Ciencia para llevar Ciencia para llevar

CURIOSIDADES CIENTÍFICAS PARA COMPARTIR

Archivo de la categoría ‘Ciencias de los alimentos’

¿Cómo detectamos el ‘umami’ y otros sabores?

Por Laura López Mascaraque* y Mar Gulis

Cierra los ojos. Piensa en algo ácido. ¿Qué te viene a la mente? ¿Un limón, una naranja? Seguro que también visualizas rápidamente alimentos asociados a sabores dulces, salados y amargos. Pero, ¿puedes pensar en el sabor umami? Probablemente muchas personas se quedarán desconcertadas ante la pregunta, por desconocer la existencia de este quinto sabor o no identificar los alimentos vinculados al mismo. Aquí van algunos ejemplos: el queso parmesano, las algas, la sopa de pescado y la salsa de soja comparten este sabor, que se suma a los otros cuatro clásicos: dulce, salado, ácido y amargo.

El sabor umami es típico de la cocina asiática, en la que son habituales sopas que cuentan con soja y algas entre sus ingredientes / Zanpei

En 1908 el japonés Kikunae Ikeda descubrió el umami. Químico de la Universidad Imperial de Tokio, eligió esta palabra, que proviene del japonés y significa “buen sabor”, “sabroso” o “delicioso”, para designar su hallazgo. Ikeda dedujo que el glutamato monosódico era el responsable de la palatabilidad del caldo del alga kombu y otros platos. De hecho, el umami es característico de cocinas como la japonesa, la china, la tailandesa y también la peruana, donde se conoce como ajinomoto. El glutamato monosódico es un compuesto que se deriva del ácido glutámico, uno de los aminoácidos no esenciales más abundantes en la naturaleza (se denominan no esenciales porque el propio cuerpo los puede sintetizar, es decir, fabricar).

Pero, ¿cómo detectamos el umami? ¿O por qué decimos que algo está demasiado salado o dulce? ¿Qué proceso fisiológico desencadena estas percepciones? La mayor parte de lo que llamamos sabor tiene que ver, en realidad, no con el gusto, sino con el olfato. Por eso los sabores parecen desvanecerse cuando estamos resfriados. Juntos, el olfato y el gusto constituyen los denominados sentidos químicos, pues funcionan mediante la interacción directa de ciertos compuestos químicos con receptores situados en el epitelio olfatorio, localizado en la parte superior de la nariz, y las papilas gustativas, situadas en la lengua.

El olor llega al cerebro por dos vías; una directa y ortonasal y la otra indirecta o retronasal. La primera se da cuando inhalamos directamente a través de la nariz. La otra, cuando, al masticar o tragar el alimento, se liberan moléculas que alcanzan la cavidad nasal desde la boca (vía retronasal), es decir, cuando exhalamos. Con la masticación y la deglución, los vapores de las sustancias ingeridas son bombeados en la boca por movimientos de la lengua, la mandíbula y la garganta hacia la cavidad nasal, donde se produce la llamada percepción olfativa retronasal. Así, gran parte de las sensaciones percibidas en alimentos y bebidas se deben al olfato.

Las sensaciones gustativas las percibimos a través de las miles de papilas gustativas que tenemos en la lengua / Pixabay

Por otra parte, ciertos alimentos considerados irritantes (condimentos picantes, quesos muy fuertes, etc.) pueden ser percibidos como olores/sabores a través del sistema quimiosensitivo trigeminal, con receptores localizados en la cavidad nasal y la boca.

En resumen, los receptores del olfato, el gusto y el nervio trigémino contribuyen al sabor, que se define por la suma de tres sensaciones: olfativas, gustativas y trigeminales. Las olfativas se perciben por la nariz desde concentraciones muy bajas y son las más variadas y complejas. Las gustativas lo hacen gracias a los receptores de la lengua y el paladar, localizados en las aproximadamente 5.000-10.000 papilas gustativas, que conducen información de la composición química de los alimentos hacia una parte del cerebro especializada en interpretar estos mensajes de acuerdo a las cinco cualidades gustativas básicas que mencionábamos al principio: salado, dulce, amargo, ácido y umami.

Cada uno de estos sabores puede asociarse a una o varias sustancias químicas caracterizadas por tener fórmulas y propiedades específicas que permiten su reconocimiento. Por ejemplo, los ácidos, como el zumo de limón o el vinagre, liberan iones de hidrógeno y, por lo tanto, presentan sabor ácido, mientras que la sal de cocina libera iones sodio y cloruro y, así, manifiesta sabor salado. Lo mismo les sucede a las moléculas de glucosa o azúcar con el dulce, a las del café o el bíter que libera alcaloides con el amargo, y al glutamato monosódico y otros aminoácidos con el umami. Actualmente se investiga la posibilidad de que existan receptores específicos en la lengua para reconocer el sabor de la grasa y el de las harinas o el almidón (sabor starchy).

En cuanto a las sensaciones trigeminales, estas se perciben en las terminaciones del nervio trigémino de la nariz y la boca a través de bebidas y alimentos que producen una sensación de irritación (picor, frío…). Por tanto, cuando hablamos de percepción del sabor, nos referimos a una respuesta conjunta de señales que provienen del olfato, del gusto y del trigémino, combinadas con otras características físicas como la textura, la temperatura y la presión.

 

* Laura López Mascaraque es investigadora del Instituto Cajal  del CSIC y autora, junto con José Ramón Alonso de la Universidad de Salamanca, del libro El olfato de la colección ¿Qué sabemos de?, disponible en la Editorial CSIC y Los Libros de la Catarata.

Acrilamida, el contaminante que podemos reducir de nuestras patatas fritas

Por Marta Mesías, Cristina Delgado Francisco J. Morales, (CSIC)*

La acrilamida es un contaminante químico que se produce de forma natural cuando se cocinan determinados alimentos a elevadas temperaturas (más de 120°C) y baja humedad. Se encuentra sobre todo en el café tostado, los cereales horneados y las patatas fritas. En general, los alimentos de origen vegetal contienen tanto azúcares como un aminoácido llamado asparagina, por lo que cuando se tuestan, se hornean o se fríen, se desarrolla una reacción llamada reacción de Maillard que, además de generar el aroma y el color apetecible de los alimentos procesados, da lugar a la formación de acrilamida.

Pero, ¿por qué debemos preocuparnos precisamente ahora por la acrilamida? En el año 2002 se descubrió su presencia en los alimentos procesados y se comprobó que la dieta es la principal fuente de exposición a este contaminante. Además, la acrilamida se encuentra tanto en alimentos procesados en la industria, como en alimentos cocinados en restaurantes y en nuestros hogares.

Años más tarde, en 2015, la Autoridad Europea de Seguridad Alimentaria (EFSA por sus siglas en inglés), tras consider las investigaciones aportadas hasta la fecha, concluyó que la presencia de acrilamida en los alimentos puede aumentar la probabilidad de desarrollar determinados tipos de cáncer y, por tanto, la ingesta de este compuesto puede suponer un riesgo para el consumidor. Durante este tiempo se han desarrollado numerosos estudios para comprender por qué se forma la acrilamida y cómo podemos reducir su aparición en los alimentos.

El pasado mes de abril entró en vigor el Reglamento de la Comisión Europea donde se establecen medidas concretas que obligan a las empresas alimentarias a controlar y reducir la presencia de acrilamida en los alimentos. Además, se fijan niveles de referencia para las principales fuentes de exposición (café, cereales y patatas fritas) y, en especial, para los alimentos infantiles, ya que los niños de corta edad, por su menor peso corporal y una dieta más monótona, tienen mayores tasas de exposición que la población adulta.

¿Cómo reducir la formación de acrilamida en las patatas fritas?

La buena noticia es que en nuestros hogares podemos reducir la formación de acrilamida y, en consecuencia, bajar los niveles globales de exposición. Sólo hay que seguir unas sencillas recomendaciones durante la manipulación y fritura de la patata:

  • En primer lugar debemos seleccionar patatas frescas sanas, no dañadas, sin zonas verdes, sin heridas y sin brotes.
  • Las patatas no deben almacenarse a bajas temperaturas, ya que el frío favorece la degradación del almidón a azúcares sencillos, que incrementarán la formación de acrilamida durante la fritura.
  • Después de pelar y cortar las patatas, debemos lavarlas bien debajo del grifo.
  • Una vez lavadas, hay que dejarlas en remojo en agua al menos 10 minutos, lo que favorecerá la eliminación de un posible exceso de azúcares. Esta acción es especialmente recomendable si utilizamos patatas de conservación. El objetivo es reducir el contenido en azúcares en la patata fresca, ya que se formará menos acrilamida durante la fritura.
  • Por último, hay que freír a temperaturas inferiores a 175°C y sólo durante el tiempo necesario para conseguir un color dorado. Conviene seguir el lema de la Agencia Española de Consumo, Seguridad Alimentaria y Nutrición (AECOSAN), “dorado, pero no pasado”, ya que la acrilamida se relaciona con la aparición del color tostado en los alimentos procesados.

El proyecto de investigación SAFEFRYING, que se desarrolla en el Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN) del CSIC, trabaja en identificar los puntos críticos de formación de acrilamida durante las operaciones de fritura en el ámbito doméstico y de restauración colectiva. La investigación se ha centrado principalmente en las patatas fritas, ya que su fritura es habitual en nuestras cocinas y los niveles de acrilamida pueden variar hasta en un 80% dependiendo del tipo de elaboración.

 

Marta Mesías, Cristina Delgado, Francisco J. Morales son investigadores del Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN) del CSIC. Su grupo de investigación CHEMPROFOOD desarrolla el proyecto SAFEFRYING.

 

Insectos, algas y carne de laboratorio, ¿las proteínas del futuro?

Por Miguel Herrero (CSIC)*

En su novela Un mundo feliz, Aldous Huxley describe una sociedad futurista –e inquietante– en la que sus miembros se alimentan con pastillas que les aportan todo tipo de nutrientes. No es la primera vez que la ciencia ficción especula sobre cómo será la alimentación en un futuro más o menos lejano. Hoy, los avances que se están produciendo en las ciencias de la alimentación pueden dar pistas sobre la evolución de nuestra dieta. ¿De qué nos alimentaremos? Para responder a esta pregunta hay que considerar las necesidades nutricionales de la población global y los recursos existentes para cubrirlas.

Según la ONU, en 2050 habrá en la Tierra unos 9.000 millones de personas. A principios del siglo XX se calcula que había algo más de 1.500 millones de habitantes en el planeta. Es decir, en solo 150 años, esa cifra se habrá multiplicado por seis. Por tanto, es probable que tengamos que adoptar medidas para no llevar al límite los recursos disponibles: agua potable, aire no contaminado, energía limpia y, por supuesto, alimentos. Para aumentar la capacidad de generar alimentos, ya se ha comenzado a buscar fuentes alimenticias no explotadas suficientemente hasta el momento, y que no impliquen técnicas agrarias y ganaderas que perjudican al medioambiente.

Gusanos de seda cocinados.

Fundamentalmente se exploran nuevas fuentes de proteínas, pues estas se consideran el nutriente principal. Dado que la producción cárnica es muy ineficiente (en términos de recursos consumidos) y muy contaminante se pretende reducir la dependencia de la misma en la alimentación. ¿Cómo? Los insectos aparecen como la primera opción. La FAO ha destacado en más de una ocasión el papel que pueden jugar en la alimentación mundial futura. Aunque en Occidente no resulten demasiado apetecibles, estos animales poseen unas características nutricionales muy interesantes. Son una gran fuente de proteína, dado que este nutriente es su componente mayoritario. Pero, además, la cría de insectos puede ser utilizada también para la elaboración de piensos y alimentos para otros animales, liberando de ello cultivos que pueden ser redirigidos a la alimentación humana. Aunque en estas latitudes aún no se estilen los menús de insectos, aproximadamente un cuarto de la población mundial, mayoritariamente en Latinoamérica, ya se alimenta de ellos de forma regular.

Ensalada de algas.

Otra de esas posibles fuentes proteicas son las algas. Cualquier persona asiática aducirá que para ella las algas son un alimento del presente, no del futuro, pero en Europa su consumo aún es residual. Hay muchas algas ricas en proteínas, en particular varias especies del grupo de las microalgas. De tamaño microscópico, se pueden cultivar en plantas de producción que no tienen que estar necesariamente cerca de fuentes de agua salada, y por tanto en zonas costeras. Algunas ya se cultivan para producir alimentos para peces, por ejemplo, o para la generación de energía, pero de toda la producción tan solo una parte muy pequeña se dirige a la alimentación humana.

Las grandes algas son más frecuentemente utilizadas como alimento, aunque su consumo tampoco es equiparable al de los vegetales. En cuanto a su composición, todos los tipos de algas destacan por poseer altas cantidades de proteína y bajas proporciones de grasas que, además, suelen ser insaturadas y por tanto saludables. Sin embargo, algunas especies tienen un alto contenido en yodo, mientras que otras pueden acumular durante su crecimiento cantidades apreciables de metales pesados (como ocurre en algunos peces). Aun así, estas desventajas son claramente superables eligiendo de manera apropiada las especies a cultivar.

Finalmente, la carne obtenida a partir de cultivos de tejidos celulares y no de animales directamente es otra fuente que se está explorando. La producción de carne en laboratorio a partir de células madre que se convierten en células musculares idénticas a las que posee la carne está dando sus primeros pasos. De momento, las características de esta carne cultivada no son iguales a las de la carne a la que pretende sustituir, puesto que tan solo se compone de músculo y no contiene nada de grasa ni otros componentes que están entremezclados con la masa muscular en los animales. Esto provoca falta de jugosidad y unos sabores diferentes, menos apetecibles que los de la carne natural. Ahora bien, en los próximos años pueden producirse avances que permitan generar carne apetecible de forma económica y energéticamente más eficiente que a través de la cría de animales.

* Miguel Herrero es investigador en el Instituto de Investigación en Ciencias de la Alimentación (CIAL) del CSIC y la Universidad Autónoma de Madrid y autor del libro de divulgación Los falsos mitos de la alimentación, disponible en la Editorial del CSIC Los Libros de la Catarata.

El altramuz, de humilde aperitivo a “superalimento”

Por José Carlos Jiménez-López (CSIC)*

Altramuces en el mercado. / Tamorlan - Wikimedia Commons

Altramuces en el mercado. / Tamorlan – Wikimedia Commons

El altramuz (Lupinus albus) es una legumbre conocida popularmente por ser una planta ornamental en jardines rurales, con bellas y coloridas flores. Su semilla es denominada con varios términos como altramuces, lupín, lupinos, tremosos, así como “chochos” en determinadas localidades de la geografía española, concretamente en Andalucía. Es difícil que en algún momento, tomando una cerveza en el bar, no nos hayan puesto un cuenco de altramuces para picar.

Los altramuces se han consumido tradicionalmente en toda la región mediterránea durante miles de años. En España, las semillas del altramuz se convirtieron en un bien bastante preciado, y casi el único sustento que muchas familias tenían para “llevarse a la boca” tras la guerra civil. Hoy, 28 de mayo, se celebra el Día Nacional de la Nutrición (DNN), que este año está dedicado a promover el consumo de legumbres. Es un buen contexto para destacar los excelentes valores nutricionales de esta leguminosa que suele pasar inadvertida.

Las semillas del altramuz son consumidas típicamente como aperitivo en salmuera. Su harina se usa para la fabricación de horneados como pizza, pan, y repostería. Además de ser un buen acompañamiento en ensaladas, también es utilizado en la elaboración de humus, patés, quesos vegetales, y como integrantes principales de platos más elaborados, dignos de restaurantes renombrados con estrella Michelín. Numerosos productos basados en semillas de lupino están siendo actualmente introducidos comercialmente en tiendas de alimentación como alimentos fermentados, bebidas energéticas, snacks, leche, yogurt, productos de repostería, alimentación vegana, tofu, sustitutos de carnes, salsas, tempe, pastas y como base en dietas de adelgazamiento.

Pese a ello, el altramuz está infravalorado, siendo una legumbre que no está “de moda”, al contrario que otros alimentos como la soja, la quinoa o la chía, con un mayor auge debido a un marketing publicitario agresivo, haciéndolos llegar al consumidor de manera apetecible, para introducirlos en la dieta como productos saludables. Sin embargo, y respecto a beneficios para la salud y aporte nutricional, el altramuz no tiene nada que envidiar a estos alimentos tan publicitados, por ello se le puede adjudicar igualmente el término acuñado como “superalimento”, que puede ser sinónimo de alimento funcional, cuyo consumo proporciona beneficios para la salud más allá de los puramente nutricionales. Hay muchas razones por las cuales se puede incluir el altramuz en esa lista privilegiada, empezando porque es una fuente muy importante de proteínas, aproximadamente el 40%, lo que equivale al doble del contenido en proteínas que los garbanzos, y cuatro veces más que el trigo.

Plantas de lupino. /José Carlos Jiménez-López

Plantas de altramuz (Lupinus). /José Carlos Jiménez-López

Su contenido en fibra dietética es del 34%, que actúa como fibra soluble (como la de la avena) e insoluble (como la del salvado de trigo), incrementando la saciedad, reduciendo la ingesta calórica para un mejor control del peso corporal y ayudando además a la reducción del colesterol y la prevención de dislipemia (altos niveles de lípidos). Posee bajos niveles de grasa (menos de un 6%) y abundantes ácidos grasos insaturados, sobre todo omega-6 y omega-9. El 24% de su contenido es un tipo de hidratos de carbono que favorecen un índice glucémico más bajo que otros granos comúnmente consumidos, ayudando a equilibrar el nivel de glucosa en sangre y, de este modo, a prevenir la hiperglicemia, lo que está especialmente indicado para personas que padecen diabetes tipo 2.

El altramuz es una legumbre naturalmente libre de gluten, por lo que es un alimento apto para personas con intolerancia al mismo (celiaquía). Por otro lado, son una excelente fuente de minerales (hierro, calcio, magnesio, fósforo y zinc), vitaminas B1, B2, B3, B6, B9 (ácido fólico) y Vitamina C, además de contener todos los aminoácidos esenciales, indicado para una correcta actividad intelectual y del sistema inmune. La semilla del altramuz también tiene entre sus componentes compuestos prebióticos, que ayudan al crecimiento de microflora bacteriana beneficiosa para una correcta salud intestinal. Estas semillas son también una de las mejores fuentes naturales del aminoácido arginina, el cual mejora la funcionalidad de los vasos sanguíneos y ayuda a la disminución de la presión sanguínea. Al contrario que otras legumbres como la soja, su contenido en fitoestrógenos (componentes similares a las hormonas) es insignificante, lo que evita problemas potenciales asociados a ellos.

Son abundantes los estudios científicos realizados en los últimos cinco años que demuestran el valor de algunos componentes de estas semillas en la lucha contra enfermedades consideradas como las nuevas epidemias del siglo XXI. Algunos de estos estudios se han realizado en nuestro grupo de investigación de la Estación Experimental del Zaidín (EEZ-CSIC, Granada), donde proteínas denominadas beta-conglutinas podrían ser utilizadas para la prevención y tratamiento de la diabetes tipo 2. Se ha demostrado que estas proteínas favorecen la activación de la ruta de señalización de la insulina, con la consiguiente captación de glucosa por los tejidos (disminución de la glicemia), así como la reversión del estado de resistencia a la insulina por sus tejidos diana, todo ello favoreciendo que el organismo recupere un estado similar a una persona no diabética. Además, numerosas pruebas experimentales han indicado que estas mismas proteínas son capaces de disminuir el estado de inflamación de pacientes diabéticos. Debido a que determinadas enfermedades, cuyo progreso cursa mediante un estado inflamatorio crónico sostenido (síndrome metabólico, obesidad, diabetes, enfermedades cardiovasculares), los altramuces, y concretamente las proteínas beta-conglutinas, constituyen un componente funcional que puede jugar un papel crucial como una nueva opción terapéutica para la prevención y tratamiento de estas enfermedades que tienen una base inflamatoria.

Seguro que a partir de ahora y con todos estos argumentos, recuperaréis el buen hábito de “coger un puñado de altramuces para llevároslos a la boca”, o prepararéis sabrosos platos que sorprenderán incluso a los paladares más exigentes.

 

*José Carlos Jiménez-López es investigador en la Estación Experimental del Zaidín (CSIC) y actualmente desarrolla una línea de investigación sobre las propiedades potencialmente beneficiosas del consumo de altramuces.

‘Operación polinizador’: el imprescindible trabajo de los insectos para el futuro de la agricultura

Por Alberto Fereres (CSIC) *

Trichodes octopunctatus (Familia Cleridae) / Alberto Fereres

Trichodes octopunctatus (Familia Cleridae) / Alberto Fereres

Con la llegada de la primavera, en plena ‘operación polinización’, esta imagen se repite cada año en campos, parques y jardines. Insecto y planta cooperan para obtener un beneficio mutuo, fenómeno que en biología se llama simbiosis. Estas interacciones, de crucial importancia en los ecosistemas naturales y en los agrícolas, se iniciaron hace más de 200 millones de años, en el Jurásico.

Las primeras angiospermas, plantas con flor, dependían del viento para asegurar su reproducción, igual que las gimnospermas, pinos y especies relacionadas. El ovario producía una secreción pegajosa llamada exudado para atrapar los granos de polen que llegaban a él. Este exudado contenía proteínas y azúcares y servía de alimento a los insectos, que empezaron a transportar de manera accidental el polen de una flor a otra. Así comenzó la polinización.

Se ha estimado que este gesto, en apariencia insignificante, representa la nada desdeñable cifra del 9,5% del valor de la producción agrícola dedicada al consumo humano, lo que a nivel europeo supone un total de 5.000 millones de euros al año. Atendiendo a estos datos, no cabe duda de que el servicio ecológico que ofrecen los polinizadores posee una enorme repercusión ambiental, social y económica en nuestro planeta.

La biodiversidad de los insectos que actúan como potenciales polinizadores es muy elevada. El 20% de estos organismos, unas 200.000 especies, visitan las flores. Hay familias de insectos polinizadores importantes entre los coleópteros (escarabajos), dípteros (moscas) y lepidópteros (mariposas) entre otros órdenes, pero los polinizadores por excelencia son los himenópteros: las abejas y abejorros de la superfamilia Apoidea. Son especies en las que el polen se adhiere a sus característicos pelos corporales. Además, pueden disponer de adaptaciones para facilitar su transporte, como las corbículas o cestillos de las patas traseras. En el campo agrícola, las especies que destacan por su importancia son la abeja común Apis mellifera L., los abejorros del género Bombus sp. y otras abejas menos conocidas que son las llamadas abejas solitarias.

Apis mellifera (Familia Apidae) / Alberto Fereres

Apis mellifera (Familia Apidae) / Alberto Fereres

La abeja común produce miel, jalea real, propóleo, cera, y poliniza un amplio espectro de flora silvestre. Es vital para algunos cultivos como los frutales, ya que asegura la polinización cuando otros insectos están ausentes. Su ‘transferencia de polen’ garantiza una tasa elevada de cuajado de frutos, mayor resistencia a las heladas y mejor calidad en los mismos. Esta especie de abeja común, natural de Europa, Asia y África, incluye 26 subespecies agrupadas en cuatro linajes.

Por su parte, los Bombus o abejorros han supuesto una enorme revolución para el sector de la horticultura, especialmente bajo invernadero. A partir de 1987 se empezaron a usar en la polinización de tomate y otras hortícolas. En la actualidad se emplean en más de 40 países. Se conocen más de 240 especies de abejorros a nivel mundial, y la mitad de ellas viven en la región Paleártica (Europa y Norte de Asia). La especie que más se cría para su uso en agricultura es el Bombus terrestris L., ampliamente distribuida por casi toda la zona Paleártica. En España tenemos una especie endémica de las Islas Canarias, B. canariensis Pérez.

A pesar de su papel imprescindible, la población de polinizadores está en declive en todo el mundo. Entre los factores que han contribuido a esta situación, destacan las técnicas agrícolas de producción intensiva que han conducido a la desaparición de hábitats, lo que ha modificado notablemente la estructura del paisaje y ha llevado a la eliminación de recursos alimenticios y refugios esenciales para este importante grupo de artrópodos beneficiosos.

Para intentar compensar esta disminución, las investigaciones en este ámbito apuestan por el uso de márgenes florales, es decir, plantar setos y vegetación entre las parcelas de cultivo que permitan el incremento de los insectos polinizadores y otros artrópodos, a la vez que consiguen preservar y mejorar la biodiversidad en las zonas agrarias. Además de favorecer la polinización, los márgenes florales suavizan el rigor de los elementos climáticos protegiendo los cultivos contra las heladas y la insolación; mantienen la humedad y funcionan como cortavientos; protegen contra la erosión y también aportan valor paisajístico y cultural.

Entre otras iniciativas, desde el Instituto de Ciencias Agrarias del CSIC hemos desarrollado un protocolo para el establecimiento de márgenes y lindes de especies herbáceas con flores que atraen estos insectos beneficiosos y que están bien adaptados a los suelos y condiciones de cultivo de la zona Centro de la Península Ibérica.

 

* Alberto Fereres Castiel es investigador del Instituto de Ciencias Agrarias del CSIC. Junto a investigadores/as de la Universidad Politécnica de Madrid y la empresa Syngenta ha trabajado en el proyecto ‘Operación polinizador’.

La feria Ciencia en el Barrio reúne a 500 adolescentes para divulgar la ciencia

Por Mar Gulis (CSIC)

Abderrahim y Anás salen a explicar una estratigrafía arqueológica que acaban de realizar en su instituto para entender las huellas del tiempo en el paisaje. Una investigadora del CSIC, María Ruiz del Árbol, les ha explicado cómo hacerlo previamente. Estamos en el Instituto de Educación Secundaria (IES) María Rodrigo, en el Ensanche de Vallecas, y es la primera vez que reciben una visita de este tipo. Sus profesores y el director del IES no salen de su asombro; estos chicos no se implican en actividades académicas y menos científicas. Hasta que cambia su contexto de aprendizaje.

Motivar y generar curiosidad es uno de los objetivos de Ciencia en el Barrio, un proyecto del CSIC que, con el apoyo de la FECYT, trata de llevar actividades de divulgación científica a distritos de Madrid que no contaban con esta oferta. Este viernes, 16 de marzo, estudiantes procedentes de Usera, Carabanchel, Villaverde, Puente de Vallecas, Hortaleza y San Blas-Canillejas replican los talleres realizados previamente con personal investigador del CSIC en sus Institutos de Educación Secundaria (IES) en la Feria Ciencia en el Barrio, en el IES Arcipreste de Hita, en Entrevías, convirtiéndose así en divulgadoras y divulgadores por un día.

A las 10.00 de la mañana, el salón de actos del Arcipreste era un hervidero. Cerca de 500 adolescentes procedentes de nueve institutos madrileños deambulaban de un lado a otro buscando un stand, probando microscopios, preparando el material para hacer una extracción de ADN, ordenando los utensilios para hacer una cata de chocolate…La oferta de la feria es sumamente variada: hasta las 14.00, sus protagonistas van a acercarse a la ciencia a través de experimentos sobre los orígenes de la vida en el universo, la microelectrónica o la nanotecnología; y también mediante  talleres para aprender matemáticas con la vida de las abejas, ‘cocinar’ con polímeros, realizar catas de chocolates, pruebas olfativas o aplicar conocimientos arqueológicos al barrio.

Desde 2016, el Área de Cultura Científica del CSIC ha organizado en cada uno de los institutos participantes talleres experimentales, conferencias, clubes de lectura, y exposiciones sobre temas de actualidad científica, además de visitas guiadas a centros de investigación punteros. El programa está dirigido a estudiantes de 4º de la ESO, pero el resto del alumnado y la comunidad educativa y vecinal también pueden participar en algunas de las actividades.

Ciencia en el Barrio constituye una iniciativa pionera en la ciudad. Hasta el momento más de 2.500 personas han participado en un centenar de actividades que han permitido desmontar ideas falsas sobre las y los científicos, favorecer el contacto directo entre los jóvenes y el personal investigador, así como reforzar vocaciones científicas e inspirar otras nuevas.

¿Te inspiran la fotografía y la ciencia? Participa en #FOTCIENCIA

Por Mar Gulis (CSIC)

¿Te gusta la fotografía? ¿La ciencia y la tecnología disparan tu creatividad? Pues estamos esperando tus propuestas. FOTCIENCIA es una iniciativa que celebra su 15ª edición y que seleccionará las mejores imágenes de ciencia del año para conformar un catálogo y una exposición itinerante. La muestra resultante recorrerá una veintena de museos y centros culturales de España en 2018. Las fotografías pueden presentarse hasta el próximo 14 de diciembre de 2017 a las 14:00 horas.

Las imágenes deben estar relacionadas con la investigación científica o sus aplicaciones, y pueden reflejar aspectos como el objeto de estudio de la investigación, las personas que la realizan, su instrumentación e instalaciones, los resultados del avance científico, etc. Para participar es necesario presentar las fotografías en formato digital a través de un formulario disponible en la página web www.fotciencia.es, junto con un texto que permita interpretarlas. El jurado valorará tanto la imagen –su calidad técnica, originalidad y valor estético– como la claridad de la explicación aportada por el autor o autora.

En esta iniciativa puede participar cualquier persona mayor de edad que presente fotografías propias que no hayan sido seleccionadas en procesos similares. Pero también hay una modalidad, ‘La ciencia en el aula’, dirigida al alumnado de centros educativos y de formación profesional, que pueden participar a través de sus profesores y profesoras.

 

Vídeo con las imágenes seleccionadas en la pasada edición de FOTCIENCIA (2016).

 

Las propuestas se pueden presentar a una de las siguientes modalidades:

  • Micro, cuando la dimensión real del objeto fotografiado sea menor o igual a 1 milímetro o la imagen haya sido obtenida mediante un instrumento de micrografía (óptica o electrónica) o técnicas de difracción.
  • General, cuando la dimensión real del objeto fotografiado sea mayor de 1 milímetro.

Además, los autores y autoras también pueden adscribir su imagen a otras modalidades específicas, como ‘Agricultura sostenible’ ‘Alimentación y nutrición’, que cuentan con el apoyo de dos centros del CSIC: el Instituto de Agricultura Sostenible (IAS) y el Instituto de Agroquímica y Tecnología de Alimentos (IATA).

Las dos mejores imágenes de la categoría General y las dos mejores imágenes de la categoría Micro, según los criterios mencionados anteriormente, serán remuneradas con una cantidad de 1.500€ cada una. En las demás modalidades, se seleccionará una foto que recibirá 600€.

La organización hará una selección adicional de fotografías para incluirlas en el catálogo y en la exposición itinerante, que se prestará gratuitamente a las entidades que la soliciten. Todas las fotos presentadas pasarán a formar parte de la galería de imágenes de la web de FOTCIENCIA.

FOTCIENCIA es una iniciativa organizada por el Consejo Superior de Investigaciones Científicas (CSIC) y la Fundación Española para la Ciencia y la Tecnología (FECYT), con la colaboración de la Fundación Jesús Serra.

Toda la información y normas de participación están disponibles en www.fotciencia.es

 

Semana de la Ciencia del CSIC: viajar al pasado, hacer catas científicas y más

Por Mar Gulis (CSIC)

Viajar al pasado a través de los restos orgánicos de un yacimiento navarro (Instituto de Ciencias de la Vid y el Vino), aprender sobre los caballitos de mar (Instituto de Investigaciones Marinas) o realizar catas catas de queso para conocer sus propiedades nutricionales (Instituto de Productos Lácteos de Asturias) son tres de las 331 actividades con las que el CSIC abre este año la Semana de la Ciencia. A través de los más de 81 centros de investigación participantes, esta iniciativa, organizada con apoyo de la Fundación Española para la Ciencia y la Tecnología (FECYT), ofrecerá propuestas para todos los públicos en torno a diversas áreas del conocimiento.

Muchas de las actividades de la Semana de la Ciencia del CSIC han sido diseñadas para que el público asuma un papel activo e interactúe con el personal investigador.

Las actividades, gratuitas y dirigidas al público general, se presentan en formatos clásicos, como exposiciones, rutas científicas o conferencias, y en otros más novedosos, como degustaciones, cafés científicos, concursos o los innumerables talleres diseñados para que el público interactúe con la ciencia. Así, ‘Convierte tu móvil en un microscopio’, organizada por el Instituto de Recursos Naturales y Agrobiología de Sevilla, el taller ‘Experimenta con partículas’, del Centro Nacional de Aceleradores, o ‘Iluminación estroboscópica’, una iniciativa del Laboratorio de Investigación en Fluidodinámica y Tecnologías de la Combustión, reflejan la vertiente práctica de la Semana de la Ciencia.

En esta edición, el CSIC estrena ‘Ciencia de Tomo y Lomo’, una aventura conjunta entre investigación y librerías en Madrid. Además, el consejo también ha incorporado la ciencia ciudadana a su programación, a través de iniciativas como ‘Plásticos 0 en la playa’, un taller del Instituto Mediterráneo de Estudios Avanzados. El objetivo en este caso es que la propia sociedad recabe datos valiosos para evaluar los efectos de los residuos marinos sobre los ecosistemas costeros.

El pasado 2 de noviembre arrancó la cita anual con la divulgación científica en muchas comunidades autónomas. En la mayoría de ellas, la Semana de la Ciencia se prolongará hasta finales de mes. ¡Consulta la programación y participa!

Las legumbres, aliadas en la lucha contra el cambio climático

Por Mar Gulis

Las legumbres son un alimento muy popular en nuestro país por su alto valor nutricional (pese a que su consumo está decayendo en los últimos años). Quizás menos conocido es que con ellas se producen harinas como sustituto del cacao, como el algarrobo, o que sus raíces se utilizan como especias (por ejemplo, el regaliz). Muchas legumbres se emplean además como alimento para animales (alfalfa, veza y trébol) o para la producción de principios activos medicinales, aceites, tinturas y fibras, entre otros productos. Como consecuencia, las leguminosas se encuentran entre los cultivos más importantes a nivel mundial, solo detrás de los cereales. Pero además las legumbres pueden ser aliadas en la lucha contra el cambio climático. Tal y como cuentan los autores del libro de divulgación Las legumbres (CSIC-Catarata), la clave está en que ayudan a fijar el nitrógeno orgánico, uno de los nutrientes, después del agua, más necesarios para el crecimiento de las plantas.

Cartel de la FAO realizado con motivo del Año Internacional de las Legumbres 2016.

En agricultura es muy habitual el uso de abonos nitrogenados. Sin embargo, además de su elevado coste, estos abonos tienen consecuencias medioambientales, ya que una cantidad significativa de ellos son emitidos al aire como óxido de nitrógeno, uno de los gases causantes del efecto invernadero y que, mezclado con el vapor de agua, produce la lluvia ácida. Su sustitución no es baladí si recordamos que, según el Panel Intergubernamental de Expertos sobre el Cambio Climático de la ONU, la agricultura es responsable de cerca del 14% de las emisiones globales de gases de efecto invernadero, un volumen similar al originado por el transporte.

El nitrógeno atmosférico es la forma más abundante de nitrógeno. Los únicos organismos capaces de transformarlo en nitrógeno orgánico son aquellos que poseen la enzima nitrogenasa. Estos organismos pueden realizar la transformación en solitario o en asociación con otros organismos, principalmente con plantas. En este sentido, la asociación simbiótica más importante se da entre unas bacterias del suelo denominadas rizobios y plantas de la familia leguminosae, de las que forman parte las legumbres. Su unión aporta cerca del 80% del total del nitrógeno atmosférico fijado de forma biológica.

La interacción leguminosa-bacteria y el establecimiento de la simbiosis son procesos de gran complejidad en los que intervienen numerosos factores estructurales, bioquímicos y genéticos. El establecimiento de la simbiosis comienza con el reconocimiento entre un rizobio determinado y su planta hospedadora, que consiste en un intercambio de señales químicas que activan recíprocamente programas genéticos específicos. El resultado exitoso de esta interacción es la formación de un órgano nuevo en la planta, el nódulo, donde se lleva a cabo la fijación biológica del nitrógeno atmosférico. La Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO) calcula que las leguminosas pueden llegar a fijar entre 72 y 350 kilos de nitrógeno por hectárea y año.

Este proceso, además de ayudar al crecimiento de la planta, mejora la calidad nutricional de los suelos. Ese suelo queda ‘abonado’ y sigue siendo útil para cultivos posteriores, lo que permitirá a su vez reducir el uso de fertilizantes nitrogenados.

Además de enriquecer los suelos, incluir legumbres en los cultivos reduce el riesgo de erosión y aumenta su potencial de absorción de carbono. Igualmente, las leguminosas soportan mejor los climas extremos y son más resistentes que otros cultivos. Por su amplia diversidad genética permiten obtener variedades mejoradas capaces de adaptarse mejor a condiciones climáticas adversas. ¿Se les puede pedir más?

Mucho más sobre estas plantas en el libro Las legumbres  (CSIC – Catarata), coordinado por Alfonso Clemente y Antonio M. de Ron, de la Estación Experimental del Zaidín del CSIC y la Misión Biológica de Galicia del CSIC, respectivamente.

Cinco falsos mitos sobre la leche

Por Ascensión Marcos (CSIC)*

Durante los últimos años, la leche de vaca se ha convertido en uno de los alimentos más controvertidos en materia de salud. Aunque se considera uno de los alimentos más nutritivos y completos, también se asegura que es dañina para la salud, debido a su composición particular. En el momento actual ha descendido el consumo de leche de vaca y sus derivados, e incluso algunas personas han dejado de consumirla, sustituyendo estos productos por las mal denominadas ‘leches vegetales’ de almendras, soja, tofu, etc. Antes de tomar una decisión de este tipo, es importante informarse sobre los mitos y realidades alrededor del consumo de leche de vaca y sus derivados.

La leche de vaca tiene mayor valor nutritivo que las conocidas como ‘leches vegetales’. / Patty Jansen

Por este motivo, la Fundación Iberoamericana de Nutrición (FINUT) y la Fundación Española de la Nutrición (FEN) elaboraron un informe que la Federación Española de Sociedades de Nutrición, Alimentación y Dietética (FESNAD) apoyó científicamente.

Veamos algunos falsos mitos en torno a la leche:

  • La leche debería consumirse solo en la niñez porque el ser humano no está hecho para tomarla. La evolución del ser humano le ha permitido tomar leche más allá de la infancia. En un principio, la leche era sinónimo de veneno, ya que el ser humano precisaba de la enzima lactasa para tolerar y digerir la lactosa, el azúcar de la leche. En el Neolítico, hace unos 11.000 años, comenzó la domesticación de los animales y con ello la obtención de leche y elaboración de productos lácteos en el norte de Europa y en el Medio Oriente. Poco a poco el ser humano comenzó a producir esta enzima y pudo digerir la leche y con ello aprovechar un alimento muy rico en nutrientes.
  • La leche sin lactosa es mejor. La intolerancia a la lactosa es un trastorno de metabolización del organismo que impide digerir este azúcar. No hay ninguna necesidad de tomar la leche sin lactosa si no sufrimos de intolerancia, ya que no hay estudios que confirmen que este producto sea mejor para la digestión, tal y como se nos quiere hacer creer. Incluso se está investigando si podría crearse una intolerancia a la lactosa por dejar de consumir leche y derivados lácteos. De hecho, el mayor riesgo de intolerancia aparece en África y Asia (65-100%), mientras que en España es mucho menor la incidencia (10-15%) y los niveles más bajos se dan en los países nórdicos (5%).
  • Las ‘leches vegetales’ son buenos sustitutos de la leche de vaca. Las bebidas vegetales no tienen las mismas propiedades que las leches de origen animal. Los lácteos contienen proteínas de un elevado valor biológico, muchas más vitaminas, calcio y otros micronutrientes, además de una mejor biodisponibilidad (son fácilmente asimilables por el organismo). Incluso UNICEF elaboró un informe en el que solicitó la eliminación de este término (leche) para las bebidas vegetales, y la Autoridad Europea de Seguridad Alimentaria (EFSA) se ha pronunciado recientemente sobre este asunto, ya que puede confundir al consumidor.

    Surtido de bebidas vegetales./Amodo

  • La leche engorda. La grasa de la leche no es la responsable de la obesidad. Como todo lo que ingerimos, los excesos aumentan el riesgo de subir de peso. Lo recomendable es consumir entre 2 y 4 lácteos al día, y que la mayor ingesta se produzca en la infancia y adolescencia, así como en el embarazo, durante la lactancia y en personas mayores para compensar algún déficit nutricional.
  • La leche sube el colesterol. Aunque la leche entera y los productos lácteos con elevado contenido graso podrían aumentar los niveles de colesterol total, su consumo tiene un efecto muy pequeño sobre el aumento del colesterol malo. De hecho, se ha demostrado que el riesgo de contraer una enfermedad cardiovascular es menor en individuos que consumen leche, debido al aumento del colesterol bueno favorecido por el tipo de ácidos grasos de la leche, y por la presencia de derivados de sus proteínas, que tienen incluso un efecto hipotensor.

La población española está disminuyendo de forma preocupante la ingesta de calcio y vitamina D. La leche tiene un alto contenido de estos nutrientes y su bajo consumo puede contribuir a un mayor riesgo de osteoporosis en la edad adulta. Actualmente el 40-60% de la población española no alcanza las ingestas diarias recomendadas de calcio, mientras que en el caso de la vitamina D esa cifra se eleva al 80%.

Se sugiere consumir entre 2 y 4 lácteos al día. / Pezibear

La leche es la principal y mejor fuente dietética de calcio, tanto por los altos niveles de este mineral en su composición, como por su elevada biodisponibilidad, que facilita la absorción de este micronutriente.

En ciertos colectivos especialmente vulnerables (niños, adolescentes, adultos mayores inactivos, mujeres embarazadas y postmenopáusicas, deportistas o fumadores), la mejor opción es consumir leches enriquecidas en calcio y vitamina D para mejorar su perfil nutricional.

* Ascensión Marcos es Directora del Grupo de Inmunonutrición del Dpto. de Metabolismo y Nutrición en el Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN) y Presidenta de la Federación Española de Sociedades de Nutrición, Alimentación y Dietética (FESNAD).