos que flotan a la deriva en mares y océanos combaten cada día el calentamiento global, una de las principales amenazas para la sostenibilidad del planeta.