Archivo de la categoría ‘Ciencias de los alimentos’

Una exposición virtual del CSIC te enseña las plantas que vinieron de América y cambiaron nuestra dieta para siempre

Por Mar Gulis (CSIC)

Tomates, pimientos, patatas, cacao, maíz, piña, cacahuetes… ¿Qué tienen en común estos alimentos? Su origen lejano. Porque, aunque hoy sean habituales en nuestra dieta, todos llegaron de las Américas y poco a poco se colaron en los hogares europeos. ¿Cómo se produjo este trasvase de ingredientes? El punto de inflexión tuvo lugar en la noche del 11 al 12 de octubre de 1492, cuando se oyó el grito de “¡Tierra!” y la historia de Europa y de América experimentó un cambio radical. Cristóbal Colón y su tripulación habían descubierto lo que denominarían el Nuevo Mundo.

Papaya y patata

Izquierda: Papaya (Carica papaya L.). 1750-1773, Christoph Jakob Trew; ilustrador: Georg Dionysius Ehret, grabador: Johann Jacob Haid, Real Jardín Botánico-CSIC (CC BY-NC-SA). Derecha: Patatas (Solanum tuberosum L.) 1892-1893, Amédée Masclef, Real Jardín Botánico-CSIC (CC BY-NC-SA).

Las nuevas relaciones entre ambos continentes trajeron grandes transformaciones, pero aquí solo nos vamos a referir a las que tienen que ver con nuestra alimentación. “La manera de comer de los europeos hoy día sería muy diferente si Colón no hubiera tratado de descubrir una ruta más rápida para llegar desde España a las islas de las especias en el sureste de Asia”. Esta idea es el hilo conductor de la exposición Las plantas comestibles que vinieron de América, que te propone un recorrido virtual por los alimentos que, tras viajar miles de kilómetros, cambiaron nuestra dieta para siempre. La muestra, constituida por una selección de grabados del Real Jardín Botánico (RJB-CSIC), da cuenta de cómo algunas plantas que descubrieron los colonizadores “no sólo enriquecieron las cocinas de Europa, Asia y África, sino que tuvieron un enorme impacto en la cultura, economía y política a nivel mundial”.

En la exposición encontrarás varias curiosidades. Por ejemplo, la patata y el tomate, dos alimentos básicos de la dieta mediterránea, inicialmente fueron consideradas plantas tóxicas y se destinaron exclusivamente a usos ornamentales en jardines. Hubo que esperar a finales del siglo XVII para que los tomates fueran incluidos en los menús del sur de Europa. En el caso de la patata, tuvo que transcurrir un siglo más para que el denostado tubérculo fuera ampliamente utilizado en el recetario europeo. La llegada del cacao tampoco generó mucho entusiasmo. En su obra Historia natural y moral de las Indias, de 1590, el jesuita antropólogo José Acosta se refería al chocolate como un brebaje que producía asco, y que sin embargo era muy apreciado en su lugar de origen.

Pimiento y maiz

Izquierda: Pimientos (Capsicum ssp). 1613, Basilius Besler, Real Jardín Botánico-CSIC (CC BY-NC-SA). Derecha: Variedades del maíz (Zea mays L.). 1836, Matthieu Bonafous; ilustradora: Ang.ª Bottione-Rossi; grabador: Dupréel, Real Jardín Botánico-CSIC (CC BY-NC-SA).

Curiosamente, otras plantas traídas por Colón, como el maíz y la batata, fueron bien aceptadas desde el principio. Y algunas especies, como la yuca o la papaya, no llegaron a cultivarse en Europa, pero se llevaron a otros continentes, como África, donde ahora son parte fundamental de la dieta de sus habitantes.

La selección de grabados botánicos que integran la muestra procede de la Colección de libros raros y especiales de la biblioteca del Real Jardín Botánico. Las estampas están dibujadas por conocidos ilustradores y grabadores europeos de diferentes épocas, como Georg Dionysius Ehret (1708-1770), colaborador de Carlos Linneo y uno de los artistas botánicos más importantes del siglo XVIII. O el ilustrador Pierre Jean François Turpin (1775-1840), del que se enseña el grabado de la yuca recogido en la obra Nova genera et species plantarum (1824-1825), donde el naturalista Alexander von Humboldt y el botánico Aimé Bonpland describieron 4.500 plantas recopiladas en su viaje por América del Sur.

La muestra resalta además el trabajo de ilustradoras que, aunque han gozado de un menor reconocimiento, realizaron trabajos de gran calidad y precisión, como la ilustradora y retratista de flores Ernestine Panckoucke (1784-1860) o la acuarelista Angela Rossi Bottione.

Mapa

Mapa de los orígenes de las plantas comestibles americanas. / RJB-CSIC

Las plantas comestibles que vinieron de América se enmarca en las actividades de divulgación del proyecto Linking Biodiversity and Culture Information (LinBi), en el que la biblioteca del Real Jardín Botánico del CSIC participa con otros cuatro socios europeos. Los textos de la muestra, originariamente escritos en inglés, ya están disponibles en castellano.

Coronavirus, presupuesto europeo y Política Agraria Común (PAC): ¿vuelta a la casilla de salida?

Por Tomás García-Azcárate (CSIC)*

En mis conversaciones con mis antiguos colegas de la Comisión Europea, todos ellos teletrabajando en el momento de escribir este artículo, a menudo surge una palabra: antes. ‘Antes’ no se refiere a la época de los romanos. ‘Antes’ era a principios de marzo, antes de la crisis del coronavirus.

Antes, todo era relativamente sencillo. Se discutía firmemente sobre las perspectivas financieras de la Unión, el marco presupuesto para el período 2020-2027. La base para el cálculo es el Producto Interior Bruto (PIB). El ‘club de los rácanos’ defendía un límite del 1%; el Parlamento Europeo proponía el 1,3% y, en el Consejo, los Estados miembros discutían sobre la base de una llamada “propuesta de compromiso”, en torno a un 1,07%.

Pero hoy, ¿quién podría tener la osadía de estimar cuál será el PIB europeo en 2020 y los años siguientes? Se desconoce el impacto inmediato de la crisis. Después, algunos economistas eminentes hablan de una recuperación en ‘V’ (recuperación rápida y vuelta rápida a la normalidad); otros explican que tendrá forma de ‘U’ (crisis duradera pero con recuperación rápida); otros argumentan que será una ‘L’ (recuperación lenta y progresiva); algunos incluso hablan de ‘W’ (recuperación con recaídas).  En realidad, nadie sabe nada.

Antes, la discusión presupuestaria se estaba retrasando. Los optimistas esperaban un acuerdo antes de fin de año, bajo la presidencia alemana. Pero es aún menos probable hoy que ayer.

La naturaleza liliputiense del presupuesto europeo se hizo aún más clara con la crisis del coranavirus. Al menos, en marzo pasado, el Consejo acordó un paquete de ayudas de emergencia COVID-19 de 540.000 millones, aproximadamente tres veces y medio el presupuesto anual de toda la Unión.

Incluso circula un globo-sonda con una cifra presupuestaria del 2%, como medida excepcional y temporal para hacer frente a la crisis. Esto explotaría el límite presupuestario máximo fijado y, como tal, me parece poco probable. Pero, cosas veredes, amigo Sancho.

Paisaje castellano

Consecuencias para la PAC

Antes, dado que las discusiones presupuestarias se habían retrasado, sabíamos que la nueva PAC no entraría en vigor, como se había (voluntaristamente) anunciado inicialmente, para el 1 de enero de 2021. Ya estábamos discutiendo un retraso de al menos un año. Fui una de las pocas voces que dijo que la demora iba a ser de al menos dos años y hoy nadie nos contradice.

Pero hay un problema sin resolver: ¿con qué presupuesto para ayudas directas? La Comisión había, lógicamente, propuesto tomar sus propuestas presupuestarias como base para el debate, pero ya ha anunciado que en abril presentará nuevas propuestas. ¿Qué ayudas directas cobraran los agricultores europeos, si no hay un acuerdo antes de fin de año?

Antes sabíamos que la Comisión quería limitar los presupuestos agrarios y de cohesión para financiar las nuevas prioridades. También sabíamos que ciertos gobiernos, entre ellos el francés y el español, defendían el mantenimiento, al menos en términos nominales, del presupuesto de la PAC. En un contexto de baja inflación, este sería un buen resultado. Pero, y en esto están de acuerdo, todos los economistas saben que la explosión del gasto público que estamos experimentando finalmente generará una mayor inflación.

Ganado bovino

Antes, no sin confusión, teníamos una propuesta de una nueva PAC sobre la mesa de negociaciones y sabíamos que un día u otro, se juntaría con la discusión del Pacto Verde Europeo y la estrategia ‘De la granja a la mesa’. La cosa estaba ciertamente confusa y ahora nos anuncian que el presupuesto europeo debe utilizarse para un nuevo Plan Marshall.

Antes, se temía que la nueva PAC iba a representar un aumento (bastante lógico en un contexto de mitigación y adaptación al cambio climático) de la contribución medioambiental solicitada a los agricultores y una disminución (estancamiento en términos nominales, en el mejor de los casos) de los fondos disponibles.

La cuadratura del círculo no era sencilla, porque el reto climático no se resolverá sin una participación activa de los actores económicos, y aumentar las obligaciones disminuyendo los apoyos no es una manera sencilla de convencer, sensibilizar y movilizar a un colectivo.

Algunos abogan, no sin buenas razones, por una reducción de la presión ambiental sobre la agricultura. Sin llegar a la desafortunada frase del presidente Sarkozy “Estamos hartos de medioambiente”, plantean escalonar más en el tiempo las exigencias.

Sequía

La gestión agraria juega un papel fundamental ante los retos del cambio global.

Pero, si realmente hay una emergencia ambiental, ¿es razonable retrasar los cambios necesarios? Si la Unión Europea y los Estados miembros han  asumido compromisos internacionales, ¿son compatibles con un cambio de ritmo? Estas son preguntas a las que no tengo respuestas pero que nuestros responsables políticos no podrán eludir.

Antes, se hablaba mucho, y con razón, de la PAC de la transición ecológica y la agroecología, de la resiliencia ambiental. Hoy, también estamos hablando de la resiliencia económica y alimentaria. Estos son los grandes retos a los que tiene que hacer frente nuestra sociedad. Desde el CSIC, estamos orgullosos de estar contribuyendo a que estos debates estén basados en evidencias científicas y que los actores sociales y políticos tomen sus decisiones con el mejor conocimiento de causa.

 

* Tomás García-Azcárate es vicedirector del Instituto de Economía, Geografía y Demografía (IEGD) del Centro de Ciencias Humanas y Sociales (CCHS) del CSIC, investigador del grupo Desarrollo Territorial Sostenible del mismo instituto y del Centro de Estudios e Investigación para la Gestión de Riesgos Agrarios y Medioambientales (CEIGRAM) de la Universidad Politécnica de Madrid. Es especialista en Política Agraria Común (PAC) y mercados agrarios, con especial interés en las relaciones entre políticas agrarias y derecho de la competencia. Ha sido durante 28 años coordinador del Observatorio Europeo de precios y mercados agrícolas y, durante 7, catedrático de Política Agraria Común en la Universidad Libre de Bruselas.

Ciencia online: más de 100 conferencias de divulgación del CSIC para ver en casa

Por Mar Gulis (CSIC)

¿Por qué el cambio climático es un problema urgente? ¿De qué está hecho el universo? ¿Cómo se extinguieron los Neandertales? ¿Tiene la vida un origen extraterrestre? Estos días de confinamiento suponen una excelente oportunidad para saciar tu curiosidad científica. Las más de 100 charlas para todos los públicos que el Consejo Superior de Investigaciones Científicas (CSIC) ofrece en sus canales online te ayudarán a buscar respuestas a estas y otras muchas preguntas. Además, te permitirán conocer los últimos avances de la ciencia por boca de investigadores e investigadoras que trabajan en una gran variedad de campos, como la demografía, la biología, la geología o la física teórica.

Fernando Valladares

Fernando Valladares, investigador del Museo Nacional de Ciencias Naturales (MNCN-CSIC), en una de sus charlas sobre cambio climático.

Del universo a las partículas elementales

Si lo que te interesa son los meteoritos, las estrellas o la vida extraterrestre, puedes asomarte al impresionante catálogo de conferencias del Ciclo Lucas Lara, organizado por el Instituto de Astrofísica de Andalucía (IAA-CSIC). En ellas no solo oirás hablar de astronomía, sino también de asuntos como la inteligencia artificial, el dolor o los mosaicos de La Alhambra.

En caso de que te vaya más la física ‘pura y dura’, las conferencias del Instituto de Física Teórica (IFT-CSIC/UAM) no te defraudarán. El bosón de Higgs y el misterio de la masa, el fin del espacio-tiempo o las misteriosas propiedades de los neutrinos son solo algunas de las muchísimas cuestiones tratadas en ellas. De todas formas, la física del CSIC no se agota aquí. En esta misma área del conocimiento, tampoco puedes perderte las charlas del Instituto de Física Fundamental (IFF-CSIC), que se ocupan de temas como la antimateria, los mitos de la física cuántica o la computación cuántica.

La investigadora Laura López-Mascaraque, del Instituto Cajal (IC-CSIC), habla de la ruta de los aromas de la nariz al cerebro en el ciclo ‘¿Qué sabemos de?’.

Para saber de todo

Para quienes no tengan tan definida una temática de interés, el ciclo Jam Science ofrece la oportunidad de ver a investigadores e investigadores de perfil muy diverso hablando de su trabajo en un ambiente muy distendido: nada más y nada menos que un bar. Organizada por la científica del CSIC Carmen Fernández, esta iniciativa ha abordado cuestiones como el enigma de los Neandertales, el posible origen extraterrestre de la vida en nuestro planeta, la exploración antártica o la importancia de las vacunas. Los vídeos de estas charlas están disponibles en los canales de Youtube DC SciCommAgora Mundi Ciencia.

Otro ciclo de contenido científico amplio que te permitirá aumentar tus conocimientos son las Friday Talks. ‘Música y neurociencia’, ‘Un nuevo océano en la era del plástico’ o ‘Gatos y tigres… ¿bajo el mar?’ son títulos de algunas de las intervenciones recogidas por esta propuesta del Instituto de Ciencias del Mar (ICM-CSIC).

Y aún hay más. ¿Qué somos capaces de hacer editando genes? ¿Cómo sabe el cerebro lo que la nariz huele? ¿Se va a convertir la Comunidad Valenciana en un desierto? Estos interrogantes sirven de partida a tres de las conferencias del ciclo ‘¿Qué sabemos de?’ con el que la Delegación del CSIC en Valencia te propone indagar en las claves científicas del bienestar.

Los Neandertales son el eje de esta charla de Antonio Rosas, del MNCN-CSIC, en el ciclo Jam Science.

Cambio climático y geología

Volviendo a temáticas más específicas, el investigador del Museo Nacional de Ciencias Naturales (MNCN-CSIC) Fernando Valladares te invita a reflexionar sobre el cambio climático y los desafíos que plantea en su serie de vídeos La salud de la humanidad, en la que intercala conferencias con varias piezas informativas de elaboración propia. Y en una línea similar, Daniel García-Castellanos, del Instituto de Ciencias de la Tierra Jaume Almera (ICTJA-CSIC), comparte su pasión por la geología en sus charlas sobre megainundaciones, tectónica de placas y erosión del suelo.

Y para terminar, puedes darte una vuelta por los ciclos Demografía hoy y ¿Qué sabemos del arte rupestre?, así como los seminarios de la Estación Biológica de Doñana. Estos vídeos, de contenido algo más especializado que los anteriores, te permitirán profundizar en las cuestiones que tratan.

Como ves, tienes muchas conferencias para elegir. ¿Por cuál quieres empezar?

Si quieres conocer más recursos del CSIC para aprender ciencia desde casa, pincha aquí.

Maracuyá, ¿la fruta de qué pasión?

Por Iñaki Hormaza y Mar Gulis (CSIC)*

Tiene una pulpa jugosa salpicada de semillas comestibles y su sabor es una atractiva mezcla de ácido y dulce. El maracuyá, también conocido como fruta de la pasión, es muy preciado en alta cocina, la repostería y la preparación de zumos y cócteles. Además de sus innegables propiedades gustativas y nutricionales (contiene carotenos y vitaminas A y C), muchas personas le suelen atribuir cualidades afrodisíacas. Pero, ¿qué pasión da realmente nombre a esta pequeña fruta de estimulante aroma? La respuesta está en su flor y en un encuentro que aconteció hace unos cuatrocientos años.

Flor del maracuyá/ Iñaki Hormaza

A comienzos del siglo XVII Manuel de Villegas, un fraile agustino proveniente de América, se presentó en el Vaticano ante el teólogo Giacomo Bosio con una sorprendente flor seca. Bosio quedó impresionado por su insólita estructura y comenzó a recopilar información sobre ella. Una de las primeras citas que encontró fue la de Francisco Hernández de Toledo, un naturalista y médico español de la corte de Felipe II que dirigió una expedición a la Nueva España de 1570 a 1577 y que menciona la planta como “granadilla”. El teólogo también leyó a José de Acosta, quien en su Historia Natural y Moral de las Indias recoge que: “la flor de granadilla es tenida por cosa notable; dicen que tiene las insignias de la Pasión, y que se hallan en ella los clavos y la columna y los azotes, y la corona de espinas y las llagas, y no les falta alguna razón, aunque para figurar todo lo dicho, es menester algo de piedad, que ayude a parecer aquello; pero mucho está muy expreso, y la vista en sí es bella, aunque no tiene olor. La fruta que da llaman granadilla, y se come, o se bebe, o se sorbe, por mejor decir, para refrescar; es dulce, y a algunos les parece demasiado dulce”. Bosio estaba preparando un tratado sobre la pasión de Cristo, y, utilizando estas referencias más su propia observación, decidió bautizar el maracuyá como fruta de la pasión. Así, asoció su forma a diferentes momentos del pasaje bíblico, nada más lejos del significado erótico o afrodisíaco en el que la mayoría pensamos cuando hablamos de esta planta tropical.

Una flor bíblica

¿Qué significa según Bosio cada parte de esta flor? En la base, sus cinco pétalos y cinco sépalos, que son similares, representarían a los diez apóstoles que estaban presentes en el momento de la crucifixión; todos menos Judas el traidor y Pedro, que negó a Jesús. Sobre los pétalos, círculo de filamentos que corresponden a sépalos modificados, aludirían a la corona de espinas. Los tres estigmas simbolizarían los tres clavos, mientras que la pieza central, el estilo, se asociaría a la columna en la que Cristo fue azotado. Los cinco estambres se corresponderían con las cinco llagas o heridas recibidas.

En 1745, años después de realizar esta interpretación religiosa, Linneo estableció el actual género Passiflora, dentro del cual describió 22 especies. Actualmente incluye unas 400 especies presentes fundamentalmente ​en América tropical y subtropical, con unos pocos representantes en Asia y Oceanía. La especie más conocida dentro del género es Passiflora edulis, el maracuyá, originario de la Amazonía de Perú, el sur de Brasil, Colombia, Paraguay y norte de Argentina. La palabra maracuyá deriva del guaraní Mburucuyá, aunque rápidamente se empezó a conocer como pasiflora y pasionaria. También se conoce con otros nombres como granadilla, parcha, o parchita, que es el nombre que se usa en las Islas Canarias.

Planta de maracuyá cultivada en Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (CSIC-Uma), ubicado en Málaga/ Iñaki Hormaza

Maracuyá ibérico

El maracuyá y otras especies e híbridos de frutas de la pasión se cultivan en regiones con clima tropical o subtropical. La mayoría son plantas trepadoras que pueden llegar a crecer hasta unos 10 metros. El color del fruto es variable desde morado a amarillo y en su interior hay numerosas semillas comestibles.

El principal país productor es Brasil, con más del 50% de la producción mundial, seguido por Ecuador y Colombia. La producción española es muy limitada y está concentrada en las Islas Canarias, por eso existe un creciente interés por su cultivo en la península. En el Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, centro mixto del CSIC y la Universidad de Málaga, se están evaluando diferentes especies y variedades con el objetivo de incentivar la producción de maracuyá en la Europa continental, del mismo modo que se cultivan otros frutos tropicales y subtropicales como el aguacate, el mango, la chirimoya, el litchi, la carambola o la papaya. La producción de todos ellos en esta zona se caracteriza por la sostenibilidad. Se apuesta por una producción local capaz de llegar a los mercados europeos en unas pocas horas. Esto permitiría a los consumidores disponer de frutas exóticas de alta calidad producidas en lugares próximos, lo cual evitaría el transporte desde otros continentes y con ello una reducción de la huella de carbono considerable.

 

* Iñaki Hormaza es investigador del CSIC en el Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, centro mixto del CSIC y la Universidad de Málaga.

 

Te mostramos en un minuto las mejores imágenes científicas de FOTCIENCIA17

Por Mar Gulis (CSIC)

La extraordinaria anatomía de los caballitos de mar retratada a través de cuatro técnicas lumínicas, una imagen de microscopio que nos muestra los grandes ojos compuestos de los mosquitos o los surcos geométricos de un cultivo sostenible de cebada observados desde un dron. Estas son algunas de las siete propuestas seleccionadas en la 17ª edición de FOTCIENCIA, una iniciativa del Consejo Superior de Investigaciones Científicas (CSIC) y la Fundación Española para la Ciencia y la Tecnología (FECYT), con apoyo de la Fundación Jesús Serra, que trata de acercar la ciencia a la sociedad mediante la fotografía.

Las enormes antenas en forma de abanico que algunas luciérnagas de Brasil utilizan para detectar las feromonas del sexo opuesto o la asombrosa estructura del nanoplancton marino amenazado por el cambio climático en el Mediterráneo son otros de los fenómenos reflejados en las imágenes, que han sido escogidas por un comité compuesto por profesionales relacionados con la fotografía, la microscopía y la comunicación científica.

Las dos fotografías restantes llaman nuestra atención sobre los microplásticos que se encuentran en los organismos que constituyen la base de la cadena trófica marina y que llegan a los consumidores finales, los seres humanos, así como sobre el hecho de que la naturaleza es química y que la química está en la naturaleza. Puedes ver todas ellas en el vídeo que acompaña a este post.

Con estas imágenes y una selección más amplia de entre las cerca de 450 presentadas, próximamente se realizará una exposición itinerante y un catálogo.

Para saber más sobre las imágenes escogidas, pincha aquí.

En esta 17ª edición, FOTCIENCIA se ha sumado a los 17 Objetivos de Desarrollo Sostenible declarados por Naciones Unidas.

¿Yogur natural o edulcorado?: cómo afecta su consumo a tu salud

Por Mar Gulis (CSIC)

¿Alguna vez te has parado a pensar qué productos fermentados forman parte de tu dieta? Son alimentos en los que su procesamiento involucra el crecimiento de microorganismos. Generalmente son más ricos nutricionalmente que un alimento no fermentado, ya que resultan más digeribles, contienen compuestos biactivos producidos durante la fermentación y constituyen una fuente de microorganismos. Estas características hacen que los alimentos fermentados resulten beneficiosos para la salud.

“El consumo de lácteos fermentados se ha asociado con la prevención de la obesidad, la reducción del riesgo de trastornos metabólicos y patologías relacionadas con el sistema inmunitario”, destaca el investigador Miguel Gueimonde del Instituto de Productos Lácteos de Asturias (IPLA) del CSIC. Precisamente, los lácteos fueron este año los protagonistas del Día Nacional de la Nutrición (28 de mayo), como también lo han sido de un estudio en el que ha participado el investigador para determinar cómo impacta el consumo de productos lácteos fermentados en la microbiota intestinal y en la salud.

yogur

Fuente: Freepik

La microbiota intestinal es la comunidad microbiana que se encuentra en nuestro intestino y está compuesta por cientos de especies bacterianas diferentes, presentes en niveles muy elevados  –entre 0,1 y 1 billón de bacterias por gramo de contenido colónico–. Durante la última década, numerosos estudios han puesto de manifiesto la importancia de la microbiota intestinal para la salud y cómo algunas alteraciones en ella se relacionan con el incremento en el riesgo de sufrir diversas patologías. Por ello, indica el investigador, ha aumentado el interés sobre la relación existente entre la microbiota intestinal y las distintas funciones del organismo, desde la intestinal a la inmune e incluso la cognitiva, así como al estudio de los factores que determinan y modulan la composición de la microbiota. Y entre ellos, la dieta tiene un papel destacado. Así que presta atención la próxima vez que decidas en el supermercado: ¿yogur natural o edulcorado?; antes deberías saber qué efectos podría tener en tu salud.

Estos productos aportan nutrientes de gran calidad y contribuyen a la presencia de microorganismos beneficiosos. Así lo demuestra este estudio en el que 130 adultos han proporcionado información nutricional y de hábitos de vida, y en él se ha evaluado la ingesta de alimentos mediante un cuestionario con 26 productos lácteos fermentados. Los favoritos: el yogur natural, el yogur edulcorado y el queso curado o semi curado.

Entre los resultados, el más sorprendente, destaca el investigador, fue la observación de una asociación positiva entre el consumo de yogur natural y los niveles de microorganismos del género Akkermansia en el intestino, que tienen efectos beneficiosos sobre la obesidad y el síndrome metabólico. “Nuestro estudio indica que el consumo regular de yogur natural ayuda a mantener unos niveles elevados de este microorganismo”, explica, unos resultados que demuestran “los posibles efectos beneficiosos del consumo de yogur”.

Por el contrario, estos efectos no se observaron en los consumidores de yogur edulcorado ya que este consumo se asoció a niveles más bajos de Bacteroides. Y, de hecho, señala Gueimonde, los efectos pueden verse afectados por la adición de edulcorantes, lo que conllevaría además efectos diferentes sobre la microbiota intestinal, pero esto sería objeto de otro estudio.

Cómo nos puede ayudar la ciencia frente al despilfarro de alimentos

Por Ana Mª Veses (CSIC)*

El otro día fui a un restaurante con mi familia. En la mesa de al lado, un niño se puso a protestar porque no le gustaba la comida que le habían servido; inmediatamente, un camarero acudió para retirarle el plato.

Esta anécdota contrasta con la realidad que nos muestra la Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO): mientras cerca de 800 millones de personas sufren desnutrición en el mundo, según datos de 2017, aproximadamente un tercio de la producción mundial de alimentos se pierde o se desperdicia.

Además, este despilfarro produce graves consecuencias para el medioambiente. Tirar comida supone una notable pérdida de recursos naturales (tierra, agua y energía) y un incremento de emisiones de gases de efecto invernadero, para producir unos alimentos que finalmente nadie consumirá. Si ‘dilapidar comida’ fuera un país, sería el tercero con más emisiones de dióxido de carbono, detrás de China y EEUU. Asimismo, los alimentos que producimos pero luego no comemos consumen un volumen de agua equivalente al caudal anual del río Volga.

¿Por qué pasa esto? ¿Alguien se ha planteado hacer algo al respecto?

En los países industrializados principalmente se desperdician tantos alimentos porque la producción excede a la demanda, porque los supermercados imponen altos estándares estéticos a los productos frescos y descartan aquellos que son más feos, y porque se piensa que tirar es más cómodo que reutilizar.

En cambio, en países en vías de desarrollo, según indican estudios de la FAO, el desperdicio de alimentos por parte de los consumidores es mínimo. En estos países, sin embargo, son los inadecuados sistemas comerciales y las escasas y deficientes instalaciones de almacenamiento y procesamiento los que provocan grandes pérdidas de alimentos.

Desde las instituciones públicas se están desarrollando diversas estrategias y planes de actuación, a distintos niveles, para controlar y reducir estos desperdicios. Se han puesto en marcha planes de sensibilización cuya finalidad es modificar hábitos y modelos de consumo en las comunidades, como la difusión de buenas prácticas de conservación de productos en los hogares a través de los medios de comunicación o aplicaciones móviles para la sensibilización e innovación social o para la redistribución de excedentes.

Ciencia y tecnología para desperdiciar menos

Por otro lado, la ciencia y la tecnología contribuyen a generar herramientas que puedan disminuir el desperdicio de alimentos a lo largo de toda la cadena alimentaria. La creación de nuevas técnicas de conservación de alimentos, diseños de envases más resistentes, así como el uso de tecnologías limpias y la identificación de dónde se producen las pérdidas de producto son algunas de las alternativas que se investigan. Por ejemplo, ya se está trabajando en el desarrollo de envases más resistentes al transporte, que puedan volver a cerrarse fácilmente o divididos en porciones que aumenten la vida útil de los alimentos.

El catálogo de iniciativas nacionales e internacionales sobre el desperdicio alimentario realizado por la Agencia Española de Seguridad Alimentaria y Nutrición (AESAN) reúne iniciativas como un papel diseñado en 2010 (por la empresa Fenugreen) que consigue duplicar el tiempo de conservación de frutas y verduras frescas. Está impregnado con distintas especias que inhiben el crecimiento de hongos y bacterias y, además, contiene un determinado aroma que informa de si el sistema sigue siendo efectivo. Este papel, utilizado tanto en la agricultura como en hogares de todo el mundo, tiene una vida de tres semanas y después se puede aprovechar como abono.

Otras iniciativas aseguran la integridad del sellado en los envases mediante la selección de materiales de difícil perforación o desarrollan envases activos que evitan la entrada de sustancias indeseables al tiempo que liberan otras beneficiosas para la conservación del producto, como biocidas, antioxidantes o compuestos que absorben el oxígeno y la humedad.

Algunas líneas de investigación se basan en la reutilización y el reciclaje de subproductos industriales para evitar la disposición en vertedero, de manera que se puedan desarrollar nuevos productos a partir de los materiales excedentarios, recuperar compuestos de interés para utilizarlos como aditivos o ingredientes en otras industrias, así como obtener nuevos productos más saludables.

En el Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN) del CSIC, diversos grupos de investigación trabajan con residuos alimentarios procedentes de las industrias que usan productos vegetales y animales, con el objetivo de revalorizarlos. Uno de ellos es la okara, un subproducto de la soja que se obtiene tras extraer la fracción soluble para la producción de bebida de soja o tofu, y que antes era eliminado en las industrias de procesamiento. Al tratarla con altas presiones hidrostáticas y enzimas específicas, se consigue por un lado aumentar los carbohidratos solubles al doble de los valores iniciales y, por otro, incrementar sus capacidades prebióticas, favoreciendo el crecimiento de bacterias beneficiosas (Bifidobacterium y Lactobacillus) y la inhibición de otras potencialmente perjudiciales. Se ha comprobado que la okara tratada, suministrada a ratas que habían seguido una dieta grasa, frena la ganancia de peso, reduce los niveles de triglicéridos en plasma y aumenta la absorción mineral y la producción de ácidos grasos de cadena corta.

Estos ejemplos reflejan que se están empleando muchos recursos para frenar este problema y buscar soluciones. Pero no hay que olvidar el importante papel que tenemos los consumidores. Cada uno desde su posición, el personal investigador en sus laboratorios, los gobiernos en sus políticas y los consumidores en sus hogares, debemos colaborar para evitar que comida y productos válidos para el consumo sean desaprovechados, mientras en otra parte del mundo se pasa hambre.

* Ana Mª Veses es investigadora del Instituto de Ciencia y Tecnología de Alimentos y Nutrición del CSIC.

¿Qué son las “enzimas promiscuas”?

Por Francisco J. Plou (CSIC)*

Las enzimas son catalizadores biológicos, o biocatalizadores, responsables de regular y acelerar de forma sustancial la velocidad de las reacciones químicas en los seres vivos. Trabajos de los químicos estadounidenses Sumner y Northrop (ambos compartieron Premio Nobel de Química en 1946, junto con Stanley) permitieron determinar que las enzimas eran proteínas. Por tanto, al igual que estas últimas, las enzimas están formadas por aminoácidos y juegan un papel crucial en casi todos los procesos biológicos. El potencial químico de un ser vivo queda definido por su información genética, y las enzimas son las entidades biológicas que convierten dicha información en acción. Dicho de otro modo, las enzimas son proteínas que incrementan la velocidad de una reacción química sin consumirse y recuperándose sin cambios esenciales. Así, las enzimas son muy eficaces y específicas, ya que cada una está especializada en procesar una reacción concreta.

En esta imagen de microscopía electrónica de barrido se pueden observar tres enzimas distintas formando complejos cristalinos con fosfato de cobre. Los complejos de proteína y sal crecen formando estructuras semejantes a algunas flores. / David Talens Perales (IATA-CSIC). FOTCIENCIA16

En esta imagen de microscopía electrónica de barrido se pueden observar tres enzimas distintas formando complejos cristalinos con fosfato de cobre. Los complejos de proteína y sal crecen creando estructuras semejantes a algunas flores. / David Talens Perales (IATA-CSIC). FOTCIENCIA16

En los últimos años, un nuevo concepto, que se contrapone a esta especificidad de las enzimas, ha adquirido un notable protagonismo: la promiscuidad. Este término nos puede evocar a relaciones poco estables o “de flor en flor” entre personas, pero también se ha he­cho un hueco en el ámbito de la bioquímica, si bien suele utilizarse en su lugar el concepto más académico de “amplia especificidad”. En el metabolis­mo cada enzima se ha especializado, a través de la evolución, en una determinada reacción química, para lo que es necesa­rio que la enzima reconozca un sustrato muy concreto. Este es el caso de la glucosa oxidasa, una enzima que solo reconoce a la glucosa y se muestra indiferente con azúcares muy similares como la galactosa o la fructosa. Por ello tiene múltiples aplicaciones en biotecnología, entre las que destaca el poder cuantificar la glucosa libre en los fluidos biológicos (sangre y orina), base de los biosensores de las personas diabéticas. Sin embargo, cada año se publican nuevos artículos en los que se reseña cómo una enzima es capaz de aceptar sustratos alternativos al original (lo que se denomina “promiscuidad de sustrato”) o, lo que resulta mucho más rompedor, catali­zar otro tipo de transformaciones químicas (lo que se conoce como “promiscuidad catalítica”). La mayoría de enzimas, entonces, son promiscuas.

¿De dónde proviene esta propiedad? Se cree que las enzimas actuales han evolucionado a partir de enzimas ancestrales que mostraban una gran promiscuidad, esto es, las primeras enzimas eran generalistas y realizaban por tanto funciones muy diversas. Así, las células no podían gastar energía en producir enzimas especializadas y preferían en­zimas multifunción, como esos sacacorchos que, además de permitirnos abrir una botella de vino, incluyen una pequeña navaja y un sinfín de accesorios. Pero con el tiempo fue nece­sario dotar a las enzimas de mayor actividad catalítica y espe­cificidad, como laboriosa “mano de obra” cada vez más especializada y eficaz. Parece ser una consecuencia evidente de la divergencia evolutiva.

Estos conceptos chocan de frente con los descritos en uno de los libros más vendidos sobre estas cuestiones en los últimos años, La enzi­ma prodigiosa, del médico Hiromi Shinya. El autor señala, con poca base científica, que en nuestro organismo “hay una enzima madre, una enzima prototipo, sin especialización. Hasta que esta enzima madre se convierte en una enzima específica como respuesta a una necesidad particular, tiene el potencial de convertirse en cual­quier enzima”.

La Mata Hari de las enzimas

Pero sigamos con nuestras enzimas promiscuas. Desde el punto de vista aplicado, la promiscuidad de sustrato presenta connotaciones de gran interés. Por un lado, para ciertos usos es deseable que las enzimas sean poco es­pecíficas. Nos referimos, por ejemplo, a su empleo en deter­gentes, donde una lipasa debe atacar cuantos más tipos de manchas de grasa, mejor, o a su utilización en descontaminación, en la que una oxidorreductasa es preferible que oxide el mayor número posible de compuestos recalcitrantes.

En cuanto a la promiscuidad catalítica, que implica que una misma enzima es funcional en reacciones que pertenecen a varias de las seis clases descritas en el cuadro de la imagen (tabla 1), es notorio el caso de la lipasa B de la levadura Candida an­tarctica. Esta enzima, a la que podríamos denominar la Mata Hari de la enzimología, se ha convertido en uno de los bio­catalizadores con mayores aplicaciones industriales. Por citar algunas: cataliza reaccio­nes diversas que incluyen la hidrólisis e interesterificación de grasas, la obtención de poliésteres, la síntesis de amidas, reso­luciones racémicas, condensaciones aldólicas, epoxidaciones y la reacción de Mannich, que se usa por ejemplo para sintetizar fármacos, entre otras cosas. Como señalan algunos científicos, “es el momento de investigar nuevas re­acciones para viejas enzimas”. Con ello aumentarán las posibilidades catalizadoras de las enzimas.

 

* Francisco J. Plou es investigador en el Instituto de Catálisis y Petroleoquímica del CSIC y autor del libro ‘Las enzimas’ (Editorial CSIC  Los Libros de la Catarata).

Listeriosis: a veces ocurre

Por Marta López Cabo (CSIC)*

El 41% de los europeos considera la seguridad alimentaria una preocupación. Así lo reflejan las encuestas recogidas en el Eurobarómetro publicado recientemente por la Agencia Europea en Seguridad Alimentaria (EFSA, 2019). En España, esta cifra se sitúa en el 37%. No son porcentajes muy elevados porque la aparición de brotes o problemas de salud asociados con el consumo de alimentos no es frecuente. Pero a veces ocurre.

Es el caso del brote de listeriosis de Andalucía, asociado con el consumo de carne mechada y otros productos contaminados con la bacteria Listeria monocytogenes, y que ha provocado 3 defunciones, 2 abortos, 2 muertes fetales intraútero y alrededor de 212 personas afectadas, algunas de ellas hospitalizadas.

¿Qué es Listeria monocytogenes?

Frotis sobre cupón de acero inoxidable utilizado para la toma de muestras de biofilms de Listeria monocytogenes potencialmente presentes en superficies de la industria alimentaria / IIM-CSIC

Listeria monocytogenes es una bacteria patógena de alta relevancia transmitida por alimentos. Decimos ‘alta relevancia’ no tanto por el número de casos declarados, sino por los casos de muerte asociados a grupos de riesgo (embarazadas, inmunodeprimidos y población de elevada edad). Ello la ha convertido en un objetivo prioritario para la comunidad científica y las agencias de seguridad alimentaria, lo que ha resultado en el avance en el conocimiento de su biología y el desarrollo e implementación de diferentes soluciones para su control y eliminación.

A pesar de ello, los datos de los últimos informes publicados por EFSA (2017, 2018) ponen de manifiesto una tendencia creciente del número de casos notificados de listeriosis en humanos en Europa. En 2017, la listeriosis causó cerca del 50% de las muertes por zoonosis alimentarias (enfermedades que se transmiten entre los animales y el ser humano a través del consumo de alimentos) en la Unión Europea y el 98% de los casos registrados requirió hospitalización.

¿Qué está ocurriendo?

Que L. monocytogenes, como la mayoría de las bacterias patógenas, tiene unas características biológicas peculiares que favorecen su prevalencia en superficies de plantas de procesado y en alimentos. Ubicua, resistente al ácido y a bajas condiciones de actividad de agua, es además capaz de crecer a temperaturas de refrigeración, las mismas que utilizamos para prolongar la vida comercial de los alimentos.

Pero L. monocytogenes tiene otra particularidad: su condición de bacteria-parásito. Quizás se trata de un estado intermedio de la evolución entre ambas formas biológicas que puede implicar ventajas en su ecología y capacidad infectiva. Sin embargo, esto aún está por dilucidar.

Imagen de microscopía de fluorescencia de biofilms formados por L. monocytogenes (células rojas) y Acinetobacter jonhsonii (células azules) sobre superficies de acero inoxidable / IIM-CSIC

Son varios los grupos de investigación que estudian esta bacteria. El grupo de Microbiología y Tecnología de Productos Marinos (MICROTEC) del Instituto de Investigaciones Marinas de Vigo (CSIC) investiga desde 2006 la incidencia y prevalencia de L. monocytogenes en plantas de procesado de alimentos; también la relación entre su ecología (especies bacterianas con las que se asocia y convive) y la resistencia a desinfectantes de uso industrial. Más recientemente, los estudios se han orientado a la búsqueda de alternativas basadas en moléculas de comunicación bacteriana (quorum sensing) que interrumpan o dificulten el agrupamiento de la bacteria y por tanto la aparición de estructuras estables que puedan convertirse en focos de contaminación. Con ello, el microorganismo no desaparecería, pero podría evitarse o ralentizarse la formación de estos focos.

Nuestras conclusiones son claras. L. monocytogenes puede persistir asociada a diferentes especies bacterianas y adherida a superficies y maquinaria de las plantas de procesado de alimentos formando estructuras complejas o biofilms (comunidades de células bacterianas) potencialmente resistentes a los protocolos de desinfección aplicados. Estas colonias constituyen focos de contaminación y puntos críticos para la contaminación cruzada, bien directamente, por contacto de alimentos, o indirectamente a través de utensilios o mediante los propios operarios y trabajadores de la planta. Porque, aunque no es habitual, a veces ocurre.

La solución también es clara: mejorar los sistemas de control y autocontrol de la industria y a lo largo de la cadena de valor y seguir avanzando en la investigación de L. monocytogenes y otros patógenos para poder ofrecer al consumidor alimentos seguros.

 

*Marta López Cabo  es responsable del Grupo de Microbiología y Tecnología de Productos Marinos (MICROTEC) del Instituto de Investigaciones Marinas de Vigo (CSIC) y coordinadora de la Red Gallega de Riesgos Emergentes en Seguridad Alimentaria (RISEGAL).

¿Cómo detectamos el ‘umami’ y otros sabores?

Por Laura López Mascaraque* y Mar Gulis

Cierra los ojos. Piensa en algo ácido. ¿Qué te viene a la mente? ¿Un limón, una naranja? Seguro que también visualizas rápidamente alimentos asociados a sabores dulces, salados y amargos. Pero, ¿puedes pensar en el sabor umami? Probablemente muchas personas se quedarán desconcertadas ante la pregunta, por desconocer la existencia de este quinto sabor o no identificar los alimentos vinculados al mismo. Aquí van algunos ejemplos: el queso parmesano, las algas, la sopa de pescado y la salsa de soja comparten este sabor, que se suma a los otros cuatro clásicos: dulce, salado, ácido y amargo.

El sabor umami es típico de la cocina asiática, en la que son habituales sopas que cuentan con soja y algas entre sus ingredientes / Zanpei

En 1908 el japonés Kikunae Ikeda descubrió el umami. Químico de la Universidad Imperial de Tokio, eligió esta palabra, que proviene del japonés y significa “buen sabor”, “sabroso” o “delicioso”, para designar su hallazgo. Ikeda dedujo que el glutamato monosódico era el responsable de la palatabilidad del caldo del alga kombu y otros platos. De hecho, el umami es característico de cocinas como la japonesa, la china, la tailandesa y también la peruana, donde se conoce como ajinomoto. El glutamato monosódico es un compuesto que se deriva del ácido glutámico, uno de los aminoácidos no esenciales más abundantes en la naturaleza (se denominan no esenciales porque el propio cuerpo los puede sintetizar, es decir, fabricar).

Pero, ¿cómo detectamos el umami? ¿O por qué decimos que algo está demasiado salado o dulce? ¿Qué proceso fisiológico desencadena estas percepciones? La mayor parte de lo que llamamos sabor tiene que ver, en realidad, no con el gusto, sino con el olfato. Por eso los sabores parecen desvanecerse cuando estamos resfriados. Juntos, el olfato y el gusto constituyen los denominados sentidos químicos, pues funcionan mediante la interacción directa de ciertos compuestos químicos con receptores situados en el epitelio olfatorio, localizado en la parte superior de la nariz, y las papilas gustativas, situadas en la lengua.

El olor llega al cerebro por dos vías; una directa y ortonasal y la otra indirecta o retronasal. La primera se da cuando inhalamos directamente a través de la nariz. La otra, cuando, al masticar o tragar el alimento, se liberan moléculas que alcanzan la cavidad nasal desde la boca (vía retronasal), es decir, cuando exhalamos. Con la masticación y la deglución, los vapores de las sustancias ingeridas son bombeados en la boca por movimientos de la lengua, la mandíbula y la garganta hacia la cavidad nasal, donde se produce la llamada percepción olfativa retronasal. Así, gran parte de las sensaciones percibidas en alimentos y bebidas se deben al olfato.

Las sensaciones gustativas las percibimos a través de las miles de papilas gustativas que tenemos en la lengua / Pixabay

Por otra parte, ciertos alimentos considerados irritantes (condimentos picantes, quesos muy fuertes, etc.) pueden ser percibidos como olores/sabores a través del sistema quimiosensitivo trigeminal, con receptores localizados en la cavidad nasal y la boca.

En resumen, los receptores del olfato, el gusto y el nervio trigémino contribuyen al sabor, que se define por la suma de tres sensaciones: olfativas, gustativas y trigeminales. Las olfativas se perciben por la nariz desde concentraciones muy bajas y son las más variadas y complejas. Las gustativas lo hacen gracias a los receptores de la lengua y el paladar, localizados en las aproximadamente 5.000-10.000 papilas gustativas, que conducen información de la composición química de los alimentos hacia una parte del cerebro especializada en interpretar estos mensajes de acuerdo a las cinco cualidades gustativas básicas que mencionábamos al principio: salado, dulce, amargo, ácido y umami.

Cada uno de estos sabores puede asociarse a una o varias sustancias químicas caracterizadas por tener fórmulas y propiedades específicas que permiten su reconocimiento. Por ejemplo, los ácidos, como el zumo de limón o el vinagre, liberan iones de hidrógeno y, por lo tanto, presentan sabor ácido, mientras que la sal de cocina libera iones sodio y cloruro y, así, manifiesta sabor salado. Lo mismo les sucede a las moléculas de glucosa o azúcar con el dulce, a las del café o el bíter que libera alcaloides con el amargo, y al glutamato monosódico y otros aminoácidos con el umami. Actualmente se investiga la posibilidad de que existan receptores específicos en la lengua para reconocer el sabor de la grasa y el de las harinas o el almidón (sabor starchy).

En cuanto a las sensaciones trigeminales, estas se perciben en las terminaciones del nervio trigémino de la nariz y la boca a través de bebidas y alimentos que producen una sensación de irritación (picor, frío…). Por tanto, cuando hablamos de percepción del sabor, nos referimos a una respuesta conjunta de señales que provienen del olfato, del gusto y del trigémino, combinadas con otras características físicas como la textura, la temperatura y la presión.

 

* Laura López Mascaraque es investigadora del Instituto Cajal  del CSIC y autora, junto con José Ramón Alonso de la Universidad de Salamanca, del libro El olfato de la colección ¿Qué sabemos de?, disponible en la Editorial CSIC y Los Libros de la Catarata.