Entradas etiquetadas como ‘Astronomía’

Copérnico: el canónigo que revolucionó el mundo después de muerto

Por Pedro Meseguer* (CSIC)

En los talleres de narrativa se insiste en que, en un relato, el autor o la autora ha de proporcionar una forma original de ver el mundo. Pero eso no es exclusivo de la literatura, ni siquiera de las humanidades: también sucede en la ciencia. Este año se cumple el 550 aniversario del nacimiento de Nicolás Copérnico (1473-1543), un personaje esencial en la renovación astronómica de los siglos XVI y XVII. Revolucionó la ciencia europea (entonces se denominaba “filosofía natural”) porque tuvo el atrevimiento de romper con el pasado al interpretar el movimiento de los astros de una manera inédita, diferente.

Astrónomo Copérnico, de Jan Matejko (1873)

Astrónomo, canónigo y médico

Nacido en Torun (Polonia), Nicolás era el menor de cuatro hermanos. Su madre murió a los pocos años y, cuando él había cumplido diez, también falleció su padre. De su educación se ocupó su tío Lucas, un duro sacerdote canónigo en una ciudad vecina. En la universidad de Cracovia estudió astronomía, y entró en contacto con el modelo geocéntrico —en donde el Sol giraba en torno a la Tierra— de Ptolomeo, aunque Copérnico se sentía incómodo con él. Viajó a Italia y continuó su formación en la universidad de Bolonia. Y posiblemente allí tuvo una revelación —en su libro Copérnico, John Banville la cuenta así—: “…había estado analizando el problema desde una perspectiva errónea […]. Si consideraba al Sol como el centro de un universo inmenso, los fenómenos observados en los movimientos de los planetas que habían intrigado a los astrónomos durante milenios, se volvían perfectamente racionales y evidentes…”.

A partir de ese momento, Copérnico se ocupó en construir un nuevo modelo astronómico con el Sol en el centro, en torno al cual giraban los planetas en órbitas circulares. Sin embargo, difundió sus concepciones con mucha cautela, tanta que también podría decirse que las escondió. Volvió de Italia y siendo seglar consiguió una canonjía en Fraudenburg con la ayuda de su tío el entonces obispo Lucas —había ascendido—, que gobernaba Ermeland (un protectorado del reino de Polonia). Allí se dedicó a las obligaciones de trabajo mientras cultivaba en privado su modelo astronómico. También ejerció la medicina y solventó cuestiones económicas.

Pero, años después de la experiencia italiana, publicó su Commentariolus, un cuadernillo resumen de sus ideas que lanzó a modo de ‘globo sonda’ y que, para su tranquilidad, no generó reacciones adversas. Al final de su vida, urgido desde varias instancias, se avino a publicar su modelo de forma completa. Su libro De revolutionibus orbitum coelestium (Sobre las revoluciones de las esferas celestes) vio la luz en 1543, muy cercano al día de su muerte.

Un libro que inspiró a Kepler, Galileo y Newton

Antes de Copérnico, imperaba el arquetipo astronómico geocéntrico desarrollado por Ptolomeo en el siglo II. Era un modelo farragoso, ya que obligaba a utilizar epiciclos para encajar las observaciones. Sin embargo, tenía una ventaja extracientífica: al colocar la Tierra inmóvil, con los planetas y el Sol girando en torno a ella, se reforzaba el concepto del ser humano como el centro de la creación. La iglesia católica hallaba adecuada esta interpretación en consonancia con El libro del Génesis: el universo conocido giraba en torno a la más excelsa obra de Dios, el ser que habitaba la Tierra.

Cuando su libro De revolutionibus se extendió, Copérnico ya había muerto. Esta circunstancia fue beneficiosa no solo para él, que obviamente no fue perseguido, sino para la obra misma, porque permaneció como una mera hipótesis: el libro era muy técnico, comprensible únicamente por astrónomos avanzados y solo entró en el índice de libros prohibidos tras el proceso a Galileo.

Esto permitió que astrónomos posteriores como Johannes Kepler (1571-1630) o Galileo Galilei (1564-1642) pudieran formarse con ese modelo y después realizar aportaciones muy relevantes. Basándose en él y manejando una buena cantidad de observaciones, Kepler postuló sus tres leyes: los planetas describían órbitas elípticas con el Sol en uno de sus focos, barrían áreas iguales en tiempos iguales y los cuadrados de los periodos de las órbitas eran proporcionales al cubo de sus distancias al Sol.

Galileo alcanzó a ir más allá: con el telescopio de su invención —a partir de un prototipo desarrollado por un constructor de lentes holandés— descubrió los satélites de Júpiter, que orbitaban en torno al planeta. Eso era más de lo que la iglesia católica podía soportar. Kepler, un luterano en reinos católicos, estaba lejos de Roma, pero Galileo se hallaba en Italia, cerca del Papa. Fue procesado por la Inquisición, pero astrónomos ulteriores trabajaron a partir de sus resultados. En particular, Newton (1642-1727) descubrió la ley de la gravitación universal apoyándose, entre otros, en las contribuciones de Kepler y Galileo.

Modelo heliocéntrico propuesto por Copérnico

Los mitos caen de su pedestal

En dos centurias el modelo geocéntrico fue reemplazado por el heliocéntrico. Además, la observación del Sol o de las estrellas se popularizó en los siglos siguientes por la navegación marítima. Esto estimuló una formación astronómica básica en donde la experimentación jugaba un papel central y a su vez consolidó la aceptación general del modelo heliocéntrico.

El impacto de las ideas lanzadas por Copérnico fue enorme, tanto en el nivel científico como en el filosófico, y de larga permanencia. La Tierra dejaba de ser el centro del universo: era un astro más, sometida a las mismas leyes que los demás cuerpos celestes.

Esa concepción estaba a un paso de que el ser humano también cayera de su pedestal, lo que sucedió con las obras de medicina que lo asemejaban a otros seres vivientes. En su libro Los errantes, Olga Tokarczuk (Premio Nobel de Literatura 2018) lo refleja muy bien: “La nueva era comenzó […] en aquel año cuando aparecieron […] De revolutionibus orbitum coelestium de Copérnico y […] De humanis corporis fabrica de Vesalio. Naturalmente, estos libros no lo contenían todo […] Sin embargo, los mapas del mundo, tanto el exterior como en interior, ya estaban trazados”.

Así, en 1543 se sentaron las bases de lo que sería la ciencia moderna. Comenzó un proceso de desmitificación progresiva, que se inició cuando la Tierra dejó de ser el centro del universo, siguió con el ser humano abandonando la cúspide de la creación, continuó con una Europa descabalgada del centro del mundo y llega hasta nuestros días. Una evolución que arrancó con las investigaciones de Copérnico y se ha propagado hasta hoy, donde es moneda corriente cuestionar los roles que han sido dominantes durante siglos en nuestra visión del mundo.

 

*Pedro Meseguer es investigador en el Instituto de Investigación en Inteligencia Artificial del CSIC.

¿Puedes ver a Galileo en esta Inmaculada de Rubens?

Por Montserrat Villar (CSIC)*

Durante dos mil años, la Luna se consideró un cuerpo perfecto. A principios del siglo XVII se descubrió lo contrario: que en ella había valles y montañas, como en la Tierra, y se confirmó que nuestro ‘corrupto’ planeta era capaz de iluminarla. Estos descubrimientos no solo impactaron en la astronomía, la filosofía y la doctrina de la Iglesia; también lo hicieron en las representaciones artísticas de la época.

La Inmaculada Concepción de Pedro Pablo Rubens resulta una obra fascinante en este sentido. Pintada entre 1628 y 1629, y expuesta en el Museo Nacional del Prado, es uno de los primeros cuadros en los que la Luna se representa como la mostró el telescopio: imperfecta y opaca, en contradicción con la idea de la pureza lunar defendida desde los tiempos de Aristóteles.

‘La Inmaculada Concepción’, Pedro Pablo Rubens (1628-1629). Museo Nacional del Prado.

‘La Inmaculada Concepción’, Pedro Pablo Rubens (1628-1629). Museo Nacional del Prado.

Galileo versus Aristóteles

En los albores del siglo XVII, la naturaleza y la composición de la Luna seguían sin dilucidarse. Fieles a una tradición de casi 2000 años de antigüedad, muchos mantenían que nuestro satélite era una esfera perfecta, hecha de una sustancia cristalina o vaporosa, reflectante o transparente. Eran ideas heredadas de Aristóteles, que en el siglo IV a.C. había dividido el cosmos en el mundo celestial o supralunar, donde todo era puro e inmutable, y el mundo sublunar, el de la Tierra y el ser humano, sometido a lo corrupto y cambiante. La Luna, habitante del ámbito celeste, se consideraba perfecta, al igual que los demás astros.

En el otro lado estaban quienes proponían que la Luna era un cuerpo sucio y áspero. Así lo mostraban las observaciones realizadas por Galileo Galilei a partir de 1609, para las que utilizó el recién inventado telescopio. El astrónomo descubrió que la Luna tenía relieve, al igual que la Tierra.

El misterio de la luz cenicienta

Había otra pieza que no encajaba en el rompecabezas lunar, y que separaba aún más las posturas. En días próximos al novilunio, cuando nuestro satélite tiene el aspecto de un delgado arco luminoso, se aprecia una luz débil de color grisáceo en la parte oscura. Es la llamada luz cenicienta. Para explicarla, quienes defendían la pureza lunar habían planteado que la luz de Venus o de las estrellas fijas iluminaba débilmente la zona sombría de nuestro satélite. O que quizás este emitía su propia luz. Alternativamente, la explicación también se hacía recaer en la luz del Sol, que en parte se reflejaba y en parte atravesaba la esfera semitransparente de la Luna.

Como antes hizo Leonardo da Vinci (1452-1519), en los primeros años del siglo XVII Kepler y Galileo defendieron la idea rompedora (y correcta) de que la luz cenicienta se producía porque la Tierra iluminaba la esfera sólida y opaca de la Luna con los rayos solares que reflejaba hacia ella. Es decir, de la misma manera que la Luna ilumina nuestras noches con la luz que refleja del Sol, así hace la Tierra con la Luna.

Las consecuencias de este planteamiento eran profundas y polémicas. ¿Cómo podía un cuerpo corrupto iluminar un astro perfecto? Esto implicaba que hay fenómenos del mundo celestial que son el efecto de lo que ocurre en el ámbito terrestre. De ser así, aquella división tradicional del cosmos debía descartarse.

Inmaculadas para frenar el protestantismo

Mientras se producía este debate, los artistas pintaban la Luna. En aquella época, la Iglesia Católica promovía el culto a la Inmaculada Concepción como parte de su estrategia para frenar el avance del protestantismo. Por esta razón, en el siglo XVII proliferaron las representaciones de la Inmaculada, que tomaron como base este pasaje del Apocalipsis de la Biblia: “Un gran signo apareció en el cielo: una mujer vestida del Sol, y la Luna bajo sus pies y una corona de doce estrellas sobre su cabeza”.

Esta es la razón por la que la Luna aparece en todas las Inmaculadas. Nuestro satélite se convirtió en alegoría de la pureza de María y, como tal, se representaba siempre como un cuerpo perfecto: llena, creciente o menguante, de alabastro o cristal; siempre inmaculada, como la Virgen.

La Inmaculada Concepción pintada por Francisco de Zurbarán (hacia 1630), izquierda, y Bartolomé Esteban Murillo (hacia 1675), derecha. Ambas obras, expuestas en el Museo Nacional del Prado, reflejan una concepción clásica y prefecta de la luna. 

La Inmaculada Concepción pintada por Francisco de Zurbarán (hacia 1630), izquierda; y la de Bartolomé Esteban Murillo (hacia 1675), derecha. Ambas obras, expuestas en el Museo Nacional del Prado, reflejan una concepción clásica y perfecta de la luna.

La excepción de Rubens

Los nuevos descubrimientos sobre la imperfección de la Luna y el origen terrestre de la luz cenicienta penetraron en círculos religiosos y artísticos, aunque se mantuvo la tradición de representar el astro impoluto por motivos obvios. Rubens fue una excepción. El artista, contemporáneo de Galileo, estaba al tanto de los descubrimientos realizados por el astrónomo y así lo reflejan otras de sus obras, como Saturno devorando a un hijo, donde dejó constancia de la apariencia de estrella triple del planeta Saturno, y El nacimiento de la Vía Láctea, donde nuestra galaxia aparece representada como un conjunto de infinidad de estrellas.

Detalle de ‘La Inmaculada Concepción’ de Rubens.

En su Inmaculada Concepción, la Virgen María está de pie sobre la Luna, que es una bola maciza y opaca, como hecha de plomo, muy diferente del ideal de pureza defendido durante siglos.

Es casi Luna nueva y, aunque solamente se ve iluminado un arco delgado en la parte inferior, identificamos perfectamente el globo completo de nuestro satélite. Rubens podría haber representado la luz cenicienta. El destello en la mitad superior de la esfera implica que el artista interpreta este fenómeno como luz reflejada en la Luna. No es luz emitida por ella o luz del Sol que la atraviesa, como proponían algunos eruditos de la época. La fuente de luz que produce ese reflejo ha de estar en la parte superior izquierda, fuera del plano del cuadro, en la dirección opuesta a la posición del Sol que ilumina el arco brillante. Por lógica, es la posición que esperamos para la Tierra cuando la Luna es casi nueva. La fuente de luz que ilumina y se refleja en la parte oscura de la Luna es, por tanto, la propia Tierra. Indirectamente, Rubens parece plasmar en su pintura el origen terrestre de la luz cenicienta.

La Luna de Rubens es la Luna de Galileo.

* Montserrat Villar es investigadora del CSIC en el Centro de Astrobiología (CSIC-INTA) y creadora del itinerario “Reflejos del cosmos en el Museo del Prado”, que puede disfrutarse hasta el 16 de octubre de 2022.

La marquesa y el filósofo que imaginaron la vida extraterrestre en el siglo XVII

Por Montserrat Villar (CSIC)*

Otoño de un año indeterminado a finales del siglo XVII. Un filósofo dado a elucubrar sobre la naturaleza de las cosas visita a su querida amiga, la Marquesa de G., en su casa de campo cerca de París. No imaginen fiestas espléndidas ni bailes fastuosos; tampoco partidas de cartas o jornadas de caza. La marquesa, de espíritu vivaz, está deseosa de comprender qué son la Luna, los planetas y las estrellas. El filósofo la complace gustoso, compartiendo con ella sus vastos conocimientos. Dialogan refugiados en la quietud de cinco noches, una detrás de la otra, pues extravagancias como las suyas solo pueden confiarlas a los astros.

Pintura de la serie 'Señales de otros mundos' (2021), de Antonio Calleja

Pintura de la serie ‘Señales de otros mundos’ (2021), de Antonio Calleja

Esas conversaciones conforman el contenido del ensayo Conversaciones sobre la pluralidad de los mundos del francés Bernard Le Bovier de Fontenelle (1657-1757). Publicado en 1686, se convirtió en una obra de divulgación científica en la que el autor trató de explicar las teorías sobre el cosmos con un lenguaje popular e ideas sencillas inspiradas en la lógica: el heliocentrismo, los movimientos y las fases de la Luna, los eclipses… e incluso la teoría de los vórtices de Descartes. En 1796 se imprimió en España una versión en castellano, en la que se basa este artículo. El traductor, desconocido, añadió correcciones y notas teniendo en cuenta los adelantos que el estudio del universo había experimentado en el siglo trascurrido desde que la obra original viera la luz.

Uno de los temas centrales del libro es la multiplicidad de mundos habitados, como indica su título. El autor argumenta en la línea de dos principios: el de mediocridad, que sostiene que el cosmos es básicamente similar a la Tierra en todas sus partes o, dicho de otra manera, que la Tierra no es especial; y el de plenitud, que sugiere que el universo debería ser lo más rico posible. Dado que la mayor riqueza que la naturaleza puede dar es la vida, el firmamento ha de estar rebosante de ella.

Bernard Le Bovier de Fontanelle y la versión en español de su libro 'Conversaciones sobre la pluralidad de los mundos' (1796)

Bernard Le Bovier de Fontenelle y la versión en español de su libro ‘Conversaciones sobre la pluralidad de los mundos’ (1796), más de un siglo después del original (1686)

Ahora regresemos al jardín donde nuestros dos protagonistas conversan en la intimidad que obsequia la noche para las confidencias. ¿Existe vida en la Luna, el Sol y los planetas? Se preguntan. Aunque la marquesa reconoce “no haber oído hablar jamás de habitantes de la Luna, salvo como una quimera y una locura”, poco a poco los razonamientos del filósofo la convencerán de lo contrario. Su compañero afirma que “los sabios que han observado la Luna con sus anteojos” han hecho una descripción tan detallada que, si alguno “se hallase en ella, andaría sin perderse como nosotros en París”.  Dada la “entera semejanza de la Luna y la Tierra”, no hay por qué descartar la posibilidad de que haya seres en ella.

“¿Pues, qué clase de gentes serían?”, pregunta ella. Han de ser muy diferentes a nosotros, señala. Sobre la base de la gran variedad de rostros, figuras, costumbres, incluso de “principios de razonamiento” que hay en la Tierra, más grande ha de ser la diferencia con los habitantes de la Luna.

Mas, dudando el filósofo de sus asertos previos, se pregunta si podrían hallarse seres en nuestro satélite si la inmutabilidad de sus manchas oscuras nos descubre un mundo sin aire y sin agua. La marquesa, habiendo mudado su opinión para creer con entusiasmo que la Luna está habitada, protesta por esta nueva adversidad. Él, que tampoco quiere dejar desierto aquel globo plateado, explica que quizá un aire tenue lo circunda y allí se formen nubes imperceptibles que no caen en forma de lluvia, sino de rocíos sutilísimos. Siendo el aire tan tenue, no habrá arcoíris ni crepúsculos; ni truenos ni relámpagos. Será tan ardiente el calor en la cara iluminada que vivirán quizá en ciudades subterráneas. “¿Pues no aquí mismo en nuestro mundo, fue la Roma subterránea tan grande como la Roma que hubo sobre la Tierra?”, ilustra. La marquesa queda así satisfecha de que el filósofo haya devuelto sus habitantes a la Luna.

Amplias y ricas fueron las imaginaciones de ambos acerca de nuestro satélite, cuando decidieron que era hora de viajar más lejos. ¿Por qué no poblar todos los planetas? “¿Podemos creer que habiendo la naturaleza hecho la Tierra tan fecunda, sea tan estéril para con los otros planetas?”

Bernard Le Bovier de Fontenelle meditando sobre la proliferación de mundos, 1791./ Jean Baptiste Morret

Fontenelle meditando sobre la proliferación de mundos, 1791./ Jean Baptiste Morret

Tanta luz ilumina a los habitantes de Mercurio, el planeta más cercano al Sol, que nuestros más bellos días les parecerían débiles crepúsculos. “Tan intenso será el calor, que en lo más interior de África se helarían sin remedio alguno”. El clima de Venus, piensa la marquesa, “debe ser muy favorable al romance” y sus habitantes “dados a la galantería, siendo Venus la madre de los amores”. En Marte, Júpiter y Saturno, que están tan lejos del Sol, la luz será tan pálida y blanquecina, con un calor tan débil “que si sus habitantes pudieran trasplantarse a Groenlandia o Laponia, los veríamos sudar a mares y ahogarse de calor”. ¡Cómo se alegra la marquesa de que la Tierra sea un planeta tan templado! Él la tranquiliza: “No hay duda de que la naturaleza no pone nunca vivientes, si no es donde pueden vivir”. Aquellas gentes se habrán adaptado a esos climas terribles y “la ignorancia de otra cosa mejor quizá hace que vivan con placer”.

La marquesa, que ya se siente filósofa, está impaciente por averiguar qué ocurre en las estrellas fijas. Él le explica que son otros tantos soles, centros de otros mundos que tienen que alumbrar. Ella razona que “teniendo nuestro Sol planetas a los que enviar su luz, ¿quién ha de oponerse a que los tenga también cada estrella fija?”

La marquesa de G. y el filósofo deben despedirse. “¡Ya tengo en mi cabeza todo el Sistema del Universo! ¡Soy ya una sabia!”. “Sí, señora, ya podéis pasar por tal: teniendo la ventaja de no creer en nada de lo que he dicho en el mismo instante que se os antoje. Y lo único que os pido en recompensa de mi trabajo es que no veáis nunca el Sol, el cielo y las estrellas sin acordaros de mí”.

Montserrat Villar es investigadora del Centro de Astrobiología (CSIC-INTA).

 

Encuentros temporales entre astronomía y prehistoria

Por Enrique Pérez Montero y Juan F. Gibaja Bao (CSIC) *

Entre las estrategias que usa la ciencia para facilitar el entendimiento de la naturaleza está la de proporcionar medidas que ayuden a fijar en una escala espacio-temporal aquellos objetos o eventos que estudia. No obstante, si el objeto de estudio sobrepasa las escalas que nos son familiares, puede ser complicado hacerse una idea de lo que esos números representan.

Uno de los casos donde esto ocurre de forma más clara es en la astronomía. Suele ser muy complejo distinguir la diferencia entre los cientos de miles de kilómetros a los que un asteroide ha pasado de la Tierra (en algunos medios de comunicación a veces se dice que nos ha pasado rozando), y los miles de millones de pársecs (unidad de longitud equivalente a 3,2616 años luz) a los que se encuentra la última galaxia de turno que ha roto el récord de distancia en el universo.

Esto mismo sucede incluso con escalas más pequeñas y cercanas, como la histórica. Al hablar de la prehistoria metemos en el mismo saco temporal a los primeros homínidos de hace unos 2,5 millones de años y a los últimos cazadores-recolectores del Mesolítico, que habitaron en ciertas zonas del Atlántico y Norte de Europa hace cerca de 5.000 años.

En el caso de la astronomía, una escala de distancia que trata de solventar esta dificultad es la basada en la velocidad de la luz, que viaja a unos 300.000 kilómetros por segundo. En el entorno de nuestro planeta esta escala no resulta práctica, ya que a un rayo de luz le da tiempo a dar siete vueltas y media a la Tierra en un solo segundo. Sin embargo, resulta mucho más cómodo y fácil imaginar que el Sol, la estrella que ilumina cada día nuestras vidas, está a 8 minutos y 20 segundos de distancia-luz, en vez de expresar que está a 150 millones de kilómetros. Es decir, podríamos recordar qué hicimos durante esos 8’20’’ transcurridos desde que los primeros rayos salieron del sol y llegaron a nuestro planeta.

El nacimiento de la escritura y la nebulosa de la Mariposa

Para poder entender la magnitud de la que hablamos proponemos hacer coincidir varios eventos de la historia de la humanidad con la distancia-luz a la que se encuentran algunos de los objetos astronómicos más notables. Así, por ejemplo, tomemos como punto de partida de nuestro viaje el momento en que se fija el inicio de la historia, el nacimiento de la escritura hace unos 3.500 años en Mesopotamia, en el extremo oriental del Mediterráneo. Poco después de ese momento partió la luz que los telescopios captan hoy en día desde la nebulosa de la Mariposa, también denominada NGC 6302, a 3.400 años-luz en la dirección de la constelación de Escorpio.

Nebulosa de la Mariposa. / NASA, ESA, and the Hubble SM4 ERO Team

Estas nubes de gas se produjeron cuando una estrella de masa intermedia, más o menos como nuestro Sol, terminó de fusionar los últimos elementos ligeros que se encuentran en el núcleo para crear otros más pesados. En ese momento, dicho núcleo se compactó para formar una enana blanca y las capas externas fueron eyectadas al medio interestelar.

¿Qué pasó en el cielo durante el inicio del Neolítico?

Otro momento relevante del desarrollo de la humanidad es el inicio de la domesticación de animales y vegetales, lo que conocemos como Neolítico. Aunque las primeras evidencias se documentan en Próximo Oriente hace unos 10.000 años, en pocos siglos aquellas comunidades ocuparon toda Europa. Sin duda, nosotros y nosotras somos sus más directos herederos. En ese mismo momento el cúmulo globular Messier 22, a 10.400 años-luz de distancia, nos envió la luz que hoy podemos ver. Este cúmulo se sitúa en la dirección de la constelación de Sagitario y está muy cerca del bulbo de nuestra galaxia. Está formado por una asociación de decenas o centenas de miles de estrellas, algunas de las cuales se cuentan entre las más antiguas de la Vía Láctea.

En la actualidad los observatorios infrarrojos espaciales y radiotelescopios de la Tierra recogen la radiación electromagnética que salió hace 28.000 años de Sagitario A*, que es como se denomina al núcleo de nuestra galaxia. Hoy sabemos que en el centro de la Vía Láctea hay un agujero negro supermasivo con una masa equivalente a cuatro millones de veces la de nuestro Sol. La presencia de un agujero negro tan enorme en esta posición no es algo anormal, sino un hecho común a todas las galaxias de tamaño similar a la nuestra. Cuando la radiación electromagnética porcedente de Sagitario A* inició su camino hacia la Tierra, algunos de nuestros antepasados más antiguos como especie, el Homo Sapiens, entraban en las cuevas de Altamira para pintar los magníficos bisontes, ciervos, manos y signos, tan enigmáticos a nuestros ojos contemporáneos.

Imagen de las cuevas de Altamira. / Museo de Altamira, D. Rodríguez

El origen del Homo Sapiens y la Gran Nube de Magallanes

Los Homo Sapiens aparecieron en África hace unos 150.000 años, momento en el que la luz emergía de la Gran Nube de Magallanes, más allá de los límites de nuestra galaxia. Esta es la más brillante entre las numerosas galaxias enanas satélite de la Vía Láctea. En ella se encuentra la nebulosa de la Tarántula, donde se halla el criadero de estrellas más masivo de todo nuestro grupo local de galaxias. En esta región se están creando más de diez nuevas estrellas por año y algunas de ellas son tan masivas que provocan vientos galácticos que arrastran el gas a cientos de kilómetros por segundo.

Los primeros homínidos y la galaxia de Andrómeda

Finalmente, si mirásemos por una máquina del tiempo qué ocurría en la Tierra hace dos millones y medio de años, observaríamos el origen de la Humanidad. En aquel momento, nuestros tatarabuelos los Homo Habilis habitaban en África y comenzaban a hacer algo que ninguna especie en nuestro planeta había hecho: transformar la naturaleza para crear instrumentos. Es el inicio de la tecnología, los primeros pasos de lo que hoy son nuestros móviles, telescopios o naves espaciales. Precisamente, a esa distancia espacio-temporal se encuentra la galaxia de Andrómeda o M31. Es el objeto más cercano a la Vía Láctea de un tamaño y masa parecidos. Su descubrimiento, realizado en la década de 1920 gracias a Edwin Hubble, nos concienció de que las galaxias eran numerosas y de que la nuestra no constituía todo el universo.

Galaxia Andrómeda. / Wikipedia, Boris Štromar

Todavía nos parece irreal pensar que su luz haya viajado más tiempo del recorrido por nuestra especie desde nuestro tatarabuelo Habilis. Y eso que es la galaxia más cercana a nosotros, en un universo que alberga miles de millones de ellas. Todo un desafío para nuestra comprensión sobre su inmensidad.

 

* Enrique Pérez Montero es investigador del el Instituto de Astrofísica de Andalucía del CSIC e investigador principal del proyecto de divulgación Astronomía Accesible, que tiene como fin el fomento de la astronomía entre las personas con discapacidad. Juan F. Gibaja Bao es investigador en la Escuela Española de Historia y Arqueología en Roma del CSIC y dirige y participa en diversos proyectos de divulgación científica, como Ciencia Incluisva.

Ciencia online: más de 100 conferencias de divulgación del CSIC para ver en casa

Por Mar Gulis (CSIC)

¿Por qué el cambio climático es un problema urgente? ¿De qué está hecho el universo? ¿Cómo se extinguieron los Neandertales? ¿Tiene la vida un origen extraterrestre? Estos días de confinamiento suponen una excelente oportunidad para saciar tu curiosidad científica. Las más de 100 charlas para todos los públicos que el Consejo Superior de Investigaciones Científicas (CSIC) ofrece en sus canales online te ayudarán a buscar respuestas a estas y otras muchas preguntas. Además, te permitirán conocer los últimos avances de la ciencia por boca de investigadores e investigadoras que trabajan en una gran variedad de campos, como la demografía, la biología, la geología o la física teórica.

Fernando Valladares

Fernando Valladares, investigador del Museo Nacional de Ciencias Naturales (MNCN-CSIC), en una de sus charlas sobre cambio climático.

Del universo a las partículas elementales

Si lo que te interesa son los meteoritos, las estrellas o la vida extraterrestre, puedes asomarte al impresionante catálogo de conferencias del Ciclo Lucas Lara, organizado por el Instituto de Astrofísica de Andalucía (IAA-CSIC). En ellas no solo oirás hablar de astronomía, sino también de asuntos como la inteligencia artificial, el dolor o los mosaicos de La Alhambra.

En caso de que te vaya más la física ‘pura y dura’, las conferencias del Instituto de Física Teórica (IFT-CSIC/UAM) no te defraudarán. El bosón de Higgs y el misterio de la masa, el fin del espacio-tiempo o las misteriosas propiedades de los neutrinos son solo algunas de las muchísimas cuestiones tratadas en ellas. De todas formas, la física del CSIC no se agota aquí. En esta misma área del conocimiento, tampoco puedes perderte las charlas del Instituto de Física Fundamental (IFF-CSIC), que se ocupan de temas como la antimateria, los mitos de la física cuántica o la computación cuántica.

La investigadora Laura López-Mascaraque, del Instituto Cajal (IC-CSIC), habla de la ruta de los aromas de la nariz al cerebro en el ciclo ‘¿Qué sabemos de?’.

Para saber de todo

Para quienes no tengan tan definida una temática de interés, el ciclo Jam Science ofrece la oportunidad de ver a investigadores e investigadores de perfil muy diverso hablando de su trabajo en un ambiente muy distendido: nada más y nada menos que un bar. Organizada por la científica del CSIC Carmen Fernández, esta iniciativa ha abordado cuestiones como el enigma de los Neandertales, el posible origen extraterrestre de la vida en nuestro planeta, la exploración antártica o la importancia de las vacunas. Los vídeos de estas charlas están disponibles en los canales de Youtube DC SciCommAgora Mundi Ciencia.

Otro ciclo de contenido científico amplio que te permitirá aumentar tus conocimientos son las Friday Talks. ‘Música y neurociencia’, ‘Un nuevo océano en la era del plástico’ o ‘Gatos y tigres… ¿bajo el mar?’ son títulos de algunas de las intervenciones recogidas por esta propuesta del Instituto de Ciencias del Mar (ICM-CSIC).

Y aún hay más. ¿Qué somos capaces de hacer editando genes? ¿Cómo sabe el cerebro lo que la nariz huele? ¿Se va a convertir la Comunidad Valenciana en un desierto? Estos interrogantes sirven de partida a tres de las conferencias del ciclo ‘¿Qué sabemos de?’ con el que la Delegación del CSIC en Valencia te propone indagar en las claves científicas del bienestar.

Los Neandertales son el eje de esta charla de Antonio Rosas, del MNCN-CSIC, en el ciclo Jam Science.

Cambio climático y geología

Volviendo a temáticas más específicas, el investigador del Museo Nacional de Ciencias Naturales (MNCN-CSIC) Fernando Valladares te invita a reflexionar sobre el cambio climático y los desafíos que plantea en su serie de vídeos La salud de la humanidad, en la que intercala conferencias con varias piezas informativas de elaboración propia. Y en una línea similar, Daniel García-Castellanos, del Instituto de Ciencias de la Tierra Jaume Almera (ICTJA-CSIC), comparte su pasión por la geología en sus charlas sobre megainundaciones, tectónica de placas y erosión del suelo.

Y para terminar, puedes darte una vuelta por los ciclos Demografía hoy y ¿Qué sabemos del arte rupestre?, así como los seminarios de la Estación Biológica de Doñana. Estos vídeos, de contenido algo más especializado que los anteriores, te permitirán profundizar en las cuestiones que tratan.

Como ves, tienes muchas conferencias para elegir. ¿Por cuál quieres empezar?

Si quieres conocer más recursos del CSIC para aprender ciencia desde casa, pincha aquí.

Cometas: el terror que vino del cielo

Por Montserrat Villar (CSIC)*

Concebidos como profetas de la muerte, los cometas han inspirado terror en muchas culturas a lo largo de más de veinte siglos. Aparecían de pronto y se mantenían en el cielo durante semanas o incluso meses, perturbando su armonía. Se consideraban portadores de grandes desventuras: lluvias de sangre, animales nacidos con dos cabezas, enfermedades mortales… Una larga lista de horrores fue atribuida a los cometas hasta el Renacimiento. El pavor que causaban impulsó su observación, registro y clasificación para tratar de descifrar su significado y prepararse para las fatalidades que anunciaban.

China, siglo II antes de nuestra era. El aristócrata y político Li Cang, su esposa Xin Zhui y su hijo renacen tras la muerte y emprenden el viaje hacia la inmortalidad. Más de 2000 años después, en la década de 1970, se descubren sus tumbas en el yacimiento arqueológico de Mawangdui. Entre los miles de objetos encontrados, se halla un delicado lienzo de seda manuscrito. Contiene los dibujos de alrededor de 30 cometas, cada uno acompañado por un texto breve que previene sobre el mal concreto que causará (hambruna, derrota en una batalla, epidemia…).

En 1587 se publicaba el manuscrito Libro sobre cometas, con hermosas ilustraciones. El texto, anónimo, describe la materia de los cometas, su conexión con los planetas y su significado según la forma, color y posición. Así, cuando el cometa Aurora aparece sobre oriente habrá sequía, incendios y guerra. En la ilustración, una ciudad es devastada por las llamas bajo su auspicio sangriento. El resplandor de la conflagración ilumina la escena, mientras el brillo de Aurora se refleja en las nubes. El artista, por tanto, identifica los cometas como fenómenos atmosféricos. Diez años antes de la edición de este libro, el Gran Cometa de 1577 apareció en los cielos de Europa asombrando a sus gentes durante semanas. Tras estudiar sus movimientos, el astrónomo danés Tycho Brahe confirmó que se trataba de un acontecimiento celeste situado mucho más allá de la luna, y no de un fenómeno atmosférico, como creían numerosos eruditos de la época.

A principios del siglo XIV un joven pintor florentino rompía con la tradición. Cumpliendo el encargo de decorar el interior de la capilla de los Scrovegni en Pádova (Italia), Giotto de Bondone cubrió sus paredes de maravillosos frescos referentes a la vida de Jesús y de la Virgen María. En La adoración de los Reyes Magos representa la estrella de Belén como un cometa. Es probable que el artista viera el cometa Halley en 1301 y se inspirara en su aspecto. En este caso el mensaje es de esperanza: Cristo ha venido a salvar el mundo. Seis siglos después, en 1985, la Agencia Espacial Europea (ESA) lanzó la misión Giotto, con cuyo nombre rendía tributo al artista. Se acercó a unos 600 kilómetros del cometa Halley, del que obtuvo imágenes espectaculares.

En octubre de 1858 el artista escocés William Dyce pasó unos días de descanso en Pegwell Bay, un popular lugar de vacaciones en la Inglaterra de la Reina Victoria. En su obra Pegwell Bay, Kent – Recuerdo del 5 de Octubre de 1858, el artista representa una escena entrañable en la que su familia pasea por la playa mientras recoge piedras y conchas. El esbozo apenas perceptible del cometa Donati descubierto ese año se aprecia en el cielo de la tarde. Es un elemento más del paisaje, ya no simboliza desgracias venideras: en el siglo XIX los cometas habían perdido su aura de terror. Desde el siglo XVII, las investigaciones de científicos como Edmund Halley habían ido desenmascarando la inocuidad de estos astros. Su significado en la obra de Dyce es aún más profundo: ese trazo sutil en el cielo sugiere que la existencia del ser humano es efímera, casi instantánea.

Obra de la artista rusa Ekaterina Smirnova

Obra de la artista rusa Ekaterina Smirnova

Comenzaba el año 2015 cuando la artista rusa Ekaterina Smirnova aprendía a producir agua pesada mediante electrólisis. Quería conseguir una composición similar a la hallada unos meses antes en forma de hielo en el cometa 67P/Churyumov–Gerasimenko por la misión Rosetta-Philae de la ESA. Con esta agua, Smirnova creó una serie de acuarelas de considerables dimensiones a partir de las imágenes del cometa obtenidas por la exitosa misión. Además, utilizó pigmentos oscuros mezclados a mano para recrear el bajo albedo (capacidad reflectora) de la superficie del cometa. Smirnova se sumerge en la ciencia para crear una obra bella e inspiradora, retrato de un astro distante y frío.

Decía Séneca en sus Cuestiones Naturales en el siglo I: «¡Tan natural es admirar lo nuevo más que lo grande! Lo mismo acontece con los cometas. Si se presenta alguno de estos cuerpos inflamados con forma rara y desacostumbrada, todos quieren saber lo que es; se olvida todo lo demás para ocuparse de él; ignórase si se debe admirar o temblar, porque no faltan gentes que difunden el terror, deduciendo de estos hechos espantosos presagios”. Dos mil años después, el mensaje cifrado de los cometas, esos ‘misteriosos’ cuerpos celestes compuestos por hielo, polvo y rocas que orbitan alrededor del Sol, nos habla de mundos primitivos y helados, del origen del Sistema Solar e incluso, quizás, de la propia vida.

 

* Montserrat Villar es investigadora del Centro de Astrobiología (CSIC-INTA). Coordina ‘Cultura con C de Cosmos’, un proyecto que surge del diálogo entre el estudio del universo y su reflejo en las diferentes manifestaciones artísticas a lo largo de la historia.

Canibalismo… y otras formas de interacción galáctica

Por Mariano Moles y Mar Gulis (CSIC)*

Las galaxias son sistemas de estrellas, gas y polvo encerrados en un enorme halo de materia oscura. La mayoría de ellas forman sistemas múltiples en los que viven y evolucionan. De hecho, es complicado encontrar galaxias verdaderamente aisladas, es decir, que hayan evolucionado fuera de la influencia de otras, al menos durante los últimos dos mil millones de años. La interacción de las galaxias con otras del entorno, aun si esta no es violenta ni destructiva, juega un papel esencial en sus propiedades.

Vamos a considerar tres situaciones que nos permiten visualizar, brevemente, lo que puede significar esta interacción gravitatoria para la evolución de las galaxias.

Interacción secular

En las regiones externas de los cúmulos de galaxias o de grupos dispersos, la interacción entre galaxias no es en general violenta sino que va actuando a lo largo del tiempo, produciendo transformaciones paulatinas. Incluso las galaxias que están en situación de interacción suave presentan propiedades claramente distintas a las de las galaxias aisladas en las masas, los tamaños e incluso los colores fotométricos. Las galaxias aisladas son más pequeñas, menos masivas y más azuladas.

Galaxy Cluster Abell 1689. Los cúmulos de galaxias, en tanto que entidades gobernadas por la interacción gravitatoria, son lugares ideales para estudiar la evolución de las galaxias bajo los efectos de esa interacción. / hubblesite

Galaxy Cluster Abell 1689. Los cúmulos de galaxias, en tanto que entidades gobernadas por la interacción gravitatoria, son lugares ideales para estudiar la evolución de las galaxias bajo los efectos de esa interacción. / hubblesite

Choques de galaxias

Aunque no es muy frecuente, en los cúmulos también se producen agrupamientos y hasta colisiones destructivas de galaxias. Esto suele ocurrir en las etapas iniciales de la formación de la parte central del cúmulo. Pero hay casos, como el de la galaxia IC 1182, en los que la colisión de dos galaxias se produce en etapas posteriores.

¿Qué sucede en estas colisiones galácticas? Sabemos que las estrellas por su lado y la materia oscura por el suyo solo responden a las fuerzas gravitatorias. Además, lo que podríamos llamar gas de estrellas, es decir, el conjunto de todas las estrellas con sus velocidades respectivas, es de muy baja densidad. En efecto, la distancia media entre dos estrellas es más de un millón de veces superior al tamaño medio de estas. De modo que la probabilidad de colisión entre estrellas de una galaxia es, por lo general, muy baja.

Cuando dos galaxias colisionan, sus respectivos gases de estrellas pueden pasar uno a través del otro casi inalterados salvo por efectos de larga escala cuando una de ellas es capturada por otra y empieza a orbitar en espiral a su alrededor. Entonces pueden producirse largas colas o apéndices que se extienden a gran distancia de la galaxia y que evidencian la interacción. También el gas puede ser arrancado del cuerpo de la galaxia y formar apéndices y estructuras de gran escala. Magníficas muestras de esos procesos son la galaxia que se denomina, por su forma, del renacuajo (Tadpole Galaxy), catalogada como NGC 4676; y la galaxia llamada de los ratones (Mice Galaxy).

La galaxia IC 1182 está ya en una fase avanzada del proceso de fusión. La larga cola de marea atestigua la violencia del choque. / eso

La galaxia IC 1182 está en una fase avanzada del proceso de fusión. La larga cola de marea atestigua la violencia del choque. / eso.org

Por otra parte, la interacción violenta altera fuertemente el ritmo de formación estelar de una galaxia y provoca una aceleración notable de su evolución. Quizá uno de los ejemplos más espectaculares de este proceso es el que puede apreciarse en la galaxia de las Antenas. La extensión total abarcada por las dos antenas es de casi cuatro veces la dimensión de nuestra Galaxia (Vía Láctea). En la zona central capturada por el telescopio espacial Hubble se observa una intensísima formación estelar, con más de 1.000 cúmulos jóvenes de estrellas.

El resultado final de esas grandes colisiones es una única galaxia de forma esferoidal, relajada y exhausta, evolucionando tranquilamente a medida que sus estrellas jóvenes desaparecen y las demás van envejeciendo. A veces ocurre que las colisiones no sólo dan lugar a nuevas estrellas, sino también a nuevas galaxias que se van construyendo en las colas de marea o en los aledaños de la zona más directamente afectada por la interacción. Estas galaxias, llamadas enanas de marea, por producirse en esas situaciones, se han detectado en el apéndice de IC1182 o en las colas producidas en el Quinteto de Stephan.

Canibalismo galáctico

Cuando una de las galaxias que interaccionan es mucho mayor que la otra puede ocurrir que la segunda acabe siendo engullida por la primera, sin que se produzcan los fenómenos que acabamos de ilustrar, propios de colisiones entre dos galaxias más o menos similares. Los signos de este canibalismo galáctico son mucho menos espectaculares y difíciles de detectar. Por eso el estudio de este fenómeno y su importancia para la evolución de las galaxias es reciente.

Simulación por ordenador del proceso de canibalismo: una galaxia enana está siendo desorganizada para ser luego engullida por una galaxia como la Vía Láctea. / astro.virginia.edu

Simulación por ordenador del proceso de canibalismo: una galaxia enana está siendo desorganizada para ser luego engullida por una galaxia como la Vía Láctea. / astro.virginia.edu

En nuestro Grupo Local de galaxias hay tan solo tres masivas: Andrómeda, la Vía Láctea y M33 (mucho menos masiva que las otras dos), mientras que existen cerca de 50 galaxias enanas, poco masivas, pequeñas, meros satélites de las dominantes. A lo largo de la evolución del sistema puede ocurrir que una de esas galaxias sea atrapada definitivamente por una de las masivas y acabe siendo tragada por ella. Las estrellas de la galaxia canibalizada van a constituir una corriente estelar en la galaxia grande, que solo con muy sofisticados medios se puede detectar, medir y caracterizar. Aunque de momento solo podemos conjeturarlo, ese parece ser el caso de la galaxia enana Sagitario, que podría estar siendo engullida por nuestra galaxia.

 

* Este texto está basado en contenidos del libro de la colección ¿Qué sabemos de? (Editorial CSIC – Los Libros de la Catarata) ‘El jardín de las galaxias’, escrito por Mariano Moles.

La misión InSight, con un instrumento español a bordo, llega a Marte este lunes

Por Juan Ángel Vaquerizo (CSIC-INTA)*

Después de un vertiginoso viaje de apenas seis meses y medio, el próximo lunes 26 de noviembre se producirá la llegada a Marte de la misión InSight de la NASA. En España estamos de enhorabuena porque a bordo de esta nave viaja el instrumento TWINS, un conjunto de sensores medioambientales desarrollado por el Centro de Astrobiología (CSIC-INTA).

InSight en Marte

Interpretación artística de la misión InSight con todos sus instrumentos desplegados en la superficie de Marte. Bajo el módulo principal a la izquierda, el insturmento SEIS; a la derecha, HP3. TWINS son las dos pequeñas estructuras que sobresalen en forma de L invertida a cada lado de la plataforma superior. /NASA-JPL Caltech

InSight (Interior exploration using Seismic Investigations, Geodesy and Heat Transport; Exploración interior mediante investigaciones sísmicas, geodesia y transporte de calor) será la novena misión de la NASA que aterrice en la superficie del planeta rojo. Está basada en el diseño de la nave y el módulo de aterrizaje de la misión Phoenix, que llegó con éxito a Marte en 2008.

En esta ocasión, se trata de un explorador que estudiará a lo largo de un año marciano (dos años terrestres) la estructura y los procesos geofísicos interiores de Marte, lo que ayudará a entender cómo se formaron los planetas rocosos del Sistema Solar (Mercurio, Venus, la Tierra y Marte) hace más de 4.000 millones de años. El lugar elegido para el aterrizaje es una extensión lisa y plana del hemisferio norte marciano y cercana al ecuador denominada Elysium Planitia; un lugar relativamente seguro para aterrizar y suficientemente brillante para alimentar los paneles solares que proveen de energía a la misión.

Marte es el candidato ideal para este estudio. Es lo bastante grande como para haber sufrido la mayor parte de los procesos iniciales que dieron forma a los planetas rocosos, pero es también lo suficientemente pequeño como para haber conservado las huellas de esos procesos geofísicos hasta la actualidad; al contrario que la Tierra, que las ha perdido debido a la tectónica de placas y los movimientos de fluidos en el manto. Esas huellas están presentes en el grosor de la corteza y la estratificación global, el tamaño y la densidad del núcleo, así como en la estratificación y densidad del manto. El ritmo al que el calor escapa de su interior proporciona, además, una valiosa información sobre la energía que controla los procesos geológicos.

Formación de un planeta rocoso

A medida que se forma un planeta rocoso, el material que lo compone se une en un proceso conocido como ‘acreción’. Su tamaño y temperatura aumentan y se incrementa la presión en su núcleo. La energía de este proceso inicial hace que los elementos del planeta se calienten y se fundan. Al fundirse, se forman capas y se separan. Los elementos más pesados se hunden en la parte inferior, los más ligeros flotan en la parte superior. Este material luego se separa en capas a medida que se enfría, lo que se conoce como ‘diferenciación’. Un planeta completamente formado emerge lentamente, con una corteza como capa superior, el manto en el medio y un núcleo de hierro sólido. /NASA-JPL Caltech

Un instrumento español a bordo

La instrumentación científica de la misión está compuesta por cuatro instrumentos. El primero es el SEIS (Experimento sísmico para la estructura interior), un sismógrafo de la Agencia Espacial Francesa que registrará las ondas sísmicas que viajan a través de la estructura interior del planeta. Su estudio permitirá averiguar la causa que las ha originado, probablemente un terremoto marciano o el impacto de un meteorito.

El segundo es el HP3 (Conjunto de sensores para el estudio del flujo de calor y propiedades físicas), una sonda-taladro de la Agencia Espacial Alemana que perforará hasta los cinco metros de profundidad e irá midiendo, a diferentes niveles, la cantidad de calor que fluye desde el interior del planeta. Sus observaciones arrojarán luz sobre si la Tierra y Marte están hechos de la misma materia.

Además, está el instrumento RISE (Experimento para el estudio de la rotación y la estructura interior) del Laboratorio de Propulsión a Chorro de la NASA, que proporcionará información sobre el núcleo tomando medidas del bamboleo del eje rotación del planeta.

Y, por último, lleva a bordo el instrumento TWINS (Sensores de viento y temperatura para la misión InSight) proporcionado por el Centro de Astrobiología, adscrito al Consejo Superior de Investigaciones Científicas (CSIC) y el Instituto Nacional de Técnica Aeroespacial (INTA). TWINS cuenta con dos sensores para caracterizar la dirección y velocidad del viento y dos sensores de temperatura del aire capaces de obtener una medida por segundo de ambas variables.

Montaje InSight

Montaje y prueba de los equipos en Denver. /NASA-JPL Caltech-Lockheed Martin

Las tareas que debe desempeñar TWINS son muy importantes para los objetivos de InSight. Durante la fase inicial de la misión, los primeros 40-60 soles (días marcianos), TWINS caracterizará el entorno térmico y los patrones de viento de la zona de aterrizaje para que el equipo científico a cargo de SEIS y HP3 pueda establecer las mejores condiciones para realizar el despliegue de los instrumentos en la superficie marciana.

Una vez desplegados los instrumentos principales en la superficie, TWINS se encargará de monitorizar los vientos, con el objetivo de descartar falsos positivos en los eventos sísmicos detectados por el instrumento SEIS.

Por último, los datos medioambientales obtenidos por TWINS se compararán y correlacionarán con los datos ambientales registrados por REMS, la otra estación medioambiental española en Marte, a bordo del rover Curiosity de la NASA en el cráter Gale. Esto contribuirá a caracterizar en mayor detalle los procesos atmosféricos en Marte y mejorar los modelos ambientales existentes a diferentes escalas: procesos eólicos, mareas atmosféricas diurnas, variaciones estacionales, circulación en la meso-escala, vientos catabáticos/anabáticos y remolinos (dust devils).

En este enlace de NASA TV se podrá seguir en directo el aterrizaje, a partir de las 20:00 horas del lunes 26 de noviembre de 2018.

 

* Juan Ángel Vaquerizo es el responsable de la Unidad de Cultura Científica del Centro de Astrobiología (CSIC-INTA). 

¿Qué tiene que ver la gravedad con la vida en el universo?

Por Carlos Barceló Serón (CSIC)*

La gravitación, el fenómeno por el cual los objetos con masa se atraen entre sí, parece estar detrás de la vitalidad que muestra el universo, es decir, de su capacidad para generar vida.

Remolinos de polvo interestelar en la nebulosa del Águila captados por el telescopio Hubble. Son conocidos como los “pilares de la creación” de la nebulosa, por ser un lugar donde nacen estrellas. / NASA-ESA.

Así ocurre porque la vida tal como la conocemos requiere para su existencia de una gran variedad de elementos químicos. Para que esta complejidad química se haya producido, fue necesario formar primero un ecosistema de estrellas. Es en estos inmensos y potentes hornos donde se generaron los elementos químicos complejos (todos salvo los elementos primordiales generados en fases del universo temprano); incluido el carbono, que es fundamental en los compuestos orgánicos. Es más, algunos elementos pesados solo pudieron formarse en explosiones de tipo nova, supernova o en las colisiones de estrellas de neutrones.

Esto quiere decir que únicamente un medio suficientemente procesado por el nacimiento y muerte de generaciones de estrellas es un terreno abonado para la vida. Y la fuerza suprema responsable de la formación de estrellas es la gravedad. Es ella la que tiende a compactar la materia, aumentando su densidad hasta permitir las reacciones termonucleares responsables del enriquecimiento químico.

Sin embargo, existe otro aspecto todavía más importante que relaciona biología y gravedad, considerada una de las cuatro interacciones físicas fundamentales. Es el hecho de que la gravedad, a través de la generación de estrellas, abre una puerta entrópica en el universo.

¿Qué quiere decir esto? Para entenderlo, hay que saber que la entropía es un concepto fundamental en física de sistemas complejos (gases, fluidos, etc., en general, sistemas con muchos componentes). En la descripción propuesta por Ludwig Boltzmann, la entropía de un sistema es una medida de cómo de ordinaria es la configuración en la que se encuentra entre todas las configuraciones que el sistema podría adoptar. Todos los sistemas físicos conocidos satisfacen la segunda ley de la termodinámica, la cual nos dice que todo sistema evoluciona de lo singular a lo ordinario, es decir, que su entropía y su desorden siempre aumentan.

Restos de una explosión estelar en la nebulosa de Orión. /ALMA (ESO-NAOJ-NRAO), J. Bally-H. Drass et al., via Wikimedia Commons.

Sin embargo, la evolución biológica parece ir a primera vista en contra de esta ley, ya que aparentemente produce de forma progresiva estructuras más organizadas, más singulares. No obstante, esta violación es solo una apariencia y, de hecho, la segunda ley de la termodinámica no se vulnera aquí tampoco. Lo que sucede es que cada disminución de entropía de un sistema vivo se ve compensada con aumentos de entropía en otras partes del sistema total. Nosotros y todos los seres vivos consumimos energía empaquetada de forma singular para devolverla al sistema en forma ordinaria. Al contrario de la visión popular, no funcionamos a base de consumir energía como si de hacerla desaparecer se tratara; nuestros procesos vitales conservan la cantidad de energía. Funcionamos a base de desorganizar la energía. Para poder hacer esto necesitamos que haya fuentes de energía susceptibles de ser desorganizadas. Y un foco caliente –una estrella– en un universo frío proporciona precisamente esta situación.

Todo apunta a que el universo comenzó su andadura a partir de un estado extremadamente singular y que este hecho ha permitido que en la actualidad contenga tal riqueza estructural. Aunque la conexión exacta todavía se nos escape, deberíamos retener la idea de que la gravedad guarda la clave de lo que podría ser el más singular de todos los hechos: el nacimiento entrópico del universo.

 

* Carlos Barceló Serón es investigador del CSIC en el Instituto de Astrofísica de Andalucía, autor del libro de divulgación La gravedad (CSIC-Catarata) e impulsor del proyecto audiovisual ‘Territorio gravedad’.

¿Cómo se imaginaban la Luna en el siglo XIX?

Fotografía de un molde de escayola construido por Nasmyth recreando la región del cráter Copérnico. Publicada en ‘La Luna: considerada como un planeta, un mundo y un satélite’ (1874).

Fotografía de un molde de escayola construido por Nasmyth recreando la región del cráter Copérnico. Publicada en La Luna: considerada como un planeta, un mundo y un satélite (1874).

Por Montserrat Villar y Mar Gulis (CSIC)*

Mira esta fotografía de un cráter lunar. ¿Dirías que es real o que se trata de una maqueta? Publicada en 1874 por el ingeniero mecánico e inventor James Nasmyth (1808-1890) y el astrónomo James Carpenter (1840-1899), la imagen solo puede ser una recreación…  aunque es sorprendentemente buena para la época.

Pese a que por aquel entonces hacía varias décadas que se habían empezado a obtener fotografías de nuestro satélite, la calidad no era suficiente para resaltar los detalles de su superficie con la nitidez que los autores deseaban. En lugar de esto, Nasmyth construyó moldes de escayola del relieve lunar inspirados en observaciones telescópicas realizadas junto a Carpenter. Los moldes fueron iluminados con diferentes intensidades y desde distintos ángulos, controlando las condiciones con exquisito cuidado, y posteriormente fotografiados.

Hoy en día algunas de esas imágenes siguen dando a primera vista la impresión de haber sido tomadas in situ. Pero hay más. Nasmyth y Carpenter no limitaron su recreación de la Luna a estos moldes –que en la actualidad se conservan en el Museo de la Ciencia de Londres–. En su libro La luna: considerada como un planeta, un mundo y un satélite, donde se incluyeron las fotografías, los autores trataron de describir otras sensaciones que experimentaría en la Luna un ser humano que encontrara un método para poder respirar.

Molde de escayola de una porción de la superficie lunar realizado por Nasmyth. / Museo de Ciencias , Londre (CC-BY-NC-ND-2.0.)

Molde de escayola de una porción de la superficie lunar realizado por Nasmyth. / Museo de Ciencias , Londres (CC-BY-NC-ND-2.0.).

Detallaron, por ejemplo, los efectos de la ausencia de aire. Incluso cuando el Sol o la Tierra brillaran altos sobre el horizonte, al no haber difusión de la luz como ocurre en nuestra atmósfera, se vería un cielo totalmente negro salpicado por las luces de estrellas y planetas, que se apreciarían con mayor nitidez que en cualquier noche terrestre.

Nasmyth y Carpenter también imaginaron los cambios en el paisaje producidos por los marcados juegos de luces y sombras sobre el relieve lunar; o los contrastes de color debidos a la composición de la superficie, donde diferentes minerales darían coloraciones especiales y únicas a la escena.

Además recrearon el espectáculo de un eclipse solar producido por la Tierra. En la ilustración realizada por Nasmyth,  se aprecia el Sol en la distancia eclipsado por nuestro planeta, tal y como lo vería un observador en  la Luna. Su forma empieza a despuntar detrás del círculo terrestre, que tiene un tamaño aparente unas cuatro veces mayor. La corona aparece impresionante. La luz solar atraviesa la fina capa de la atmósfera de nuestro planeta rodeándolo de un halo brillante y rojizo que ilumina un paisaje montañoso y salvaje donde reina la desolación.

El Sol eclipsado por la Tierra visto desde la Luna. / Ilustración de James Nasmyth.

El Sol eclipsado por la Tierra visto desde la Luna. / Ilustración de James Nasmyth.

Junto a sugerentes imágenes, en el libro también hay espacio para el “mortal silencio que reina en la luna”: “Mil cañones podrían ser disparados y mil tambores golpeados en aquel mundo sin aire, pero ningún sonido saldría de ellos. Labios que podrían temblar, lenguas que intentarían hablar, pero ninguna de sus acciones rompería el silencio de la escena lunar”.

 

* Montserrat Villar es investigadora en el Centro de Astrobiología (CSIC-INTA) en el grupo de Astrofísica extragaláctica.