Ciencia para llevar Ciencia para llevar

CURIOSIDADES CIENTÍFICAS PARA COMPARTIR

Entradas etiquetadas como ‘CSIC. cultura científica’

Acrilamida, el contaminante que podemos reducir de nuestras patatas fritas

Por Marta Mesías, Cristina Delgado Francisco J. Morales, (CSIC)*

La acrilamida es un contaminante químico que se produce de forma natural cuando se cocinan determinados alimentos a elevadas temperaturas (más de 120°C) y baja humedad. Se encuentra sobre todo en el café tostado, los cereales horneados y las patatas fritas. En general, los alimentos de origen vegetal contienen tanto azúcares como un aminoácido llamado asparagina, por lo que cuando se tuestan, se hornean o se fríen, se desarrolla una reacción llamada reacción de Maillard que, además de generar el aroma y el color apetecible de los alimentos procesados, da lugar a la formación de acrilamida.

Pero, ¿por qué debemos preocuparnos precisamente ahora por la acrilamida? En el año 2002 se descubrió su presencia en los alimentos procesados y se comprobó que la dieta es la principal fuente de exposición a este contaminante. Además, la acrilamida se encuentra tanto en alimentos procesados en la industria, como en alimentos cocinados en restaurantes y en nuestros hogares.

Años más tarde, en 2015, la Autoridad Europea de Seguridad Alimentaria (EFSA por sus siglas en inglés), tras consider las investigaciones aportadas hasta la fecha, concluyó que la presencia de acrilamida en los alimentos puede aumentar la probabilidad de desarrollar determinados tipos de cáncer y, por tanto, la ingesta de este compuesto puede suponer un riesgo para el consumidor. Durante este tiempo se han desarrollado numerosos estudios para comprender por qué se forma la acrilamida y cómo podemos reducir su aparición en los alimentos.

El pasado mes de abril entró en vigor el Reglamento de la Comisión Europea donde se establecen medidas concretas que obligan a las empresas alimentarias a controlar y reducir la presencia de acrilamida en los alimentos. Además, se fijan niveles de referencia para las principales fuentes de exposición (café, cereales y patatas fritas) y, en especial, para los alimentos infantiles, ya que los niños de corta edad, por su menor peso corporal y una dieta más monótona, tienen mayores tasas de exposición que la población adulta.

¿Cómo reducir la formación de acrilamida en las patatas fritas?

La buena noticia es que en nuestros hogares podemos reducir la formación de acrilamida y, en consecuencia, bajar los niveles globales de exposición. Sólo hay que seguir unas sencillas recomendaciones durante la manipulación y fritura de la patata:

  • En primer lugar debemos seleccionar patatas frescas sanas, no dañadas, sin zonas verdes, sin heridas y sin brotes.
  • Las patatas no deben almacenarse a bajas temperaturas, ya que el frío favorece la degradación del almidón a azúcares sencillos, que incrementarán la formación de acrilamida durante la fritura.
  • Después de pelar y cortar las patatas, debemos lavarlas bien debajo del grifo.
  • Una vez lavadas, hay que dejarlas en remojo en agua al menos 10 minutos, lo que favorecerá la eliminación de un posible exceso de azúcares. Esta acción es especialmente recomendable si utilizamos patatas de conservación. El objetivo es reducir el contenido en azúcares en la patata fresca, ya que se formará menos acrilamida durante la fritura.
  • Por último, hay que freír a temperaturas inferiores a 175°C y sólo durante el tiempo necesario para conseguir un color dorado. Conviene seguir el lema de la Agencia Española de Consumo, Seguridad Alimentaria y Nutrición (AECOSAN), “dorado, pero no pasado”, ya que la acrilamida se relaciona con la aparición del color tostado en los alimentos procesados.

El proyecto de investigación SAFEFRYING, que se desarrolla en el Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN) del CSIC, trabaja en identificar los puntos críticos de formación de acrilamida durante las operaciones de fritura en el ámbito doméstico y de restauración colectiva. La investigación se ha centrado principalmente en las patatas fritas, ya que su fritura es habitual en nuestras cocinas y los niveles de acrilamida pueden variar hasta en un 80% dependiendo del tipo de elaboración.

 

Marta Mesías, Cristina Delgado, Francisco J. Morales son investigadores del Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN) del CSIC. Su grupo de investigación CHEMPROFOOD desarrolla el proyecto SAFEFRYING.

 

Insectos, algas y carne de laboratorio, ¿las proteínas del futuro?

Por Miguel Herrero (CSIC)*

En su novela Un mundo feliz, Aldous Huxley describe una sociedad futurista –e inquietante– en la que sus miembros se alimentan con pastillas que les aportan todo tipo de nutrientes. No es la primera vez que la ciencia ficción especula sobre cómo será la alimentación en un futuro más o menos lejano. Hoy, los avances que se están produciendo en las ciencias de la alimentación pueden dar pistas sobre la evolución de nuestra dieta. ¿De qué nos alimentaremos? Para responder a esta pregunta hay que considerar las necesidades nutricionales de la población global y los recursos existentes para cubrirlas.

Según la ONU, en 2050 habrá en la Tierra unos 9.000 millones de personas. A principios del siglo XX se calcula que había algo más de 1.500 millones de habitantes en el planeta. Es decir, en solo 150 años, esa cifra se habrá multiplicado por seis. Por tanto, es probable que tengamos que adoptar medidas para no llevar al límite los recursos disponibles: agua potable, aire no contaminado, energía limpia y, por supuesto, alimentos. Para aumentar la capacidad de generar alimentos, ya se ha comenzado a buscar fuentes alimenticias no explotadas suficientemente hasta el momento, y que no impliquen técnicas agrarias y ganaderas que perjudican al medioambiente.

Gusanos de seda cocinados.

Fundamentalmente se exploran nuevas fuentes de proteínas, pues estas se consideran el nutriente principal. Dado que la producción cárnica es muy ineficiente (en términos de recursos consumidos) y muy contaminante se pretende reducir la dependencia de la misma en la alimentación. ¿Cómo? Los insectos aparecen como la primera opción. La FAO ha destacado en más de una ocasión el papel que pueden jugar en la alimentación mundial futura. Aunque en Occidente no resulten demasiado apetecibles, estos animales poseen unas características nutricionales muy interesantes. Son una gran fuente de proteína, dado que este nutriente es su componente mayoritario. Pero, además, la cría de insectos puede ser utilizada también para la elaboración de piensos y alimentos para otros animales, liberando de ello cultivos que pueden ser redirigidos a la alimentación humana. Aunque en estas latitudes aún no se estilen los menús de insectos, aproximadamente un cuarto de la población mundial, mayoritariamente en Latinoamérica, ya se alimenta de ellos de forma regular.

Ensalada de algas.

Otra de esas posibles fuentes proteicas son las algas. Cualquier persona asiática aducirá que para ella las algas son un alimento del presente, no del futuro, pero en Europa su consumo aún es residual. Hay muchas algas ricas en proteínas, en particular varias especies del grupo de las microalgas. De tamaño microscópico, se pueden cultivar en plantas de producción que no tienen que estar necesariamente cerca de fuentes de agua salada, y por tanto en zonas costeras. Algunas ya se cultivan para producir alimentos para peces, por ejemplo, o para la generación de energía, pero de toda la producción tan solo una parte muy pequeña se dirige a la alimentación humana.

Las grandes algas son más frecuentemente utilizadas como alimento, aunque su consumo tampoco es equiparable al de los vegetales. En cuanto a su composición, todos los tipos de algas destacan por poseer altas cantidades de proteína y bajas proporciones de grasas que, además, suelen ser insaturadas y por tanto saludables. Sin embargo, algunas especies tienen un alto contenido en yodo, mientras que otras pueden acumular durante su crecimiento cantidades apreciables de metales pesados (como ocurre en algunos peces). Aun así, estas desventajas son claramente superables eligiendo de manera apropiada las especies a cultivar.

Finalmente, la carne obtenida a partir de cultivos de tejidos celulares y no de animales directamente es otra fuente que se está explorando. La producción de carne en laboratorio a partir de células madre que se convierten en células musculares idénticas a las que posee la carne está dando sus primeros pasos. De momento, las características de esta carne cultivada no son iguales a las de la carne a la que pretende sustituir, puesto que tan solo se compone de músculo y no contiene nada de grasa ni otros componentes que están entremezclados con la masa muscular en los animales. Esto provoca falta de jugosidad y unos sabores diferentes, menos apetecibles que los de la carne natural. Ahora bien, en los próximos años pueden producirse avances que permitan generar carne apetecible de forma económica y energéticamente más eficiente que a través de la cría de animales.

* Miguel Herrero es investigador en el Instituto de Investigación en Ciencias de la Alimentación (CIAL) del CSIC y la Universidad Autónoma de Madrid y autor del libro de divulgación Los falsos mitos de la alimentación, disponible en la Editorial del CSIC Los Libros de la Catarata.

Una bacteria volcánica de Canarias, entre las especies más sorprendentes de 2017

Por Mar Gulis (CSIC)

La bacteria Thiolava veneris, capaz de colonizar el material depositado tras la erupción del volcán Tagoro, en la isla del Hierro, es la aportación española al Top 10 de especies descubiertas el año pasado. El comité liderado por Quentin D. Wheeler, del International Institute of Species Exploration (IISE) y coordinado por el investigador del Museo Nacional de Ciencias Naturales del CSIC Antonio G. Valdecasas, ha publicado su selección a partir de las alrededor de 18.000 especies descubiertas a lo largo de 2017. La difusión de este ranking se difunde hoy para celebrar el aniversario del botánico Carlos Linneo y  nos recuerda la importancia que tiene conocer y clasificar la biodiversidad. “Hoy es ya evidente que los seres humanos estamos acelerando el calentamiento global  y la extinción masiva de especies  que pueden enseñarnos cómo afrontar el futuro incierto al que nos enfrentamos”, afirma Valdecasas.

Un inmenso árbol de 40 metros, un crustáceo con joroba y dos escarabajos se suman a esta lista de diez integrantes que repasamos a continuación:

1. Thiolava veneris, la bacteria que colonizó los depósitos del volcán Tagoro

Cuando  en 2011 el volcán submarino Tagoro estalló frente a la costa de El Hierro, aumentó abruptamente la temperatura del agua, disminuyó el oxígeno y liberó cantidades masivas de dióxido de carbono y sulfuro de hidrógeno, eliminando gran parte del ecosistema marino. Tres años después, se descubrieron los primeros colonizadores de los depósitos que dejó la erupción volcánica. Los llamaron ‘pelo de Venus’ y se trata de una bacteria que produce estructuras largas y parecidas a pelos que, a modo de alfombra, cubren una superficie de unos 2.000 metros cuadrados alrededor de la cima recién formada del volcán Tagoro, ubicado a unos 130 metros de profundidad. Parece que esta nueva especie tiene características metabólicas únicas que le permiten colonizar este fondo marino recién formado, allanando el camino para el desarrollo de futuros ecosistemas.

Miquel Canals, Universidad de Barcelona.

2. Ancoracysta twista, un ser diminuto descubierto en un acuario

Este organismo unicelular pertenece al orden de los protistas: es un organismo eucariota, es decir, que tiene células con núcleo diferenciado. Posee un flagelo que  utiliza para impulsarse, así como unos orgánulos con forma de arpón que utiliza para inmovilizar a los organismos de los que se alimenta. La gran cantidad de genes que contiene su genoma mitocondrial podría dar pistas sobre cómo comenzaron a evolucionar los primeros organismos eucariotas. Se desconoce el origen geográfico de este diminuto ser vivo ya que fue descubierto en un acuario tropical de San Diego, EE UU.

 

Denis V. Tikonenkov.

3. Dinizia jueirana-facao, el árbol de más de 40 metros de altura y 60 toneladas que permanecía ‘en la sombra’

Pese a medir más de 40 metros de altura y sobrepasar el dosel de los bosques de Brasil en los que habita, este gigante acaba de ser descrito. Pertenece al género de leguminosas Dinizia, del que hasta ahora sólo se conocía la especie D. excelsa, descubierta hace casi cien años en los bosques amazónicos. Actualmente solo se han localizado 25 ejemplares en la Reserva Natural Vale. Tiene frutos leñosos de medio metro de longitud y se estima que su peso puede llegar a las 60 toneladas. Forma parte de los bosques atlánticos que dan refugio a más de 2.000 especies de vertebrados, incluyendo más de la mitad de las especies amenazadas de Brasil. La superficie de este tipo de bosques se ha visto reducida en más del 15%, una situación que, unida a la fragmentación que sufre, pone en peligro a D. jueirana-facao y a cientos de especies más.

Gwilym P. Lewis

4. Epimeria Quasimodo, el crustáceo jorobado

Nombrado a partir del personaje creado por Víctor Hugo, Epimeria quasimodo  es un pequeño crustáceo de unos 5 centímetros de longitud con un exoesqueleto tan curvado que parece tener joroba. Es una de las muchas especies del género que pueblan el Océano Austral, y se caracteriza por tener una morfología y colores espectaculares, con adornos crestados que recuerdan a los dragones mitológicos. Los dos investigadores que han publicado el trabajo han demostrado lo poco que sabemos de estos sorprendentes invertebrados.

Cédric d’Udekem d’Acoz/Royal Belgian Institute of Natural Sciences.

5. Nymphister kronaueri, un escarabajo que se aloja en el abdomen de hormigas obreras

El orden más prolífico en número de especies, el de los coleópteros, cuenta con un nuevo miembro: Nymphister kronaueri. Este diminuto animal de menos de dos milímetros de longitud, vive camuflado entre las hormigas Eciton mexicanum, una especie nómada que pasa dos o tres semanas capturando presas y otras dos o tres en un solo lugar. N. kronaueri se agarra al abdomen de una hormiga obrera cuando la colonia necesita trasladarse, de modo que, a simple vista, la hormiga cargada con el escarabajo parece tener dos abdómenes.

D. Kronauer.

6. Pongo tapanuliensis, el simio más amenazado del planeta

En 2001, los orangutanes de Sumatra y Borneo fueron reconocidos como dos especies distintas, Pongo abelii y P. pygmaeus. Tras examinar parámetros genéticos y morfométricos así como analizar variables de comportamiento, un equipo internacional de investigadores concluyó en 2017 que en Batang Toru, al norte de Sumatra, hay otra especie diferente de orangutanes: P. tapanuliensis, de tamaño algo menor. Los datos genéticos sugieren que, mientras las especies de Sumatra y Borneo se separaron hace 674.000 años, esta especie divergió mucho antes, hace alrededor de 3,3 millones de años. A día de hoy, este gran simio es el más amenazado del planeta. Se estima que solo quedan alrededor de 800 individuos en un hábitat fragmentado repartido en unos 1.000 kilómetros cuadrados aproximadamente.

Andrew Walmsley.

7. Pseudoliparis swirei, el pez habitante de las profundidades marinas

En el oscuro abismo de la Fosa de las Marianas, el lugar más profundo de los océanos, se ha encontrado esta especie menor de 10 centímetros que parece ser uno de los depredadores de su hábitat. Fue capturado a profundidades de entre 6.800 y 8.000 metros. Se cree que 8.200 metros de profundidad es un límite fisiológico por debajo del cual los peces no pueden sobrevivir. P. swirei pertenece a la familia Liparidae, peces babosos, de la que se conocen más de 400 especies que habitan en todas las profundidades.

Mackenzie Gerringer, Universidad de Washington / Schmidt Ocean Institute.

8. Sciaphila sugimotoi, una planta japonesa que se alimenta de un hongo

Tiene una altura que ronda los 10 centímetros y unas hermosas flores con tiempos cortos de floración entre los meses de septiembre y octubre. Se ha descubierto en Japón, y la mayor particularidad de S. sugimotoi es su condición de heterótrofa, es decir, que se alimenta a partir de otros organismos en lugar de por medio de la fotosíntesis. En este caso, mantiene una relación simbiótica con un hongo, a partir del cual consigue alimentarse sin dañarlo. La especie, cuya supervivencia depende de un ecosistema estable, se considera en peligro crítico de extinción, ya que se ha encontrado en solo dos lugares de la isla con una representación total de unas 50 plantas.

Takaomi Sugimoto.

9. Wakaleo schouteni, un león marsupial australiano descrito a partir de material fósil

Hace unos 23 millones de años, en el Oligoceno tardío, vivió Wakaleo schouteni, un león marsupial que vagaba por el hábitat forestal abierto de Australia, en el noroeste Queensland. Gracias al material fósil recuperado por un equipo de paleontólogos de la Universidad de Nueva Gales del Sur, se ha podido determinar que este león marsupial pasaba alrededor de 25 kilos y pasaba parte de su tiempo subido a los árboles. Sus dientes sugieren que era omnívoro. Los paleontólogos creen que hubo dos especies de leones marsupiales. El otro, Wakaleo pitikantensis, era un poco más pequeño y se describió en 1961 a partir de huesos de dientes y extremidades descubiertos al sur de Australia.

Recreación de ‘Wakaleo schouteni’ / Peter Schouten.

 10. Xuedytes bellus, un escarabajo capaz de vivir en cuevas cerradas gracias a sus adaptaciones

Este pequeño escarabajo de unos 9 milímetros de largo es el habitante de Duan, al sur de China, un área llena de las cuevas características del paisaje kárstico. Los escarabajos que se adaptan a la vida en el interior oscuro y húmedo de las cuevas comparten a menudo muchas de sus de características: un cuerpo compacto, muy alargado, apéndices en forma de araña, y pérdida de alas funcionales, ojos y pigmentación. Estos seres vivos son un excelente ejemplo de evolución convergente, es decir, especies no relacionadas entre sí con atributos similares resultado de su adaptación a medios parecidos. En China ya se han descrito más de 130 especies, que representan casi 50 géneros. Xuedytes bellus  es una incorporación espectacular a la fauna que habita las cuevas.

Sunbin Huang y Mingyi.

Desertificación: cuando ya no hay marcha atrás

Por J.M. Valderrama (CSIC)*

Más de dos tercios del territorio español corren riesgo de desertificación. Tras esta afirmación, muchos de los lectores y lectoras pensarán que nuestro país se va a convertir en un secarral de tierras yermas y agrietadas, pero lo cierto es que esa imagen no es del todo correcta, ya que tendemos a confundir desiertos con desertificación. Mientras que un desierto es un tipo de ecosistema restringido a un territorio en el que se dan unas condiciones climáticas determinadas, la desertificación es un tipo de degradación ambiental propia de los territorios áridos, y es consecuencia de las variaciones climáticas, que se acentúan con el cambio climático, y las actividades humanas inadecuadas. Así lo especifica el artículo 1 de la Convención de Naciones Unidas de Lucha contra la Desertificación, firmada el 17 de junio de 1994, de ahí que el próximo domingo se celebre el Día Mundial de Lucha contra la Desertificación.

Este fenómeno se achaca a tres grandes motivos: el sobrepastoreo, la deforestación y las actividades agrarias inadecuadas, como el sobrecultivo y la salinización de suelos o aguas subterráneas. El abandono de las tierras de cultivo y el turismo son considerados como causas de desertificación dentro del ámbito Mediterráneo, según apuntan diversos autores. Pero, ¿cuáles son las causas de las causas? O dicho de manera más específica: ¿por qué se sobrepastorea un determinado lugar? ¿Qué lleva a intensificar el uso de las tierras de cultivo? En definitiva, ¿qué hace que las actividades humanas sean “inadecuadas”, como dice la definición oficial de desertificación?

Imagen de Tabernas, Almería. / Colin C Wheeler (CC 3.0).

El ser humano ha desarrollado estrategias para adaptarse a las zonas secas, en las que llueve poco y de manera impredecible. El truco para mantenerse en estos territorios es estar atento a las señales de escasez y adaptar las tasas de extracción de recursos (el pasto consumido, el agua extraída de los acuíferos, los árboles talados) a las de regeneración. El estereotipo que mejor refleja esta situación son los nómadas que siguen las erráticas lluvias y el pasto que brota tras su paso. Cuando la hierba se acaba, deshacen su campamento y buscan nuevos pastizales. La zona pastoreada volverá a ser productiva tras un periodo de regeneración.

En un sistema autorregulado (punto 1 en la figura) como el descrito no pueden darse episodios de desertificación. Pero más que vivir, se sobrevive. Por eso, cuando ocurre alguna perturbación que le es favorable (punto 2), el ser humano la aprovecha. Puede ser un periodo de lluvias extraordinario; o una novedad tecnológica que permita establecerse permanentemente en un territorio y vivir de un modo más desahogado e incluso con lujos hasta entonces impensables.

De repente el sistema aparenta ser más productivo (punto 3). Una subida del precio del trigo en los mercados internacionales puede convertir en un negocio redondo los rácanos campos de secano. En consecuencia, aumentan las tasas de extracción y se genera un sistema económico de mayor envergadura. Este nuevo equilibrio es muy precario, inestable. Tanto, que una vez que aparezcan las primeras señales de escasez -bien porque vuelvan las sequías o porque el ecosistema muestre los primeros síntomas de agotamiento- será necesario retraer el sistema económico a sus dimensiones originales (recorrido del punto 5 al 1). Sin embargo, puede suceder que la nueva situación haya desmantelado las antiguas vías de organización, y ya no sea posible la marcha atrás.

Estructura de los procesos de desertificación. / Los desiertos y la desertificación (CSIC-La Catarata).

En caso de mantener la sobreexplotación —porque deliberadamente se ignoran los síntomas de deterioro o porque no se perciben correctamente—, el sistema se dirige hacia unos umbrales que, a escala humana, son irreversibles como es el caso de pérdida de suelo fértil o salinización de los acuíferos. Este proceso de esquilmación en el que se sobrepasan puntos de no retorno se denomina, en el ámbito climático señalado, desertificación.

Ante la disyuntiva (punto 5) que sugiere este esquema, ¿por qué no detenemos la desertificación eligiendo la opción de regresar del punto 5 al 1 antes de que sea demasiado tarde? Hay tres razones, no necesariamente independientes, para entender -que no justificar- el camino destructivo del NO.

  1. El carácter oportunista resulta en una visión cortoplacista de la realidad. Esto implica maximizar el rendimiento económico en el menor tiempo posible, lo que no deja de ser un caso más de la Tragedia de los Comunes. Esta teoría afirma que cuando varios individuos explotan un recurso compartido limitado y actúan de manera independiente y motivados solo por el interés personal, terminan por arruinar ese recurso común, aunque a ninguno de ellos, ya sea como individuos o en conjunto, les convenga que tal destrucción suceda.
  2. La segunda explicación tiene que ver con la racionalidad limitada del ser humano, principio enunciado por el premio Nobel Herbert Simon y con la distorsión de las señales de escasez. Por un lado, nuestra mente tiende a simplificar las interacciones y elementos que componen un sistema y por otro el componente emocional interfiere en la interpretación de la información. Además, muchas veces ésta es escasa y confusa y no sabemos, a tiempo real, cual es el estado de un sistema. Puede que un acuífero se esté agotando y que al mismo tiempo los precios que se paguen por los productos que se riegan con ese recurso sean muy elevados e inciten a seguir bombeando agua.
  3. El coste de oportunidad. En muchas ocasiones la rentabilidad de las actividades alternativas a la que se realiza es tan baja que es preferible mantenerse en un uso poco productivo e insostenible. Por tanto, para aliviar la presión sobre unos recursos maltratados, han de implementarse políticas que favorezcan la versatilidad socioeconómica del lugar. El desarrollo de la industria agroalimentaria para amortiguar los períodos de crisis que afectan a los centros de producción agrícola es un buen ejemplo de esta estrategia.

Esta visión del problema incide en un hecho simple pero rotundo: la desertificación no consiste en el avance de los desiertos. El enemigo está en casa y para adelantarse al desastre, a que los paisajes empiecen a parecerse a un desierto, es necesario integrar las distintas políticas que afectan a los territorios (agricultura, gestión forestal, agua) y tratar de acoplar nuestras ambiciones a las reglas de la naturaleza. Pensemos con más amplitud de miras.

* J.M. Valderrama es investigador de la Estación Experimental de Zonas Áridas (EEZA) del CSIC y autor del libro Los desiertos y la desertificación de la colección ¿Qué sabemos de?, disponible en la Editorial CSIC y La Catarata. También escribe el blog Dando bandazos.

Ciencia en el Barrio: un proyecto para la igualdad de oportunidades

Por Mar Gulis (CSIC)

Según la última encuesta de Percepción social de la ciencia de la FECYT, cerca de un 5% de ciudadanas y ciudadanos participan en actividades de divulgación científica durante la Semana de la Ciencia y la Tecnología y hasta un 16% visita al menos una vez al año algún museo de ciencia. La mayoría de las participantes son personas que ya tienen un interés previo, muchas de ellas incluso son asiduas y otras constituyen lo que se conoce como público cautivo: alumnas y alumnos que asisten a actividades organizadas por sus centros escolares durante la jornada escolar. Incluso en estos casos, este público cautivo pertenece a institutos de secundaria habituales en las actividades que inundan cada año nuestras ciudades. La dificultad está en llegar a aquellas personas que no solo no acuden sino que ni siquiera conocen estas iniciativas.

‘Ciencia en el Barrio. Divulgación científica para el desarrollo social y la igualdad de oportunidades’ es un proyecto que busca cubrir esta laguna y facilitar el acceso a las actividades de divulgación científica a segmentos de la población que por sus características socioeconómicas hasta ahora no participaban de ellas. La iniciativa, puesta en marcha por el Consejo Superior de Investigaciones Científicas (CSIC) y que cuenta con el apoyo económico de la FECYT, se está desarrollando en cinco distritos de Madrid: Puente de Vallecas, Hortaleza, Carabanchel, Villaverde y San Blas. En ellos, a través de la colaboración de seis Institutos de Educación Secundaria de la red pública, el CSIC ha organizado cerca de medio centenar de actividades sobre temas de actualidad científica con diferentes formatos: talleres experimentales, conferencias, clubes de lectura, exposiciones y visitas guiadas a centros de investigación punteros. En su fase piloto han participado más de un millar de estudiantes de 4º de la ESO, nivel en el que el alumnado aún no ha tenido que elegir de forma definitiva el itinerario docente con la clásica separación de letras y ciencias. El resto de alumnas y alumnos del centro, así como las comunidades educativa y vecinal, también pueden participar en algunas de las actividades.

Ciencia en el Barrio

Durante un año, las chicas y los chicos han tenido la oportunidad de hablar de tú a tú con el personal investigador y técnico del CSIC; desmontar mitos y estereotipos sobre la ciencia; hacer preguntas y experimentar con todos sus sentidos. Catas de chocolate, talleres de cocina macromolecular, charlas sobre las aplicaciones de la luz o sobre cómo se forman las ideas, son algunas de las actividades en las que han participado. También han dialogado con los autores en clubes de lectura sobre libros de temas tan diversos como los neandertales, los robots o la vida de Alan Turing.

Y han sabido aprovechar la oportunidad. Han preguntado y debatido hasta dejar pasar el tiempo del recreo y alargar las horas programadas inicialmente para las actividades.

En la nueva etapa del proyecto, que comenzará este próximo abril, el CSIC aumentará el número de institutos y estudiantes implicados y fomentará la participación de las vecinas y vecinos de los distritos. Una de las principales novedades será la organización de una feria de divulgación científica en la que un grupo de chicas y chicos explicarán a otros estudiantes, familiares y vecinos los experimentos desarrollados en sus aulas con la tutela del CSIC.  Esperemos que sea la primera de muchas ferias.

 

Peces macho que se embarazan

Por Miquel Planas Oliver (CSIC) *

Este pez macho está cuidando a su prole. El entregado padre es un ejemplar de bocón (Opistoganathus sp.) y permanecerá así, con la boca llena de huevos y sin ingerir alimento, hasta que estos eclosionen, un mes después de introducirlos en su cavidad bucal.

Crianza compartida o conciliación pueden parecer términos fuera de contexto si hablamos de peces, pero el mundo animal nos ofrece casos excepcionales y sorprendentes, también bajo el agua.  En la reproducción de los peces, que en su mayoría es ovípara, las hembras suelen aportar tanto los cuidados como los nutrientes a los huevos y embriones, dejando al macho el papel de mero fecundador. Sin embargo, existen estrategias reproductivas en las que ellos desempeñan un rol primordial, especialmente en lo referente al cuidado de la descendencia. Para ello, la evolución ha dotado a los machos de algunas especies de comportamientos e incluso de estructuras corporales especiales que permiten niveles más o menos complejos de protección.

Junto al bocón que aparece en el vídeo, otro de los casos más curiosos es el pez cardenal (Pterapogon kauderni) de las Islas Banggai (Indonesia), uno de los mejores papás de todo el mundo animal. El pez cardenal no solo mantiene en su boca los huevos hasta que eclosionan como hace el bocón, sino que además las crías permanecen allí hasta que tienen un desarrollo suficiente para afrontar una vida llena de peligros en el ancho mar.

El cuidado bucal de los huevos tiene sus ventajas, especialmente para asegurar la descendencia en especies que producen pocos huevos (unas decenas o centenares frente a los miles de una puesta de otros peces), aunque a veces es inevitable que el padre trague algún huevo sin querer.

Macho Hippocampus guttulatus

Macho de caballito de mar recién apareado. En la imagen aparecen algunos huevos que no entraron en el saco/Miquel Planas

Pero sin duda los reyes acuáticos de la protección son los caballitos de mar (Hippocampus sp.). Los machos presentan un saco incubador al final del abdomen en el que las hembras depositan los huevos en el momento del apareamiento. Al entrar en el saco, los machos los fertilizan con su esperma y se inicia el desarrollo embrionario. Durante todo el tiempo en que los embriones se encuentran en el interior del saco, de dos a cuatro semanas, el macho protege físicamente a la prole y aporta un ambiente fluido adecuado, oxígeno, nutrientes y otros componentes bioquímicos. Al final de ese período las crías de caballito de mar son expulsadas al exterior mediante una serie de convulsiones, como si de un parto se tratara.

Los parientes del caballito de mar, como algunos peces pipa o los dragones de mar (pertenecientes al grupo de los  singnátidos), son menos sofisticados, pero también en estas especies el macho ejerce como cuidador. Las hembras depositan los huevos en la parte inferior del abdomen o de la cola del macho, quedando fijados mediante un fluido denso hasta que emergen los futuros pececitos.

En el caso del pez espinoso (Gasterosteus aculeatus), presente en nuestros ríos, y también del pez payaso (Amphiprion ocellaris), los machos construyen un nido donde la hembra deposita los huevos. Mientras nacen los alevines, ellos agitarán sus aletas para dar oxígeno a los huevos, alejarán a posibles depredadores y limpiarán el nido.

Y mientras todo esto sucede, ¿dónde están las madres? El cuidado paternal permite a la hembra disponer de tiempo para producir otro lote de huevos, que estará a punto cuando el macho quede libre de sus quehaceres. Todo un ejemplo de distribución del trabajo en la crianza.

*Miquel Planas Oliver es investigador del Instituto de Investigaciones Marinas (CSIC).

Números primos: los guardianes de Internet

agatamanuelPor Manuel de León y Ágata Timón*

¿Qué tienen que ver los números primos con los millones de mails que surcan la red cada día? Mucho. Estos peculiares dígitos son esenciales para que cualquier información que enviemos llegue al destinatario correcto y no se ‘pierda’ por el camino o sea usurpada por malintencionados. Veamos por qué.

Los números primos son aquellos que solo se pueden dividir por sí mismos y por la unidad: 2, 3, 5, 7, 11, 13, 17… Los matemáticos los consideran los ladrillos con los que se construyen todos los números, ya que cualquier número entero puede descomponerse de manera única como el producto de primos. En otras palabras, estos números serían los átomos de las matemáticas, permitiendo a los demás construirse a partir de ellos en forma de productos.

Los números primos son, además, infinitos. Sin embargo, a medida que se avanza en la lista de estos números, vemos que cada vez aparecen con menos frecuencia. La manera en la que se distribuyen los números primos dentro de los naturales es de tremenda importancia, no solo para los matemáticos, sino para todo el mundo, o al menos para cualquier persona que utilice Internet.

El algoritmo...

El algoritmo criptográfico RSA se utiliza para intercambiar información de forma segura en Internet / Wikipedia

Prueba de ello es el algoritmo criptográfico RSA, que se utiliza para garantizar la seguridad del intercambio de información en la web. Fue desarrollado en 1977 por Rivest, Shamir y Adleman, del Instituto Tecnológico de Massachusetts (MIT), y está basado precisamente en la factorización de números enteros en números primos. Como en todo sistema criptográfico de clave pública, cada usuario posee dos claves de cifrado: una pública y otra privada. Cuando se quiere enviar un mensaje, el emisor usa la clave pública del receptor para cifrar su mensaje, y el receptor, cuando lo recibe, se ocupa de descifrarlo usando su clave privada. En el sistema RSA los mensajes enviados se representan mediante números, y el funcionamiento se basa en el producto, conocido, de dos números primos grandes elegidos al azar y mantenidos en secreto.

adfasf

El matemático Bernhard Riemann / Wikipedia

A priori, parecería sencillo romper el código, pues bastaría con descomponer un número en sus factores primos; pero, cuando se trabaja con primos de 100 dígitos, al multiplicarlos se obtendrá un número de tal magnitud que descomponerlo ‘a lo bruto’ supondría una tarea titánica. Por eso las transacciones comerciales por Internet dependen de los números primos, lo que los hace muy importantes para los negocios, las comunicaciones, los registros… Conocer cómo se distribuyen, y poder así conseguir primos cada vez más grandes que sirvan de clave criptográfica, es un gran reto para las tecnologías y para las propias matemáticas.

Y ese es el desafío que plantea la famosa hipótesis de Riemann, que hasta ahora nadie ha sido capaz de resolver, pese al esfuerzo de los mejores matemáticos del mundo durante más de 145 años. Formulada por Bernhard Reinmann en 1859, trata de explicar cómo podrían estar distribuidos los números primos, pero su autor no pudo llegar a demostrarla. Si alguien lograra hacerlo, podría transformarse la forma de hacer negocios y afectar a la mecánica cuántica, la teoría del caos y al futuro de la computación.

Por eso el Instituto Matemático Clay de la Universidad de Cambridge (Massachussets) anunció en 2000 que premiaría con un millón de dólares a quien lograra despejar la famosa conjetura.

 

* Manuel de León es director del Instituto de Ciencias Matemáticas y autor del libro Vida y legado de Turing (CSIC-Catarata), que ha coescrito junto a Ágata Timón.