Archivo de la categoría ‘Matemáticas’

El negocio de los datos personales en internet: cuando el producto eres tú

Por David Gómez-Ullate Oteiza (CSIC)*

En la era de internet nos hemos acostumbrado a que muchas cosas sean gratis: la información de los diarios, los navegadores GPS, los gestores de correo… Nadie puede resistirse a la atracción de lo gratuito. Uno se pregunta, sin embargo, dónde está el producto detrás de tanta gratuidad: ¿cómo ganan dinero estas grandes compañías? Y aquí viene a la cabeza la frase del mítico jugador de póquer Amarillo Slim: “Mira a tu alrededor, si no sabes identificar al pardillo en la mesa, entonces el pardillo eres tú”. En internet, cuando no sabes cuál es el producto, entonces el producto eres tú. Para Google, Facebook y el resto de gigantes de internet no somos usuarios, sino productos: los destinatarios de sus campañas de publicidad.

Así pues, el modelo de negocio es un intercambio en el que nos ofrecen un gestor de correo electrónico con grandes capacidades, una plataforma para conversar con amigos o para encontrar a antiguos compañeros de clase, un navegador GPS para no perdernos en la ciudad, una carpeta en la nube para almacenar nuestros ficheros… Todo ello a cambio de recopilar una cantidad de datos tan inmensa que probablemente hace que Google nos conozca mejor que nosotros mismos: qué coche te quieres comprar, dónde vas a ir de vacaciones, cuántos hijos tienes, qué camino tomas para ir a trabajar, a quién vas a votar, cómo te sientes hoy, esa pasión oculta que no has confesado a nadie pero has buscado en internet, a qué hora te acuestas y con quién, etc.

Big data

/Wikimedia Commons

Con esta ingente cantidad de datos, la publicidad digital presume de su precisión, al impactar a la persona escogida en el lugar idóneo y el momento adecuado, frente a los anuncios tradicionales en televisión, por ejemplo, que solo permiten segmentar el público objetivo por franja horaria o asociado a ciertos programas. De hecho, cada vez que cargamos la página de nuestro diario favorito para leer las noticias del día, el correspondiente banner publicitario que vemos depende de una compleja subasta (RTB, Real Time Bidding) en la que distintos algoritmos pujan por mostrarnos su anuncio en función de cuánto piensen que nuestro perfil se adapta al producto que desean vender. Todo esto ocurre en la fracción de segundo que tarda el navegador en cargar la página; obviamente, estos algoritmos emplean toda la información que puedan adquirir sobre quién está al otro lado del ordenador para afinar los modelos: más información implica modelos más precisos y, típicamente, mayor rendimiento de la inversión en publicidad.

Así, Google es la mayor agencia de publicidad del mundo. Facebook o Twitter también siguen el mismo modelo de negocio: nos ofrecen una plataforma para que voluntariamente les entreguemos una cantidad inimaginable de datos personales gracias a los cuales pueden afinar campañas de publicidad muy orientadas a su público objetivo.

En la economía digital nadie da duros a cuatro pesetas o, como nos recordaba el Nobel de Economía Milton Friedman: “There ain’t no such a thing as a free lunch (no existen los almuerzos gratis)”. Las principales empresas hoteleras son Airbnb y Booking; no tienen uno solo alojamiento en propiedad. La empresa líder de movilidad es Uber; no posee un solo vehículo. La primera empresa del sector de venta al por menor es Alibaba; no dispone de inventario. La mayor empresa de contenidos digitales es Facebook; no genera su contenido. Todas son empresas de datos. Recopilan, limpian, analizan y desarrollan aplicaciones para poner en contacto productores de servicios con consumidores.

Pero entonces, ¿cuánto deberían valer nuestros datos personales? La pregunta es muy relativa y probablemente tenga dos respuestas bien diferenciadas para la persona que cede los datos y para la que los adquiere. Para el ciudadano o ciudadana media, a tenor del comportamiento observado durante los últimos años, el valor que concedemos a nuestros propios datos es más bien pequeño, pues prácticamente los hemos regalado a cambio de nada a las grandes compañías. Para los gigantes de internet podemos hacer un cálculo sencillo basado en dividir el beneficio del sector publicitario digital en EE UU durante 2016 (83.000 millones de dólares) entre el número de usuarios en el país (280 millones), lo que arrojaría una cifra media de 296 dólares per cápita. Prácticamente nadie en el entorno empresarial duda ya del inmenso valor que tiene la adquisición de datos, aunque la sociedad en su conjunto no sea aún muy consciente de ello.

Privacidad en tiempos de pandemia

Entre 1950 y 1989, la policía política de la RDA articuló métodos de vigilancia que implicaron a 250.000 personas entre empleados e informantes. Para una población de 17 millones suponía un espía por cada 70 habitantes. Con los métodos de supervisión existentes en la actualidad, empleando técnicas de Inteligencia Artificial, tratamiento de imágenes y procesamiento del lenguaje natural, se puede vigilar a miles de millones de ciudadanos con apenas varios miles de empleados.

Big data

/Wikimedia Commons

Aunque cuando una empresa conecta el micrófono de mi móvil no está interesada en lo que digo, solo quiere saber qué canal de televisión estoy mirando o qué estoy pensando en adquirir. Porque una parte importante de la industria publicitaria se basa en pagar por los anuncios en función de la contribución que cada uno haya tenido en conseguir que adquieras el producto. En su jerga, ellos usan el término “conversión”, pero no una conversión a los principios socialistas de la República Democrática de Alemania, sino una conversión para ganar personas adeptas al último coche, tableta o viaje.

En los últimos meses se está produciendo un intenso debate sobre la pertinencia del uso de datos personales para luchar contra la pandemia, lo cual ha puesto en el ojo público muchas de las cuestiones mencionadas arriba. Los datos de geolocalización o los contactos con otras personas se pueden usar para diseñar sistemas más eficientes y dirigidos de contención de la epidemia, aislando sólo personas infectadas y sus contactos, o lanzando alertas en los lugares con mayor probabilidad de infección. Compartir datos clínicos de pacientes permite ampliar la base estadística de los estudios sobre COVID y conocer mejor la enfermedad para mejorar el tratamiento de enfermos o las políticas de salud pública.

Todas estas cuestiones requieren un debate sobre el alcance de dichas medidas, que en cualquier caso debe de ser limitado en el tiempo y no ser usado con fines distintos a los mencionados. Este debate contrasta con la noticia publicada recientemente sobre las denuncias de un empleado de Apple que trabajaba en el programa de transcripción de textos grabados por sus dispositivos, sin ningún consentimiento por parte de los usuarios. Es fundamental que la sociedad sea más consciente del uso y abuso de los datos personales por parte de las grandes corporaciones y participe de manera activa en el debate abierto sobre la gestión de los mismos.

* David Gómez-Ullate Oteiza es investigador en la Universidad de Cádiz y coautor del libro Big data de la colección ¿Qué sabemos de? (CSIC-Catarata).

Descubre las revoluciones matemáticas que cambiaron el mundo

Por Mar Gulis (CSIC)

Los ordenadores, la energía, la teoría del caos, el número pi… las matemáticas están por todas partes, y esto se debe a las contribuciones de grandes matemáticos y matemáticas que cambiaron el mundo. ¿Te gustaría conocer a algunas de estas figuras? Puedes hacerlo desde tu casa con la serie de animación ‘Revoluciones Matemáticas’, que en su segunda temporada presenta a cuatro personajes clave de esta disciplina: Emmy Noether, creadora del álgebra moderna; Leonhard Euler, precursor de la topología; Ada Lovelace, pionera de la programación; y Henri Poncairé, que sentó las bases de la teoría del caos.

Cada vídeo, de dos a tres minutos de duración, está acompañado por un taller de matemáticas recreativas en el que se abordan con mayor profundidad los conceptos presentados. Con ellos podrás entender las bases de la teoría del caos, fabricar una máquina para sumar o jugar con grafos de gominolas. Todos los materiales han sido elaborados por el Instituto de Ciencias Matemáticas, adscrito al CSIC y varias universidades madrileñas, y Divermates en el marco del proyecto Ciudad Ciencia. Aquí te contamos algunos de sus contenidos.

La “genio” alabada por Einstein

Comencemos por el álgebra moderna y por su creadora, Emmy Noether (1822-1935). Nadie esperaba a principios del siglo XX que esta matemática alemana fuera a convertirse en la artífice de la teoría que permitiría entender la conservación de la energía. Sin embargo, al morir, el mismísimo Albert Einsten llegó a definirla como “la genio creativa de las matemáticas más significativa que ha existido desde que comenzó la educación superior para las mujeres”.

Muchos sostienen que las matemáticas no volvieron a ser lo mismo después de Emmy Noether. Además de realizar grandes aportaciones al álgebra o la física, Noether fue la primera mujer en participar como ponente en un Congreso Internacional de Matemáticas. Lo hizo en 1932, mientras que la segunda, Karen K. Uhlenbeck, no lo haría hasta 1990. Durante el nazismo, Noether tuvo que trabajar en casa con sus estudiantes y finalmente abandonar Alemania para continuar su labor docente. Se refugió en Estados Unidos hasta su temprana muerte.

El ‘cíclope’ de los poliedros

¿Qué sabemos de cubos, prismas u octaedros? El matemático Leonhard Euler (1707-1783) con su fórmula para poliedros introdujo ideas precursoras de la topología. Entre otras cosas, logró establecer un patrón común para los poliedros convexos con independencia del número de caras, vértices o aristas.

A Euler le gustaron las matemáticas desde pequeño y realizó aportaciones fundamentales a la geometría analítica moderna, la trigonometría y la teoría de los números. Desarrolló el concepto de función matemática y, para ello, definió el número e (o número de Euler), la base de la función exponencial. Además, hablando de números, fue quien popularizó el número π (‘pi’ o 3,141592…). Se le conocía como el ‘cíclope matemático’ ya que perdió la visión de un ojo a los 31 años. 17 años antes de morir se quedó totalmente ciego, pero esto tampoco frenó su carrera ni sus innumerables aportaciones en diferentes campos, que llegaron a publicarse hasta cincuenta años después de su muerte.

La primera programadora

El desarrollo de nuestros ordenadores modernos tiene su origen en Ada Lovelace (1815-1852), pionera de la programación y autora del primer programa de ordenador de la historia. Apasionada de las matemáticas desde pequeña, Ada Byron se codeaba con intelectuales y celebridades como Dickens, Faraday o Darwin. En una de esas reuniones conoció a Charle Babbage, inventor de la máquina diferencial (nuestra calculadora), y con quien trabajó en la máquina analítica. En sus notas a los trabajos de Babbage, Lovelace incluyó una serie de instrucciones, consideradas el germen de la programación y los algoritmos. Para ella, “las maquinas podían ir más allá de los simples cálculos numéricos”, cosa que demostró.

A pesar de su muerte prematura a los 36 años y de que se ha tardado más de cien años en reconocer su relevancia, hoy en día es todo un referente femenino en el campo de la tecnología. Incluso cuenta actualmente con un día propio: el segundo martes de octubre se celebra el ‘Ada Lovelace Day’ para impulsar la participación de las mujeres en la ciencia.

El ‘abuelo’ de la teoría del caos

Y, para terminar, volvemos a la topología moderna de la mano de su fundador, Henri Poincaré (1854-1912), precursor de la teoría del caos. En el instituto, el francés destacó en todas las asignaturas, pero especialmente en matemáticas, como también lo hizo a lo largo de su vida. Fue nombrado miembro de la Academia de Ciencias de Francia y llegó a ser presidente de la institución en 1906.

Poincaré basaba sus resultados en principios básicos y supo de buena tinta que de los errores se aprende. Aunque llegó a publicar alrededor de 500 artículos, tuvo que destruir uno cuando ya estaba en imprenta: el artículo contenía una resolución errónea del famoso problema de los tres cuerpos (trayectoria de tres objetos atraídos por la fuerza de la gravedad). Aunque no pudo solucionar el problema, sus observaciones fueron los primeros pasos de la teoría del caos, capaz de dar respuesta a problemas antes intratables en ámbitos como la economía, la biología o la meteorología.

 

Ciencia online: más de 100 conferencias de divulgación del CSIC para ver en casa

Por Mar Gulis (CSIC)

¿Por qué el cambio climático es un problema urgente? ¿De qué está hecho el universo? ¿Cómo se extinguieron los Neandertales? ¿Tiene la vida un origen extraterrestre? Estos días de confinamiento suponen una excelente oportunidad para saciar tu curiosidad científica. Las más de 100 charlas para todos los públicos que el Consejo Superior de Investigaciones Científicas (CSIC) ofrece en sus canales online te ayudarán a buscar respuestas a estas y otras muchas preguntas. Además, te permitirán conocer los últimos avances de la ciencia por boca de investigadores e investigadoras que trabajan en una gran variedad de campos, como la demografía, la biología, la geología o la física teórica.

Fernando Valladares

Fernando Valladares, investigador del Museo Nacional de Ciencias Naturales (MNCN-CSIC), en una de sus charlas sobre cambio climático.

Del universo a las partículas elementales

Si lo que te interesa son los meteoritos, las estrellas o la vida extraterrestre, puedes asomarte al impresionante catálogo de conferencias del Ciclo Lucas Lara, organizado por el Instituto de Astrofísica de Andalucía (IAA-CSIC). En ellas no solo oirás hablar de astronomía, sino también de asuntos como la inteligencia artificial, el dolor o los mosaicos de La Alhambra.

En caso de que te vaya más la física ‘pura y dura’, las conferencias del Instituto de Física Teórica (IFT-CSIC/UAM) no te defraudarán. El bosón de Higgs y el misterio de la masa, el fin del espacio-tiempo o las misteriosas propiedades de los neutrinos son solo algunas de las muchísimas cuestiones tratadas en ellas. De todas formas, la física del CSIC no se agota aquí. En esta misma área del conocimiento, tampoco puedes perderte las charlas del Instituto de Física Fundamental (IFF-CSIC), que se ocupan de temas como la antimateria, los mitos de la física cuántica o la computación cuántica.

La investigadora Laura López-Mascaraque, del Instituto Cajal (IC-CSIC), habla de la ruta de los aromas de la nariz al cerebro en el ciclo ‘¿Qué sabemos de?’.

Para saber de todo

Para quienes no tengan tan definida una temática de interés, el ciclo Jam Science ofrece la oportunidad de ver a investigadores e investigadores de perfil muy diverso hablando de su trabajo en un ambiente muy distendido: nada más y nada menos que un bar. Organizada por la científica del CSIC Carmen Fernández, esta iniciativa ha abordado cuestiones como el enigma de los Neandertales, el posible origen extraterrestre de la vida en nuestro planeta, la exploración antártica o la importancia de las vacunas. Los vídeos de estas charlas están disponibles en los canales de Youtube DC SciCommAgora Mundi Ciencia.

Otro ciclo de contenido científico amplio que te permitirá aumentar tus conocimientos son las Friday Talks. ‘Música y neurociencia’, ‘Un nuevo océano en la era del plástico’ o ‘Gatos y tigres… ¿bajo el mar?’ son títulos de algunas de las intervenciones recogidas por esta propuesta del Instituto de Ciencias del Mar (ICM-CSIC).

Y aún hay más. ¿Qué somos capaces de hacer editando genes? ¿Cómo sabe el cerebro lo que la nariz huele? ¿Se va a convertir la Comunidad Valenciana en un desierto? Estos interrogantes sirven de partida a tres de las conferencias del ciclo ‘¿Qué sabemos de?’ con el que la Delegación del CSIC en Valencia te propone indagar en las claves científicas del bienestar.

Los Neandertales son el eje de esta charla de Antonio Rosas, del MNCN-CSIC, en el ciclo Jam Science.

Cambio climático y geología

Volviendo a temáticas más específicas, el investigador del Museo Nacional de Ciencias Naturales (MNCN-CSIC) Fernando Valladares te invita a reflexionar sobre el cambio climático y los desafíos que plantea en su serie de vídeos La salud de la humanidad, en la que intercala conferencias con varias piezas informativas de elaboración propia. Y en una línea similar, Daniel García-Castellanos, del Instituto de Ciencias de la Tierra Jaume Almera (ICTJA-CSIC), comparte su pasión por la geología en sus charlas sobre megainundaciones, tectónica de placas y erosión del suelo.

Y para terminar, puedes darte una vuelta por los ciclos Demografía hoy y ¿Qué sabemos del arte rupestre?, así como los seminarios de la Estación Biológica de Doñana. Estos vídeos, de contenido algo más especializado que los anteriores, te permitirán profundizar en las cuestiones que tratan.

Como ves, tienes muchas conferencias para elegir. ¿Por cuál quieres empezar?

Si quieres conocer más recursos del CSIC para aprender ciencia desde casa, pincha aquí.

¿Cómo funcionan el bitcoin y otras monedas virtuales? La clave es la tecnología blockchain

Por Mar Gulis (CSIC)

Basada en la tecnología blockchain, la moneda virtual bitcoin no cuenta con el respaldo de ningún gobierno  o banco central.

En 2008 alguien que firmaba bajo el seudónimo de Sataoshi Nakamoto creó el bitcoin. La famosa moneda virtual ha sido la punta de lanza de un fenómeno más amplio: la criptoeconomía. Este concepto se refiere a toda la actividad financiera basada en el uso de criptomonedas y tecnología blockchain (cadena de bloques), un sistema descentralizado de recolección de datos en el que la información se agrupa en bloques, es de acceso público y, mediante técnicas criptográficas, solo puede ser editada o alterada modificando toda la cadena de bloques previa.

Los investigadores del CSIC David Arroyo y Luis Hernández, y su colega Jesús Díaz, de IBM,  explican que el éxito de cualquier criptomoneda no reside solo en esta base criptográfica, sino que es necesario que exista un conjunto de usuarios que pongan sus ordenadores al servicio del ecosistema, actuando como nodos activos en la generación de criptomonedas. Así es como funciona la red Bitcoin. Expertos en telecomunicaiones, matemáticas e informática, los tres autores acaban de publicar Blockchain (Editorial CSIC-Los libros de la Catarata), donde explican el significado y alcance de este vocablo. A lo largo del libro cuentan cómo funciona y para qué sirve una tecnología que puede ser clave para transitar a una nueva economía digital y a la denominada web 4.0.

Portada del libro Blockchain, editado por el CSIC y Los Libros de la Catarata.

Como decíamos, blockchain es un sistema descentralizado de recolección de datos que elimina a los intermediarios, los bancos en el caso de Bitcoin, desconcentrando todas las tareas de gestión. Son los usuarios quienes controlan el proceso, como si se tratase de un enorme banco con millones de nodos, de modo que cada uno se convierte en partícipe y gestor de los libros de cuentas de esta peculiar entidad. En ese contexto de aplicación, blockchain sería una especie de libro de contabilidad gigante en el que los registros (bloques) están enlazados y validados criptográficamente para proteger la seguridad de las transacciones. En otras palabras, es una base de datos distribuida (no se almacena en una sola ubicación) y segura que se puede aplicar a todo tipo de transacción, no solo económica.

Precisamente por esta particular estructura, blockchain se está empleando para crear sistemas financieros alternativos, al margen del tradicional control de los bancos centrales. Ejemplos de ello son las plataformas Bitcoin y Etherum, a través de las cuales cualquiera puede registrar transacciones con sus respectivas monedas virtuales, el bitcoin y el ether. Como apuntan los investigadores en su libro, la utilización de este dinero virtual y la tecnología en la que se sustenta –blockchain– ha pasado de cierto rechazo institucional, e incluso mala fama, a representar una oportunidad para nuevos modelos de negocio y actividad financiera, en medio de una ola de entusiasmo hacia la denominada criptoeconomía. El potencial de blockchain es diverso, y pasa por la construcción de sistemas de protección de derechos de autor; la configuración de organizaciones autónomas basadas en ‘contratos inteligentes’ o la gestión del Internet de las cosas, entre otras aplicaciones.

Pero sus múltiples oportunidades conviven con varios puntos débiles: por ejemplo, la no trazabilidad de las criptomonedas, frente al pago tradicional con tarjeta de crédito o mediante transferencia bancaria, dificulta la persecución del lavado de dinero; sus limitaciones en la gestión de la identidad y privacidad de los usuarios; las fluctuaciones en la cotización de las monedas virtuales; la gran cantidad de energía que requieren los modelos de generación de moneda en Bitcoin y Ethereum; el déficit en escalabilidad de la red blockchain de acceso abierto; o ciertos incidentes de seguridad. “En los últimos años podemos hallar errores en la implementación de protocolos criptográficos, robos de credenciales en plataformas digitales, incluso fallas graves de seguridad en dispositivos hardware resistentes a la manipulación”, señalan los autores. Como explica David Arroyo, del Instituto de Tecnologías Físicas y de la Información Leonardo Torres Quevedo (ITEFI-CSIC), “el trabajo teórico que sustenta esta tecnología está aún en fase de desarrollo, y los organismos de estandarización quieren establecer un marco de referencia básico que ofrezca garantías a su utilización”.

Con todo, la obra incide en que blockchain va más allá de posibilitar meros intercambios económico-financieros. Es una herramienta para desarrollar nuevos protocolos que permitan la gestión de todo tipo de datos en esta sociedad de la información.

Matemáticas para hacer más seguro el coche autónomo

Por Mar Gulis y Ágata Timón (CSIC)*

El coche autónomo ya es una realidad. Las principales compañías de automóviles tienen previsto lanzar comercialmente sus prototipos entre 2020 y 2021, pero ¿está la sociedad preparada para este salto cualitativo? Entre los retos científicos y tecnológicos que supone la conducción automática en un entorno complejo e imprevisible, la comunidad investigadora se tiene que enfrentar a cuestiones como analizar los riesgos de este nuevo tipo de conducción, diseñar la comunicación entre la máquina y el humano, o estudiar el impacto que tendrá en la economía y en ciertos sectores industriales. De todo esto se ocupa el proyecto Trustonomy. Building Acceptance and Trust in Autonomous Mobility, financiado por la Unión Europea. Su objetivo principal es crear aceptación y confianza en la movilidad autónoma.

El proyecto, en el que participa el investigador del Instituto de Ciencias Matemáticas (ICMAT) del CSIC David Ríos, propondrá mejoras en los algoritmos que dirigen la conducción autónoma. Estos identifican la posición y el estado del coche y de todos los agentes que están a su alrededor, predicen su evolución en el tiempo y toman decisiones, minimizando los riesgos. “El coche ejecuta elecciones sencillas: frenar, acelerar o cambiar su dirección, pero tiene que evaluar las consecuencias de esas decisiones”, explica Ríos. Su misión es producir modelos de análisis de riesgos que permitan predecir y responder ante los peligros específicos vinculados a esta forma de movilidad emergente.

¿Cómo nos relacionamos con un vehículo autónomo?

También es indispensable prestar atención a la interacción entre el conductor y el vehículo. Siguiendo la clasificación más común, los coches autónomos se diferencian en seis categorías, del 0 al 5: los vehículos del nivel 0 dependen totalmente del conductor, y en el nivel 5 supone la conducción plenamente autónoma sin intervención humana. Hasta el momento los coches más avanzados han conseguido alcanzar el nivel 4, en el que solo se requiere la conducción humana en casos de falta de visibilidad o fallo del sistema, por lo que el papel humano seguirá siendo determinante en el transporte.

“Las últimas muertes provocadas por coches autónomos han sido causadas porque los humanos que los supervisaban no estaban prestando atención”, afirma Ríos. Para evitar estas situaciones, el coche debe ser capaz de comunicarse de forma efectiva con el conductor, saber cuál es su grado de atención (mediante cámaras y sensores) y lanzar advertencias cuando se requiera. Además, durante un tiempo coexistirán en la carretera los vehículos totalmente autónomos, los semiautónomos y los no autónomos. Esto presentará nuevos riesgos en la conducción, que también deberán ser analizados.

Otro problema importante es el de la ciberseguridad. “Un coche autónomo funciona a través de un sistema informático, y puede ser atacado, por ejemplo, por medio del reconocimiento de imágenes. Modificando unos pocos píxeles de una imagen, se puede identificar un obstáculo de manera errónea y, como consecuencia, frenar o acelerar cuando no corresponde. Es un riesgo grave”, explica el investigador.

Para analizar todos estos riesgos se desarrollarán modelos de aprendizaje automático, basados principalmente en estadística bayesiana y teoría de juegos. El catálogo resultante será útil para rediseñar las pólizas de seguro y revisar las regulaciones de seguridad vial, pero también servirá para estudiar los procesos éticos de toma de decisiones y los métodos de verificación en caso de accidentes o ambigüedad.

El proyecto, que cuenta con 3,9 millones de euros del programa H2020 de la Unión Europea, se desarrollará hasta el 30 de abril de 2022. En él participan, además del ICMAT, otras 15 organizaciones de diferentes países europeos.

 

*Ágata Timón trabaja en el Instituto de Ciencias Matemáticas (ICMAT), centro de investigación mixto del CSIC y tres universidades madrileñas: la Universidad Autónoma de Madrid (UAM), la Universidad Carlos III de Madrid (UC3M), y la Universidad Complutense de Madrid (UCM).

Blockchain, tierras raras, aceleradores de partículas… El CSIC lleva la actualidad científica a la Feria del Libro

Por Mar Gulis (CSIC)

¿Sabes cómo funcionan el bitcoin y otras criptomonedas? Si quieres algunas pistas, el martes 11 de junio en la Feria del Libro de Madrid David Arroyo, Jesús Díaz y Luis Hernández presentarán su libro Blockchain. Los autores explicarán al público los entresijos de esta tecnología y sus aplicaciones en la denominada criptoeconomía.

Como cada año, investigadores e investigadoras del CSIC acudirán a esta emblemática cita para dar a conocer los últimos libros publicados en las colecciones ‘¿Qué sabemos de?’ y ‘Divulgación’ (CSIC-Catarata), que acercan la ciencia al público general. El mismo día 11, además de criptoeconomía, se hablará del futuro de la óptica; el LHC, el mayor acelerador de partículas del mundo; y las tierras raras, 17 elementos químicos omnipresentes en las sociedades tecnológicamente avanzadas y, sin embargo, poco conocidos.

El 12 de junio, la investigadora Pilar Ruiz Lapuente se ocupará de la energía oscura, del posible final “frío y estéril” del cosmos y de otras cuestiones relacionadas con la astrofísica que aborda en su libro La aceleración del universo. En la misma jornada tendrán cabida temas como la tabla periódica de los elementos químicos, el albinismo y otras mutaciones genéticas o el papel de las áreas protegidas en la sostenibilidad ambiental.

En total, el CSIC y la editorial Los Libros de la Catarata, presentarán ocho obras de divulgación a través de las intervenciones de sus propios autores.

Estas son las coordenadas

Las presentaciones se realizarán los días 11 y 12 de junio, a partir de las 12:30 horas, en el Pabellón Bankia de Actividades Culturales, situado en las proximidades de los jardines de Cecilio Rodríguez del parque de El Retiro. De acceso libre, estas citas son una oportunidad para escuchar y plantear preguntas a los protagonistas de la ciencia.

Quienes busquen actividades para público más joven, el sábado 8 de junio tienen además una cita en el Pabellón infantil. Allí, investigadores del CSIC que han participado en la obra Descubriendo la luz. Experimentos divertidos de óptica realizarán demostraciones para niños y niñas. Las sesiones, de entrada libre y una duración de 15 minutos, se prolongarán desde las 12:30 hasta las 15:00 horas.

Y si la prioridad es llevarte tu libro con dedicatoria incluida, pásate por la caseta del CSIC (número 19) o la de Los Libros de la Catarata (número 336). Durante toda la feria, los autores de las novedades editoriales estarán en firmando ejemplares.

La información de las firmas se puede consultar aquí.

La feria Ciencia en el Barrio reúne a 500 adolescentes para divulgar la ciencia

Por Mar Gulis (CSIC)

Abderrahim y Anás salen a explicar una estratigrafía arqueológica que acaban de realizar en su instituto para entender las huellas del tiempo en el paisaje. Una investigadora del CSIC, María Ruiz del Árbol, les ha explicado cómo hacerlo previamente. Estamos en el Instituto de Educación Secundaria (IES) María Rodrigo, en el Ensanche de Vallecas, y es la primera vez que reciben una visita de este tipo. Sus profesores y el director del IES no salen de su asombro; estos chicos no se implican en actividades académicas y menos científicas. Hasta que cambia su contexto de aprendizaje.

Motivar y generar curiosidad es uno de los objetivos de Ciencia en el Barrio, un proyecto del CSIC que, con el apoyo de la FECYT, trata de llevar actividades de divulgación científica a distritos de Madrid que no contaban con esta oferta. Este viernes, 16 de marzo, estudiantes procedentes de Usera, Carabanchel, Villaverde, Puente de Vallecas, Hortaleza y San Blas-Canillejas replican los talleres realizados previamente con personal investigador del CSIC en sus Institutos de Educación Secundaria (IES) en la Feria Ciencia en el Barrio, en el IES Arcipreste de Hita, en Entrevías, convirtiéndose así en divulgadoras y divulgadores por un día.

A las 10.00 de la mañana, el salón de actos del Arcipreste era un hervidero. Cerca de 500 adolescentes procedentes de nueve institutos madrileños deambulaban de un lado a otro buscando un stand, probando microscopios, preparando el material para hacer una extracción de ADN, ordenando los utensilios para hacer una cata de chocolate…La oferta de la feria es sumamente variada: hasta las 14.00, sus protagonistas van a acercarse a la ciencia a través de experimentos sobre los orígenes de la vida en el universo, la microelectrónica o la nanotecnología; y también mediante  talleres para aprender matemáticas con la vida de las abejas, ‘cocinar’ con polímeros, realizar catas de chocolates, pruebas olfativas o aplicar conocimientos arqueológicos al barrio.

Desde 2016, el Área de Cultura Científica del CSIC ha organizado en cada uno de los institutos participantes talleres experimentales, conferencias, clubes de lectura, y exposiciones sobre temas de actualidad científica, además de visitas guiadas a centros de investigación punteros. El programa está dirigido a estudiantes de 4º de la ESO, pero el resto del alumnado y la comunidad educativa y vecinal también pueden participar en algunas de las actividades.

Ciencia en el Barrio constituye una iniciativa pionera en la ciudad. Hasta el momento más de 2.500 personas han participado en un centenar de actividades que han permitido desmontar ideas falsas sobre las y los científicos, favorecer el contacto directo entre los jóvenes y el personal investigador, así como reforzar vocaciones científicas e inspirar otras nuevas.

William R. Hamilton: el niño prodigio que emuló a Arquímedes

Por Sergio Barbero (CSIC) *

No es usual que un adolescente de 17 años se sienta interpelado a ocupar un lugar destacado en la historia de la ciencia. Y menos aún que semejante sentimiento acabe convirtiéndose en realidad, haciendo veraz el viejo aforismo de que sólo quien persigue con ahínco sus sueños es capaz de alcanzarlos. Esta es la historia de William Rowan Hamilton (1805-1865).

Retrato de Hamilton. Imagen de dominio público.

Hamilton fue educado por su tío James, un erudito en lenguas clásicas graduado en el Trinity College de Dublín. No es de extrañar, pues, que la educación del joven William tuviese un especial énfasis en el aprendizaje de idiomas. A muy temprana edad quedó patente la increíble capacidad de William: a los diez años –según su padre Archibald– conocía y hablaba, en mayor o menor grado, hebreo, persa, árabe, sánscrito, caldeo, siriaco, indostano, malayo, bengalí, griego, latín y varias lenguas europeas modernas. Dado el don de su hijo, Archibald aspiraba a que en el futuro William hiciese carrera con la prestigiosa Compañía Británica de las Indias Orientales. Sin embargo, la aritmética se interpuso a los deseos del padre. William descubrió que estaba dotado no sólo para aprender lenguas sino también para los cálculos aritméticos.

Su tío empezó a preparar a William para su entrada en el Trinity College. Allí, a pesar de las reticencias de James, Hamilton comenzó a estudiar distintas ramas de las matemáticas y mostró un interés especial por la aplicación de la geometría al estudio de la propagación de la luz. Desde tiempos de Euclides se había utilizado un modelo geométrico de la luz que postulaba que ésta se propagaba como una familia de líneas rectas, denominadas rayos de luz.

Hamilton no se limitaba a estudiar lo que se conocía sobre la geometría de la luz sino que, a pesar de su juventud (17 años), aspiraba a crear algo nuevo. Era plenamente consciente de su valía intelectual y prefería las ciencias naturales a los estudios humanísticos, porque, según escribió: “¿Quién no preferiría tener más la fama de Arquímedes que la de su conquistador Marcelo, o la de cualquier erudito de los clásicos, cuya máxima ambición fuese estar familiarizados con los pensamientos de otros hombres? […] Las mentes poderosas de todos los tiempos se han unido para encumbrar el vasto y hermoso templo de la Ciencia, inscribiendo sus nombres en caracteres imperecederos; pero el edificio no está finalizado: no es aún demasiado tarde para añadir un nuevo pilar u ornamento. No he llegado apenas a los pies de este templo, pero aspiro, un día, a alcanzar su cima.” Tal postura no implicaba que Hamilton despreciase las humanidades. De hecho siempre amó la poesía, a la que veía como fruto del mismo espíritu creativo del que emana la ciencia.

Sus estudios sobre óptica fructificaron. En 1823 escribía a su primo: “En óptica he hecho un descubrimiento muy curioso”. Tan sólo un año después, Hamilton mandaba su primer artículo científico –titulado ‘Sobre las cáusticas’– a la Royal Irish Academy.  Durante los siguientes años Hamilton establecería una teoría completamente original sobre la óptica geométrica basada en un nuevo principio determinante que  descubrió y denominó “Principio de acción constante”. Se sabía que una familia de rayos de luz siempre tiene asociada una superficie ortogonal a todos ellos que se denomina frente de onda. Étienne-Louis Malus (1775-1812) demostró que una familia de rayos con un frente de onda asociado seguía manteniéndolo a pesar de que esos rayos sufriesen una reflexión en un espejo o un cambio de medio (lo que se llama refracción). Pues bien, el principio de acción constante de Hamilton establecía que esa misma familia de rayos, al propagarse por un sistema de lentes o espejos, cumple la propiedad de que todos los rayos llegan a la superficie del frente de onda al mismo tiempo. La figura 2 muestra un esquema ilustrativo de este principio. La familia de rayos asociada al frente de onda W al refractarse en la superficie R se transforma en una nueva familia de rayos con el frente de onda W’. El principio que descubrió Hamilton establece que los rayos A, B, C de W llegan a los puntos A’, B’, C’ pertenecientes a W’ invirtiendo para ello el mismo tiempo. Esto tiene unas implicaciones muy profundas y prácticas en el ámbito de la óptica geométrica y por ende en el diseño de sistemas ópticos, como cámaras, telescopios, etc.

Esquema explicativo del Principio de acción constante.

Además, Hamilton se dio cuenta de que el formalismo que había creado para la óptica geométrica era válido para reformular la mecánica newtoniana. Así lo expuso en el que se convertiría en su más importante artículo científico: ‘Sobre un método general de la dinámica’ (1834). Allí definía una función, el denominado concepto Hamiltoniano, que describía por completo la evolución de un sistema mecánico. Paradójicamente, a pesar de que Hamilton ideó su teoría matemática para describir la mecánica clásica, su formulación alcanzaría su clímax precisamente con la crisis de esta misma mecánica clásica y la aparición de la mecánica cuántica, para la cual estaba especialmente adaptada. Tal fue así que Erwin Schrödinger (1887-1961), creador de la mecánica cuántica ondulatoria, diría de él: “El Principio Hamiltoniano se ha convertido en la piedra angular de la física moderna […] Su famosa analogía entre la mecánica y la óptica prácticamente anticipó la mecánica ondulatoria, que no tuvo que añadir mucho a sus ideas sino simplemente tomarlas en serio. Por lo tanto Hamilton es uno de los más grandes hombres de ciencia que el mundo ha creado”.

Hamilton consiguió su sueño: labrar para siempre su nombre en el templo sagrado de la ciencia. El Hamiltoniano es hoy en día, como afirmó Schrödinger, uno de los conceptos cruciales de la física moderna.

 

*Sergio Barbero Briones es investigador del CSIC en el Instituto de Óptica (CSIC).

 

¿Te inspiran la fotografía y la ciencia? Participa en #FOTCIENCIA

Por Mar Gulis (CSIC)

¿Te gusta la fotografía? ¿La ciencia y la tecnología disparan tu creatividad? Pues estamos esperando tus propuestas. FOTCIENCIA es una iniciativa que celebra su 15ª edición y que seleccionará las mejores imágenes de ciencia del año para conformar un catálogo y una exposición itinerante. La muestra resultante recorrerá una veintena de museos y centros culturales de España en 2018. Las fotografías pueden presentarse hasta el próximo 14 de diciembre de 2017 a las 14:00 horas.

Las imágenes deben estar relacionadas con la investigación científica o sus aplicaciones, y pueden reflejar aspectos como el objeto de estudio de la investigación, las personas que la realizan, su instrumentación e instalaciones, los resultados del avance científico, etc. Para participar es necesario presentar las fotografías en formato digital a través de un formulario disponible en la página web www.fotciencia.es, junto con un texto que permita interpretarlas. El jurado valorará tanto la imagen –su calidad técnica, originalidad y valor estético– como la claridad de la explicación aportada por el autor o autora.

En esta iniciativa puede participar cualquier persona mayor de edad que presente fotografías propias que no hayan sido seleccionadas en procesos similares. Pero también hay una modalidad, ‘La ciencia en el aula’, dirigida al alumnado de centros educativos y de formación profesional, que pueden participar a través de sus profesores y profesoras.

 

Vídeo con las imágenes seleccionadas en la pasada edición de FOTCIENCIA (2016).

 

Las propuestas se pueden presentar a una de las siguientes modalidades:

  • Micro, cuando la dimensión real del objeto fotografiado sea menor o igual a 1 milímetro o la imagen haya sido obtenida mediante un instrumento de micrografía (óptica o electrónica) o técnicas de difracción.
  • General, cuando la dimensión real del objeto fotografiado sea mayor de 1 milímetro.

Además, los autores y autoras también pueden adscribir su imagen a otras modalidades específicas, como ‘Agricultura sostenible’ ‘Alimentación y nutrición’, que cuentan con el apoyo de dos centros del CSIC: el Instituto de Agricultura Sostenible (IAS) y el Instituto de Agroquímica y Tecnología de Alimentos (IATA).

Las dos mejores imágenes de la categoría General y las dos mejores imágenes de la categoría Micro, según los criterios mencionados anteriormente, serán remuneradas con una cantidad de 1.500€ cada una. En las demás modalidades, se seleccionará una foto que recibirá 600€.

La organización hará una selección adicional de fotografías para incluirlas en el catálogo y en la exposición itinerante, que se prestará gratuitamente a las entidades que la soliciten. Todas las fotos presentadas pasarán a formar parte de la galería de imágenes de la web de FOTCIENCIA.

FOTCIENCIA es una iniciativa organizada por el Consejo Superior de Investigaciones Científicas (CSIC) y la Fundación Española para la Ciencia y la Tecnología (FECYT), con la colaboración de la Fundación Jesús Serra.

Toda la información y normas de participación están disponibles en www.fotciencia.es

 

Semana de la Ciencia del CSIC: viajar al pasado, hacer catas científicas y más

Por Mar Gulis (CSIC)

Viajar al pasado a través de los restos orgánicos de un yacimiento navarro (Instituto de Ciencias de la Vid y el Vino), aprender sobre los caballitos de mar (Instituto de Investigaciones Marinas) o realizar catas catas de queso para conocer sus propiedades nutricionales (Instituto de Productos Lácteos de Asturias) son tres de las 331 actividades con las que el CSIC abre este año la Semana de la Ciencia. A través de los más de 81 centros de investigación participantes, esta iniciativa, organizada con apoyo de la Fundación Española para la Ciencia y la Tecnología (FECYT), ofrecerá propuestas para todos los públicos en torno a diversas áreas del conocimiento.

Muchas de las actividades de la Semana de la Ciencia del CSIC han sido diseñadas para que el público asuma un papel activo e interactúe con el personal investigador.

Las actividades, gratuitas y dirigidas al público general, se presentan en formatos clásicos, como exposiciones, rutas científicas o conferencias, y en otros más novedosos, como degustaciones, cafés científicos, concursos o los innumerables talleres diseñados para que el público interactúe con la ciencia. Así, ‘Convierte tu móvil en un microscopio’, organizada por el Instituto de Recursos Naturales y Agrobiología de Sevilla, el taller ‘Experimenta con partículas’, del Centro Nacional de Aceleradores, o ‘Iluminación estroboscópica’, una iniciativa del Laboratorio de Investigación en Fluidodinámica y Tecnologías de la Combustión, reflejan la vertiente práctica de la Semana de la Ciencia.

En esta edición, el CSIC estrena ‘Ciencia de Tomo y Lomo’, una aventura conjunta entre investigación y librerías en Madrid. Además, el consejo también ha incorporado la ciencia ciudadana a su programación, a través de iniciativas como ‘Plásticos 0 en la playa’, un taller del Instituto Mediterráneo de Estudios Avanzados. El objetivo en este caso es que la propia sociedad recabe datos valiosos para evaluar los efectos de los residuos marinos sobre los ecosistemas costeros.

El pasado 2 de noviembre arrancó la cita anual con la divulgación científica en muchas comunidades autónomas. En la mayoría de ellas, la Semana de la Ciencia se prolongará hasta finales de mes. ¡Consulta la programación y participa!