Entradas etiquetadas como ‘Astronomía’

Cometas: el terror que vino del cielo

Por Montserrat Villar (CSIC)*

Concebidos como profetas de la muerte, los cometas han inspirado terror en muchas culturas a lo largo de más de veinte siglos. Aparecían de pronto y se mantenían en el cielo durante semanas o incluso meses, perturbando su armonía. Se consideraban portadores de grandes desventuras: lluvias de sangre, animales nacidos con dos cabezas, enfermedades mortales… Una larga lista de horrores fue atribuida a los cometas hasta el Renacimiento. El pavor que causaban impulsó su observación, registro y clasificación para tratar de descifrar su significado y prepararse para las fatalidades que anunciaban.

China, siglo II antes de nuestra era. El aristócrata y político Li Cang, su esposa Xin Zhui y su hijo renacen tras la muerte y emprenden el viaje hacia la inmortalidad. Más de 2000 años después, en la década de 1970, se descubren sus tumbas en el yacimiento arqueológico de Mawangdui. Entre los miles de objetos encontrados, se halla un delicado lienzo de seda manuscrito. Contiene los dibujos de alrededor de 30 cometas, cada uno acompañado por un texto breve que previene sobre el mal concreto que causará (hambruna, derrota en una batalla, epidemia…).

En 1587 se publicaba el manuscrito Libro sobre cometas, con hermosas ilustraciones. El texto, anónimo, describe la materia de los cometas, su conexión con los planetas y su significado según la forma, color y posición. Así, cuando el cometa Aurora aparece sobre oriente habrá sequía, incendios y guerra. En la ilustración, una ciudad es devastada por las llamas bajo su auspicio sangriento. El resplandor de la conflagración ilumina la escena, mientras el brillo de Aurora se refleja en las nubes. El artista, por tanto, identifica los cometas como fenómenos atmosféricos. Diez años antes de la edición de este libro, el Gran Cometa de 1577 apareció en los cielos de Europa asombrando a sus gentes durante semanas. Tras estudiar sus movimientos, el astrónomo danés Tycho Brahe confirmó que se trataba de un acontecimiento celeste situado mucho más allá de la luna, y no de un fenómeno atmosférico, como creían numerosos eruditos de la época.

A principios del siglo XIV un joven pintor florentino rompía con la tradición. Cumpliendo el encargo de decorar el interior de la capilla de los Scrovegni en Pádova (Italia), Giotto de Bondone cubrió sus paredes de maravillosos frescos referentes a la vida de Jesús y de la Virgen María. En La adoración de los Reyes Magos representa la estrella de Belén como un cometa. Es probable que el artista viera el cometa Halley en 1301 y se inspirara en su aspecto. En este caso el mensaje es de esperanza: Cristo ha venido a salvar el mundo. Seis siglos después, en 1985, la Agencia Espacial Europea (ESA) lanzó la misión Giotto, con cuyo nombre rendía tributo al artista. Se acercó a unos 600 kilómetros del cometa Halley, del que obtuvo imágenes espectaculares.

En octubre de 1858 el artista escocés William Dyce pasó unos días de descanso en Pegwell Bay, un popular lugar de vacaciones en la Inglaterra de la Reina Victoria. En su obra Pegwell Bay, Kent – Recuerdo del 5 de Octubre de 1858, el artista representa una escena entrañable en la que su familia pasea por la playa mientras recoge piedras y conchas. El esbozo apenas perceptible del cometa Donati descubierto ese año se aprecia en el cielo de la tarde. Es un elemento más del paisaje, ya no simboliza desgracias venideras: en el siglo XIX los cometas habían perdido su aura de terror. Desde el siglo XVII, las investigaciones de científicos como Edmund Halley habían ido desenmascarando la inocuidad de estos astros. Su significado en la obra de Dyce es aún más profundo: ese trazo sutil en el cielo sugiere que la existencia del ser humano es efímera, casi instantánea.

Obra de la artista rusa Ekaterina Smirnova

Obra de la artista rusa Ekaterina Smirnova

Comenzaba el año 2015 cuando la artista rusa Ekaterina Smirnova aprendía a producir agua pesada mediante electrólisis. Quería conseguir una composición similar a la hallada unos meses antes en forma de hielo en el cometa 67P/Churyumov–Gerasimenko por la misión Rosetta-Philae de la ESA. Con esta agua, Smirnova creó una serie de acuarelas de considerables dimensiones a partir de las imágenes del cometa obtenidas por la exitosa misión. Además, utilizó pigmentos oscuros mezclados a mano para recrear el bajo albedo (capacidad reflectora) de la superficie del cometa. Smirnova se sumerge en la ciencia para crear una obra bella e inspiradora, retrato de un astro distante y frío.

Decía Séneca en sus Cuestiones Naturales en el siglo I: “¡Tan natural es admirar lo nuevo más que lo grande! Lo mismo acontece con los cometas. Si se presenta alguno de estos cuerpos inflamados con forma rara y desacostumbrada, todos quieren saber lo que es; se olvida todo lo demás para ocuparse de él; ignórase si se debe admirar o temblar, porque no faltan gentes que difunden el terror, deduciendo de estos hechos espantosos presagios”. Dos mil años después, el mensaje cifrado de los cometas, esos ‘misteriosos’ cuerpos celestes compuestos por hielo, polvo y rocas que orbitan alrededor del Sol, nos habla de mundos primitivos y helados, del origen del Sistema Solar e incluso, quizás, de la propia vida.

 

* Montserrat Villar es investigadora del Centro de Astrobiología (CSIC-INTA). Coordina ‘Cultura con C de Cosmos’, un proyecto que surge del diálogo entre el estudio del universo y su reflejo en las diferentes manifestaciones artísticas a lo largo de la historia.

Canibalismo… y otras formas de interacción galáctica

Por Mariano Moles y Mar Gulis (CSIC)*

Las galaxias son sistemas de estrellas, gas y polvo encerrados en un enorme halo de materia oscura. La mayoría de ellas forman sistemas múltiples en los que viven y evolucionan. De hecho, es complicado encontrar galaxias verdaderamente aisladas, es decir, que hayan evolucionado fuera de la influencia de otras, al menos durante los últimos dos mil millones de años. La interacción de las galaxias con otras del entorno, aun si esta no es violenta ni destructiva, juega un papel esencial en sus propiedades.

Vamos a considerar tres situaciones que nos permiten visualizar, brevemente, lo que puede significar esta interacción gravitatoria para la evolución de las galaxias.

Interacción secular

En las regiones externas de los cúmulos de galaxias o de grupos dispersos, la interacción entre galaxias no es en general violenta sino que va actuando a lo largo del tiempo, produciendo transformaciones paulatinas. Incluso las galaxias que están en situación de interacción suave presentan propiedades claramente distintas a las de las galaxias aisladas en las masas, los tamaños e incluso los colores fotométricos. Las galaxias aisladas son más pequeñas, menos masivas y más azuladas.

Galaxy Cluster Abell 1689. Los cúmulos de galaxias, en tanto que entidades gobernadas por la interacción gravitatoria, son lugares ideales para estudiar la evolución de las galaxias bajo los efectos de esa interacción. / hubblesite

Galaxy Cluster Abell 1689. Los cúmulos de galaxias, en tanto que entidades gobernadas por la interacción gravitatoria, son lugares ideales para estudiar la evolución de las galaxias bajo los efectos de esa interacción. / hubblesite

Choques de galaxias

Aunque no es muy frecuente, en los cúmulos también se producen agrupamientos y hasta colisiones destructivas de galaxias. Esto suele ocurrir en las etapas iniciales de la formación de la parte central del cúmulo. Pero hay casos, como el de la galaxia IC 1182, en los que la colisión de dos galaxias se produce en etapas posteriores.

¿Qué sucede en estas colisiones galácticas? Sabemos que las estrellas por su lado y la materia oscura por el suyo solo responden a las fuerzas gravitatorias. Además, lo que podríamos llamar gas de estrellas, es decir, el conjunto de todas las estrellas con sus velocidades respectivas, es de muy baja densidad. En efecto, la distancia media entre dos estrellas es más de un millón de veces superior al tamaño medio de estas. De modo que la probabilidad de colisión entre estrellas de una galaxia es, por lo general, muy baja.

Cuando dos galaxias colisionan, sus respectivos gases de estrellas pueden pasar uno a través del otro casi inalterados salvo por efectos de larga escala cuando una de ellas es capturada por otra y empieza a orbitar en espiral a su alrededor. Entonces pueden producirse largas colas o apéndices que se extienden a gran distancia de la galaxia y que evidencian la interacción. También el gas puede ser arrancado del cuerpo de la galaxia y formar apéndices y estructuras de gran escala. Magníficas muestras de esos procesos son la galaxia que se denomina, por su forma, del renacuajo (Tadpole Galaxy), catalogada como NGC 4676; y la galaxia llamada de los ratones (Mice Galaxy).

La galaxia IC 1182 está ya en una fase avanzada del proceso de fusión. La larga cola de marea atestigua la violencia del choque. / eso

La galaxia IC 1182 está en una fase avanzada del proceso de fusión. La larga cola de marea atestigua la violencia del choque. / eso.org

Por otra parte, la interacción violenta altera fuertemente el ritmo de formación estelar de una galaxia y provoca una aceleración notable de su evolución. Quizá uno de los ejemplos más espectaculares de este proceso es el que puede apreciarse en la galaxia de las Antenas. La extensión total abarcada por las dos antenas es de casi cuatro veces la dimensión de nuestra Galaxia (Vía Láctea). En la zona central capturada por el telescopio espacial Hubble se observa una intensísima formación estelar, con más de 1.000 cúmulos jóvenes de estrellas.

El resultado final de esas grandes colisiones es una única galaxia de forma esferoidal, relajada y exhausta, evolucionando tranquilamente a medida que sus estrellas jóvenes desaparecen y las demás van envejeciendo. A veces ocurre que las colisiones no sólo dan lugar a nuevas estrellas, sino también a nuevas galaxias que se van construyendo en las colas de marea o en los aledaños de la zona más directamente afectada por la interacción. Estas galaxias, llamadas enanas de marea, por producirse en esas situaciones, se han detectado en el apéndice de IC1182 o en las colas producidas en el Quinteto de Stephan.

Canibalismo galáctico

Cuando una de las galaxias que interaccionan es mucho mayor que la otra puede ocurrir que la segunda acabe siendo engullida por la primera, sin que se produzcan los fenómenos que acabamos de ilustrar, propios de colisiones entre dos galaxias más o menos similares. Los signos de este canibalismo galáctico son mucho menos espectaculares y difíciles de detectar. Por eso el estudio de este fenómeno y su importancia para la evolución de las galaxias es reciente.

Simulación por ordenador del proceso de canibalismo: una galaxia enana está siendo desorganizada para ser luego engullida por una galaxia como la Vía Láctea. / astro.virginia.edu

Simulación por ordenador del proceso de canibalismo: una galaxia enana está siendo desorganizada para ser luego engullida por una galaxia como la Vía Láctea. / astro.virginia.edu

En nuestro Grupo Local de galaxias hay tan solo tres masivas: Andrómeda, la Vía Láctea y M33 (mucho menos masiva que las otras dos), mientras que existen cerca de 50 galaxias enanas, poco masivas, pequeñas, meros satélites de las dominantes. A lo largo de la evolución del sistema puede ocurrir que una de esas galaxias sea atrapada definitivamente por una de las masivas y acabe siendo tragada por ella. Las estrellas de la galaxia canibalizada van a constituir una corriente estelar en la galaxia grande, que solo con muy sofisticados medios se puede detectar, medir y caracterizar. Aunque de momento solo podemos conjeturarlo, ese parece ser el caso de la galaxia enana Sagitario, que podría estar siendo engullida por nuestra galaxia.

 

* Este texto está basado en contenidos del libro de la colección ¿Qué sabemos de? (Editorial CSIC – Los Libros de la Catarata) ‘El jardín de las galaxias’, escrito por Mariano Moles.

La misión InSight, con un instrumento español a bordo, llega a Marte este lunes

Por Juan Ángel Vaquerizo (CSIC-INTA)*

Después de un vertiginoso viaje de apenas seis meses y medio, el próximo lunes 26 de noviembre se producirá la llegada a Marte de la misión InSight de la NASA. En España estamos de enhorabuena porque a bordo de esta nave viaja el instrumento TWINS, un conjunto de sensores medioambientales desarrollado por el Centro de Astrobiología (CSIC-INTA).

InSight en Marte

Interpretación artística de la misión InSight con todos sus instrumentos desplegados en la superficie de Marte. Bajo el módulo principal a la izquierda, el insturmento SEIS; a la derecha, HP3. TWINS son las dos pequeñas estructuras que sobresalen en forma de L invertida a cada lado de la plataforma superior. /NASA-JPL Caltech

InSight (Interior exploration using Seismic Investigations, Geodesy and Heat Transport; Exploración interior mediante investigaciones sísmicas, geodesia y transporte de calor) será la novena misión de la NASA que aterrice en la superficie del planeta rojo. Está basada en el diseño de la nave y el módulo de aterrizaje de la misión Phoenix, que llegó con éxito a Marte en 2008.

En esta ocasión, se trata de un explorador que estudiará a lo largo de un año marciano (dos años terrestres) la estructura y los procesos geofísicos interiores de Marte, lo que ayudará a entender cómo se formaron los planetas rocosos del Sistema Solar (Mercurio, Venus, la Tierra y Marte) hace más de 4.000 millones de años. El lugar elegido para el aterrizaje es una extensión lisa y plana del hemisferio norte marciano y cercana al ecuador denominada Elysium Planitia; un lugar relativamente seguro para aterrizar y suficientemente brillante para alimentar los paneles solares que proveen de energía a la misión.

Marte es el candidato ideal para este estudio. Es lo bastante grande como para haber sufrido la mayor parte de los procesos iniciales que dieron forma a los planetas rocosos, pero es también lo suficientemente pequeño como para haber conservado las huellas de esos procesos geofísicos hasta la actualidad; al contrario que la Tierra, que las ha perdido debido a la tectónica de placas y los movimientos de fluidos en el manto. Esas huellas están presentes en el grosor de la corteza y la estratificación global, el tamaño y la densidad del núcleo, así como en la estratificación y densidad del manto. El ritmo al que el calor escapa de su interior proporciona, además, una valiosa información sobre la energía que controla los procesos geológicos.

Formación de un planeta rocoso

A medida que se forma un planeta rocoso, el material que lo compone se une en un proceso conocido como ‘acreción’. Su tamaño y temperatura aumentan y se incrementa la presión en su núcleo. La energía de este proceso inicial hace que los elementos del planeta se calienten y se fundan. Al fundirse, se forman capas y se separan. Los elementos más pesados se hunden en la parte inferior, los más ligeros flotan en la parte superior. Este material luego se separa en capas a medida que se enfría, lo que se conoce como ‘diferenciación’. Un planeta completamente formado emerge lentamente, con una corteza como capa superior, el manto en el medio y un núcleo de hierro sólido. /NASA-JPL Caltech

Un instrumento español a bordo

La instrumentación científica de la misión está compuesta por cuatro instrumentos. El primero es el SEIS (Experimento sísmico para la estructura interior), un sismógrafo de la Agencia Espacial Francesa que registrará las ondas sísmicas que viajan a través de la estructura interior del planeta. Su estudio permitirá averiguar la causa que las ha originado, probablemente un terremoto marciano o el impacto de un meteorito.

El segundo es el HP3 (Conjunto de sensores para el estudio del flujo de calor y propiedades físicas), una sonda-taladro de la Agencia Espacial Alemana que perforará hasta los cinco metros de profundidad e irá midiendo, a diferentes niveles, la cantidad de calor que fluye desde el interior del planeta. Sus observaciones arrojarán luz sobre si la Tierra y Marte están hechos de la misma materia.

Además, está el instrumento RISE (Experimento para el estudio de la rotación y la estructura interior) del Laboratorio de Propulsión a Chorro de la NASA, que proporcionará información sobre el núcleo tomando medidas del bamboleo del eje rotación del planeta.

Y, por último, lleva a bordo el instrumento TWINS (Sensores de viento y temperatura para la misión InSight) proporcionado por el Centro de Astrobiología, adscrito al Consejo Superior de Investigaciones Científicas (CSIC) y el Instituto Nacional de Técnica Aeroespacial (INTA). TWINS cuenta con dos sensores para caracterizar la dirección y velocidad del viento y dos sensores de temperatura del aire capaces de obtener una medida por segundo de ambas variables.

Montaje InSight

Montaje y prueba de los equipos en Denver. /NASA-JPL Caltech-Lockheed Martin

Las tareas que debe desempeñar TWINS son muy importantes para los objetivos de InSight. Durante la fase inicial de la misión, los primeros 40-60 soles (días marcianos), TWINS caracterizará el entorno térmico y los patrones de viento de la zona de aterrizaje para que el equipo científico a cargo de SEIS y HP3 pueda establecer las mejores condiciones para realizar el despliegue de los instrumentos en la superficie marciana.

Una vez desplegados los instrumentos principales en la superficie, TWINS se encargará de monitorizar los vientos, con el objetivo de descartar falsos positivos en los eventos sísmicos detectados por el instrumento SEIS.

Por último, los datos medioambientales obtenidos por TWINS se compararán y correlacionarán con los datos ambientales registrados por REMS, la otra estación medioambiental española en Marte, a bordo del rover Curiosity de la NASA en el cráter Gale. Esto contribuirá a caracterizar en mayor detalle los procesos atmosféricos en Marte y mejorar los modelos ambientales existentes a diferentes escalas: procesos eólicos, mareas atmosféricas diurnas, variaciones estacionales, circulación en la meso-escala, vientos catabáticos/anabáticos y remolinos (dust devils).

En este enlace de NASA TV se podrá seguir en directo el aterrizaje, a partir de las 20:00 horas del lunes 26 de noviembre de 2018.

 

* Juan Ángel Vaquerizo es el responsable de la Unidad de Cultura Científica del Centro de Astrobiología (CSIC-INTA). 

¿Qué tiene que ver la gravedad con la vida en el universo?

Por Carlos Barceló Serón (CSIC)*

La gravitación, el fenómeno por el cual los objetos con masa se atraen entre sí, parece estar detrás de la vitalidad que muestra el universo, es decir, de su capacidad para generar vida.

Remolinos de polvo interestelar en la nebulosa del Águila captados por el telescopio Hubble. Son conocidos como los “pilares de la creación” de la nebulosa, por ser un lugar donde nacen estrellas. / NASA-ESA.

Así ocurre porque la vida tal como la conocemos requiere para su existencia de una gran variedad de elementos químicos. Para que esta complejidad química se haya producido, fue necesario formar primero un ecosistema de estrellas. Es en estos inmensos y potentes hornos donde se generaron los elementos químicos complejos (todos salvo los elementos primordiales generados en fases del universo temprano); incluido el carbono, que es fundamental en los compuestos orgánicos. Es más, algunos elementos pesados solo pudieron formarse en explosiones de tipo nova, supernova o en las colisiones de estrellas de neutrones.

Esto quiere decir que únicamente un medio suficientemente procesado por el nacimiento y muerte de generaciones de estrellas es un terreno abonado para la vida. Y la fuerza suprema responsable de la formación de estrellas es la gravedad. Es ella la que tiende a compactar la materia, aumentando su densidad hasta permitir las reacciones termonucleares responsables del enriquecimiento químico.

Sin embargo, existe otro aspecto todavía más importante que relaciona biología y gravedad, considerada una de las cuatro interacciones físicas fundamentales. Es el hecho de que la gravedad, a través de la generación de estrellas, abre una puerta entrópica en el universo.

¿Qué quiere decir esto? Para entenderlo, hay que saber que la entropía es un concepto fundamental en física de sistemas complejos (gases, fluidos, etc., en general, sistemas con muchos componentes). En la descripción propuesta por Ludwig Boltzmann, la entropía de un sistema es una medida de cómo de ordinaria es la configuración en la que se encuentra entre todas las configuraciones que el sistema podría adoptar. Todos los sistemas físicos conocidos satisfacen la segunda ley de la termodinámica, la cual nos dice que todo sistema evoluciona de lo singular a lo ordinario, es decir, que su entropía y su desorden siempre aumentan.

Restos de una explosión estelar en la nebulosa de Orión. /ALMA (ESO-NAOJ-NRAO), J. Bally-H. Drass et al., via Wikimedia Commons.

Sin embargo, la evolución biológica parece ir a primera vista en contra de esta ley, ya que aparentemente produce de forma progresiva estructuras más organizadas, más singulares. No obstante, esta violación es solo una apariencia y, de hecho, la segunda ley de la termodinámica no se vulnera aquí tampoco. Lo que sucede es que cada disminución de entropía de un sistema vivo se ve compensada con aumentos de entropía en otras partes del sistema total. Nosotros y todos los seres vivos consumimos energía empaquetada de forma singular para devolverla al sistema en forma ordinaria. Al contrario de la visión popular, no funcionamos a base de consumir energía como si de hacerla desaparecer se tratara; nuestros procesos vitales conservan la cantidad de energía. Funcionamos a base de desorganizar la energía. Para poder hacer esto necesitamos que haya fuentes de energía susceptibles de ser desorganizadas. Y un foco caliente –una estrella– en un universo frío proporciona precisamente esta situación.

Todo apunta a que el universo comenzó su andadura a partir de un estado extremadamente singular y que este hecho ha permitido que en la actualidad contenga tal riqueza estructural. Aunque la conexión exacta todavía se nos escape, deberíamos retener la idea de que la gravedad guarda la clave de lo que podría ser el más singular de todos los hechos: el nacimiento entrópico del universo.

 

* Carlos Barceló Serón es investigador del CSIC en el Instituto de Astrofísica de Andalucía, autor del libro de divulgación La gravedad (CSIC-Catarata) e impulsor del proyecto audiovisual ‘Territorio gravedad’.

¿Cómo se imaginaban la Luna en el siglo XIX?

Fotografía de un molde de escayola construido por Nasmyth recreando la región del cráter Copérnico. Publicada en ‘La Luna: considerada como un planeta, un mundo y un satélite’ (1874).

Fotografía de un molde de escayola construido por Nasmyth recreando la región del cráter Copérnico. Publicada en La Luna: considerada como un planeta, un mundo y un satélite (1874).

Por Montserrat Villar y Mar Gulis (CSIC)*

Mira esta fotografía de un cráter lunar. ¿Dirías que es real o que se trata de una maqueta? Publicada en 1874 por el ingeniero mecánico e inventor James Nasmyth (1808-1890) y el astrónomo James Carpenter (1840-1899), la imagen solo puede ser una recreación…  aunque es sorprendentemente buena para la época.

Pese a que por aquel entonces hacía varias décadas que se habían empezado a obtener fotografías de nuestro satélite, la calidad no era suficiente para resaltar los detalles de su superficie con la nitidez que los autores deseaban. En lugar de esto, Nasmyth construyó moldes de escayola del relieve lunar inspirados en observaciones telescópicas realizadas junto a Carpenter. Los moldes fueron iluminados con diferentes intensidades y desde distintos ángulos, controlando las condiciones con exquisito cuidado, y posteriormente fotografiados.

Hoy en día algunas de esas imágenes siguen dando a primera vista la impresión de haber sido tomadas in situ. Pero hay más. Nasmyth y Carpenter no limitaron su recreación de la Luna a estos moldes –que en la actualidad se conservan en el Museo de la Ciencia de Londres–. En su libro La luna: considerada como un planeta, un mundo y un satélite, donde se incluyeron las fotografías, los autores trataron de describir otras sensaciones que experimentaría en la Luna un ser humano que encontrara un método para poder respirar.

Molde de escayola de una porción de la superficie lunar realizado por Nasmyth. / Museo de Ciencias , Londre (CC-BY-NC-ND-2.0.)

Molde de escayola de una porción de la superficie lunar realizado por Nasmyth. / Museo de Ciencias , Londres (CC-BY-NC-ND-2.0.).

Detallaron, por ejemplo, los efectos de la ausencia de aire. Incluso cuando el Sol o la Tierra brillaran altos sobre el horizonte, al no haber difusión de la luz como ocurre en nuestra atmósfera, se vería un cielo totalmente negro salpicado por las luces de estrellas y planetas, que se apreciarían con mayor nitidez que en cualquier noche terrestre.

Nasmyth y Carpenter también imaginaron los cambios en el paisaje producidos por los marcados juegos de luces y sombras sobre el relieve lunar; o los contrastes de color debidos a la composición de la superficie, donde diferentes minerales darían coloraciones especiales y únicas a la escena.

Además recrearon el espectáculo de un eclipse solar producido por la Tierra. En la ilustración realizada por Nasmyth,  se aprecia el Sol en la distancia eclipsado por nuestro planeta, tal y como lo vería un observador en  la Luna. Su forma empieza a despuntar detrás del círculo terrestre, que tiene un tamaño aparente unas cuatro veces mayor. La corona aparece impresionante. La luz solar atraviesa la fina capa de la atmósfera de nuestro planeta rodeándolo de un halo brillante y rojizo que ilumina un paisaje montañoso y salvaje donde reina la desolación.

El Sol eclipsado por la Tierra visto desde la Luna. / Ilustración de James Nasmyth.

El Sol eclipsado por la Tierra visto desde la Luna. / Ilustración de James Nasmyth.

Junto a sugerentes imágenes, en el libro también hay espacio para el “mortal silencio que reina en la luna”: “Mil cañones podrían ser disparados y mil tambores golpeados en aquel mundo sin aire, pero ningún sonido saldría de ellos. Labios que podrían temblar, lenguas que intentarían hablar, pero ninguna de sus acciones rompería el silencio de la escena lunar”.

 

* Montserrat Villar es investigadora en el Centro de Astrobiología (CSIC-INTA) en el grupo de Astrofísica extragaláctica. 

Agujeros negros: los dragones de las galaxias

M. VillarPor Montserrat Villar (CSIC)*

Érase una vez un dragón que dormitaba en el interior de una gruta, en pleno corazón del reino. Los habitantes de aquel país vivían plácidamente y sin grandes avatares, salvo los propios de una existencia cotidiana. Todos sabían que allí moraba un temible monstruo. Sin embargo, residían despreocupados pues este pasaba los días escondido y tranquilo, sin molestar a nadie. Salvo a quienes entraban en la cueva: estos no regresaban jamás. La bestia entonces despertaba y las consecuencias eran devastadoras.

Muchas galaxias, incluida nuestra Vía Láctea, contienen agujeros negros en sus centros. Son los monstruos de nuestra historia. Los denominamos ‘supermasivos’ por sus masas enormes. Si usamos la de nuestro Sol como unidad, las masas pueden estar en un rango de entre unos pocos millones y hasta 20 mil millones de soles. Habría que juntar todas las estrellas de una galaxia como la Gran Nube de Magallanes para reunir una masa equivalente. Con la asombrosa diferencia de que ocuparían un volumen menor que el del Sistema Solar.

Superviento

Impresión artística de un superviento generado en el entorno de un agujero negro en la galaxia activa NGC 3783. / ESO-M. Kornmesser.

En general, los agujeros negros supermasivos se hallan en estado latente. No sabríamos de su existencia si no fuera porque vemos que las estrellas y el gas en las proximidades del centro galáctico se mueven tan deprisa y en un volumen tan pequeño, que solo un agujero negro puede explicar movimientos tan extremos. Sin embargo, en un 10% de las galaxias estos agujeros negros presentan una actividad frenética. Son las llamadas galaxias activas. En ellas el agujero negro está siendo alimentado; aportes suficientes de material (gas, estrellas) hacen que se active. Como el dragón que dormita tranquilo sin molestar a nadie hasta que entra algún incauto despistado y su furia se desata. En estos casos la actividad del agujero negro puede hacer que el centro de una galaxia brille tanto como decenas, hasta miles de galaxias juntas. Esta luz tan intensa es emitida por material muy caliente cercano al agujero negro, pero situado fuera del horizonte de sucesos, pues nada que cruce este horizonte puede escapar, ni siquiera la luz.

Un descubrimiento de gran importancia realizado hace tan sólo unos 15 años ha mostrado que (dicho de manera simplificada) la masa de las estrellas de una galaxia y la del agujero negro supermasivo se hallan relacionadas, siendo la masa del agujero negro aproximadamente una milésima (0,1%) la de la galaxia. Es decir, cuanta más masa tiene uno, más masa tiene la otra. Como si lo que pesa el dragón de la historia estuviera relacionado con lo que pesan todos los habitantes del reino juntos.

Grafica

La masa del agujero negro supermasivo está íntimamente relacionada con la masa de las estrellas de la galaxia que lo alberga (K. Cordes y S. Brown, STScI).

Esto sugiere que la galaxia y el agujero negro central no se formaron y crecieron de manera independiente, sino que hubo algún mecanismo que los conectaba. Sin embargo, dada la enorme diferencia en masa, la región en la que se siente la gravedad del agujero negro es diminuta en relación a la galaxia entera. Esto puede imaginarse al comparar el tamaño de una moneda de euro con el de una ciudad como Madrid. ¿Qué mecanismos pueden conectar la evolución de algo tan pequeño y la de algo comparativamente gigantesco? Es una cuestión que actualmente causa un acalorado debate en la comunidad científica, puesto que su respuesta tiene implicaciones importantes en cuanto a nuestra comprensión de la formación y la evolución de galaxias.

Un posible mecanismo es el de los llamados ‘supervientos’. Los modelos predicen que con su enorme potencia, la energía liberada en las proximidades del agujero negro activo podría ser capaz de expulsar gran parte del gas en las galaxias en formación. Este ‘superviento’ privaría a las galaxias de buena parte del combustible necesario para formar nuevas estrellas y alimentar el agujero negro. Así, la energía inyectada en el medio circundante regularía simultáneamente el crecimiento del agujero negro y el de la galaxia que lo alberga, que podría así ralentizarse, llegando incluso a detenerse. Según esto, los agujeros negros supermasivos ‘conspiraron’ en los inicios para manipular la formación de las galaxias; algo comparativamente minúsculo consiguió así moldear la evolución de algo gigantesco.

El dragón de la historia no ha medido las consecuencias de su devastadora violencia: ha destruido su entorno causando dramáticos efectos que impiden el crecimiento futuro de la población del reino y ha provocado además su propia muerte por inanición.

¿O no…?

¿Qué ocurrirá si un día, cuando todo parezca inerte y en calma, un aventurero temerario se arriesgue a entrar en la gruta?

¿Volverá a despertar el monstruo?

 

* Montserrat Villar es investigadora en el Centro de Astrobiología (CSIC-INTA) en el grupo de Astrofísica extragaláctica. 

El origen del universo: las tres grandes evidencias del Big Bang

AutorPor Alberto Fernández Soto (CSIC)*

Todo cambia: nosotros, otros seres vivos, la geografía de nuestro planeta, etc. El universo también evoluciona, aunque habitualmente lo hace en escalas de tiempo mucho mayores. Existen procesos, como la explosión de una supernova, que podemos observar en tiempo real. Pero además el cosmos cambia como un todo, y hace aproximadamente 13.800 millones de años conoció la mayor transformación que podemos imaginar: surgió de repente, de modo que la materia, la energía, e incluso el espacio y el tiempo aparecieron espontáneamente a partir de la nada en lo que hoy llamamos la ‘Gran Explosión.

Esta es una idea difícil de digerir, y como tal requiere evidencias muy sólidas que la apoyen. Tres son las grandes pruebas en que se basa:

  1. El universo se expande. Edwin Hubble observó hacia 1925 que las galaxias se alejan unas de otras a velocidades proporcionales a la distancia entre ellas. Georges Lemâitre había probado anteriormente que un universo en expansión representaba una solución válida de las ecuaciones de Einstein, aunque éste se había mostrado reticente (sus ecuaciones son correctas, pero su física es abominable, cuentan que le dijo). Si el cosmos se encuentra en expansión es fácil imaginar que en el pasado ocupaba un volumen mucho menor y, en el límite, un volumen nulo. Tal instante, en el que la temperatura y la densidad serían extremadamente altas, es lo que llamamos ‘Gran Explosión’ o ‘Big Bang’.
  1. La composición del universo es tres cuartos de hidrógeno y un cuarto de helio, los dos elementos más ligeros. Todo el resto de la tabla periódica, incluyendo los elementos que componen la mayor parte de nuestros cuerpos y nuestro planeta (silicio, aluminio, níquel, hierro, carbono, oxígeno, fósforo, nitrógeno, azufre…), representa aproximadamente el 2% de la masa total. Cuando hacia 1950 algunos físicos (entre ellos Fred Hoyle, William Fowler y el matrimonio formado por Geoff y Margaret Burbidge) entendieron por primera vez las ecuaciones que regían las reacciones nucleares en las estrellas, probaron que todos esos átomos ‘pesados’ habían nacido en los núcleos estelares. George Gamow, Ralph Alpher y Robert Herman aplicaron las mismas ecuaciones a la ‘sopa’ de partículas elementales que debería haber existido en los primeros instantes del universo, teniendo en cuenta su rápido proceso de enfriamiento. Dedujeron que, aproximadamente tres minutos después del instante inicial, la temperatura habría bajado lo suficiente como para frenar cualquier reacción nuclear, dejando un universo con las cantidades observadas de hidrógeno y helio.

    Arno Penzias y Robert Wilson en la antena de Holmdel (Bell Labs, Nueva Jersey) con la que descubrieron la radiación de fondo de microondas. / NASA.

    Arno Penzias y Robert Wilson en la antena de Holmdel (Bell Labs, Nueva Jersey) con la que descubrieron la radiación de fondo de microondas. / NASA.

  1. Si el universo nació en ese estado indescriptiblemente caliente y se ha ido enfriando, ¿cuál será su temperatura actual? Eso se preguntaban Robert Dicke, Jim Peebles, Peter Roll y David Wilkinson en Princeton a mediados de los sesenta. Antes de completar su antena para intentar medir esa temperatura, supieron por un colega que dos astrónomos de los cercanos laboratorios Bell, que utilizaban una gran antena de comunicaciones para medir la emisión de la Vía Láctea, detectaban un ruido de fondo que no conseguían eliminar. Arno Penzias y Robert Wilson habían descubierto, sin saberlo, la radiación de microondas causada por la temperatura de fondo2,7 grados Kelvin (aproximadamente menos 270 grados)– que constituye el eco actual de la Gran Explosión.

Otros resultados recientes, como la medida de la tasa de expansión del universo a partir de observaciones de supernovas (1998) o la detección de escalas ‘fósiles’ características en el agrupamiento de galaxias (2005), han permitido estimar con precisión los parámetros del modelo. Así, la edad del universo es 13.800 millones de años (con una precisión menor del 1%).

La evolución de la estructura del universo según una simulación por ordenador, en escalas de tiempo que cubren desde hace 12.800 millones de años (línea superior) al presente (línea inferior), y escalas de tamaño que van desde 325 (columna izquierda) a 50 millones de años-luz (columna derecha). / Millennium-II Simulation: M. Boylan-Kolchin et al. (Max Planck Institute for Astrophysics), Volker Springel (Heidelberg Institute for Theoretical Studies).

La evolución de la estructura del universo según una simulación por ordenador, en escalas de tiempo que cubren desde hace 12.800 millones de años (línea superior) al presente (línea inferior), y escalas de tamaño que van desde 325 (columna izquierda) a 50 millones de años-luz (columna derecha). / Millennium-II Simulation: M. Boylan-Kolchin et al. (Max Planck Institute for Astrophysics), Volker Springel (Heidelberg Institute for Theoretical Studies).

Eso sí, menos de un 5% del contenido del cosmos es la materia que estamos acostumbrados a ver. Existe otro tipo de materia del que hay una cantidad cuatro veces mayor que de materia normal –sólo notamos su efecto gravitatorio, y la llamamos ‘materia oscura–. Además una nueva componente, que llamamos ‘energía oscura a falta de un nombre mejor, representa casi un 75% del contenido del cosmos. ¿Su propiedad principal? Que genera una presión que se opone a la gravedad haciendo que el universo se encuentre en un proceso de expansión desbocada.

Hace 10.000 millones de años se formó nuestra galaxia, y nuestro sistema solar apareció solamente unos 5.000 millones de años atrás. En uno de sus planetas aparecieron hace casi 4.000 millones de años los primeros seres vivos: entes capaces de almacenar información genética, reproducirse y evolucionar. Tuvieron que pasar casi todos esos años para que, prácticamente ayer, apareciera una especie de primate capaz de observar el mundo a su alrededor, hacerse preguntas, y almacenar información de un nuevo modo: el instinto, el habla, la escritura, la cultura, la ciencia…

La cosmología observacional ha conseguido hoy responder a muchas preguntas que hace poco más de un siglo eran absolutamente inatacables para la física. No obstante un gran número de nuevos problemas se han abierto: ¿Qué es la materia oscura? ¿Cuál es la naturaleza de la energía oscura y cómo provoca la expansión? ¿Qué produjo la asimetría inicial entre materia y antimateria? ¿Tuvo el universo temprano una fase inflacionaria de crecimiento acelerado? Multitud de programas observacionales y esfuerzos teóricos y computacionales se dedican a intentar resolver estas cuestiones. Esperamos que al menos algunas de ellas tengan respuesta en los próximos años.

 

* Alberto Fernández Soto investiga en el Instituto de Física de Cantabria (CSIC-UC) y en la Unidad Asociada Observatori Astronòmic (UV-IFCA). Junto con Carlos Briones y José María Bermúdez de Castro, es autor de Orígenes: El universo, la vida, los humanos (Crítica).

Astrología: ¿verdadero o falso?

M. VillarPor Montserrat Villar (CSIC)*

La creencia en la astrología sigue muy arraigada en la sociedad. Aún hoy de vez en cuando saltan a los titulares instituciones educativas de prestigio que deciden acoger u organizar cursos y congresos dedicados a la astrología, no desde un punto de vista histórico y crítico, sino para la promoción de sus prácticas supuestamente adivinatorias. Quizás el secreto de su popularidad está en esa componente psicológica que apela a las emociones de la gente y su necesidad de aferrarse a algo tangible que dé respuestas y arroje luz sobre un destino incierto. De hecho, es notable la reacción que despierta entre sus numerosos seguidores cualquier argumento que se presente en contra de la astrología. Esto a menudo va seguido de virulentas acusaciones de dogmatismo infundado, inquisición al amparo de la ciencia, censura intelectual, etc.

Según esta pseudociencia, a partir de la observación e interpretación de la posición y el movimiento de los astros, es posible conocer y predecir el destino de los seres humanos y pronosticar los sucesos terrestres. Sostiene, además, que dicha posición en el momento del nacimiento de un individuo influye en su carácter.

Desmontemos la astrología sometiéndola a una serie de pruebas.

Zodiaco

Foto: Chris Lexow

Prueba nº 1. ¿Son estas afirmaciones coherentes con el conocimiento científico?

La respuesta es no.

Si realmente los astros influyen en nuestra personalidad y destino, debe explicarse cómo y por qué sucede esto respetando el conocimiento científico universalmente aceptado. En caso de cuestionarlo, debe aportarse una explicación válida alternativa.

Todos los fenómenos de la naturaleza son consecuencia de cuatro fuerzas o interacciones fundamentales: la gravitatoria, la electromagnética, la débil y la fuerte. La supuesta interacción astrológica entre los planetas y los seres humanos debe por tanto realizarse por medio de una de estas fuerzas. Sin embargo, ninguna puede explicarla. Dado que la Luna ejerce una atracción gravitatoria obvia sobre la Tierra (claramente manifiesta en el fenómeno de la mareas), cabría pensar que esta es la fuerza responsable. Sin embargo, unos cálculos muy sencillos contradicen esta hipótesis, pues las fuerzas ejercidas por los planetas del Sistema Solar sobre el bebé recién nacido son despreciables.

Viéndolo desde otro ángulo, podría ser que los planetas emitieran algún tipo de radiación a través de la cual ejercerían su influencia. Sin embargo, estamos inundados de radiaciones de origen terrestre (artificial o natural) incomparablemente más intensas que cualquier emisión planetaria que pueda alcanzarnos.

FirmamentoNo existe una explicación satisfactoria dentro del conocimiento científico acumulado a lo largo de los siglos. Los defensores de la astrología aducen entonces que hay muchos fenómenos que no se comprenden y esto no significa que no sean reales. ¿Puede la ciencia afirmar que no existe una fuerza o radiación capaz de ejercer esa influencia astrológica? Es decir, ¿puede demostrarse la no-existencia de estas? Siendo totalmente estrictos, y por improbable que pudiera resultar, la respuesta es no.

Bien… Asumamos por un momento que existe una fuerza y/o radiación misteriosa, aún por descubrir, cuya única manifestación conocida es la de la influencia de los astros en el carácter y destino de las personas y los sucesos terrestres; una fuerza o radiación que ha escapado a la detección de los aparatos y experimentos más sensibles, pero que, sorprendentemente, tiene efectos extraordinarios sobre los seres humanos.

Pasemos entonces a la prueba nº 2. ¿Ha sido demostrada la capacidad predictiva de la astrología?

De nuevo la respuesta es negativa. Siempre que se han sometido a tests de diversa naturaleza los supuestos aciertos de la astrología se ha demostrado que son el resultado esperado del simple azar, o de una predicción totalmente obvia o de una interpretación (incluso ejecución) sesgada y errónea de los experimentos realizados. A pesar de los numerosos intentos, nunca se han confirmado las correlaciones esperadas partiendo de las hipótesis astrológicas (por ejemplo, signo zodiacal versus actividad profesional, versus un rasgo particular de la personalidad, etc). Es decir, todos los estudios realizados bajo el escrutinio implacablemente escéptico del rigor científico han mostrado que no hay relación alguna entre la posición de los astros en el momento del nacimiento y la personalidad y el destino de los individuos.

Guercino_Astrologia

Personificación de la astrología / Archer M. Huntington Museum Fund, 1984

Finalicemos con la prueba nº 3. ¿Se ha adaptado la astrología al avance del conocimiento científico?

Tampoco. Las doctrinas astrológicas no se han actualizado, salvo algunos burdos intentos que a través de un lenguaje farragoso y ambiguo pretenden transmitir una imagen de modernidad y rigor científico que poco tiene de veraz. Por ejemplo, desde sus comienzos hace varios miles de años, las predicciones astrológicas se basaban en los planetas conocidos entonces, es decir, los que se pueden observar a simple vista: Mercurio, Venus, Marte, Júpiter y Saturno. ¿Qué ocurre con Neptuno y Urano, descubiertos en los siglos XVIII y XIX respectivamente? ¿Qué ocurre con los grandes satélites de los planetas exteriores como Júpiter o Saturno? ¿O con los muchos miles (probablemente millones) de asteroides situados entre las órbitas de Marte y Júpiter?

Continuaremos a la espera de que los astrólogos expliquen qué influencia tienen (o no) y por qué todos estos elementos del Sistema Solar son sistemáticamente ignorados. O por qué se ignoran constelaciones como Ofiuco, que el Sol también atraviesa en su recorrido aparente por la bóveda celeste, además de las del Zodíaco tradicional. Seguiremos a la espera de una explicación de por qué gemelos univitelinos tienen destinos totalmente dispares, o por qué miles de personas de diferente signo zodiacal fallecen el mismo día como consecuencia de una catástrofe natural o por qué… en fin, podríamos seguir hasta el infinito con la lista de incongruencias.

Por tanto:

  • No hay ninguna explicación conocida que pueda sustentar los principios astrológicos.
  • No ha sido demostrado que los planetas influyan en el carácter y el devenir de los seres humanos. Por el contrario, se ha demostrado que la astrología no tiene capacidad predictiva.
  • La astrología continúa estancada en ideas obsoletas que no se han actualizado de acuerdo con los conocimientos científicos adquiridos a lo largo de los siglos, lo cual da lugar a inconsistencias insalvables.

Astrología: ¿verdadero o falso?

Falso.

 

* Montserrat Villar es investigadora en el Centro de Astrobiología (INTA/CSIC) en el grupo de Astrofísica extragaláctica. 

La mutación de la Luna

FJ BallesterosM. VillarPor Montserrat Villar (CSIC) y Fernando J. Ballesteros (UV)*

Ya no me atrevo a macular su pura
aparición con una imagen vana,
la veo indescifrable y cotidiana
y más allá de mi literatura.

(Fragmento del poema “La Luna” de Jorge Luis Borges, 1899-1986)

Luna pura y sin mácula, Luna de plata o cristal: estas ideas, que encontramos en infinidad de poemas y obras pictóricas, se remontan a hace más de 2.300 años, época en la que Aristóteles planteaba su visión del cosmos. Según el gran filósofo griego, el universo se divide en dos mundos: el sublunar, la Tierra, donde todo es corrupto y mutable, y el supralunar, el de lo inmutable, armónico y equilibrado. La Luna para Aristóteles, como antesala de ese mundo supralunar, es un astro puro y perfecto.

La cosmología de Aristóteles prevaleció en Europa hasta el Renacimiento, pues era considerada por la Iglesia acorde con las Sagradas Escrituras, al mantener a la Tierra y al ser humano en el centro del universo y de la creación. Sobrevivió asimismo su concepción de la Luna y esto queda patente en numerosas obras de arte. Aún en la época barroca perviven estas ideas, como puede apreciarse en muchas representaciones de la Inmaculada, que muestran a la Virgen María tal y como es descrita en el Apocalipsis (12,1): “Apareció en el cielo una señal grande, una mujer envuelta en el sol, con la Luna bajo sus pies, y sobre la cabeza una corona de doce estrellas”. En estas obras en general aparece la Luna como una superficie cristalina y sin defectos. Esta imagen de la Luna pura aparecía vinculada a la de la virgen inmaculada como consecuencia del sincretismo paleocristiano, que había asociado la virgen María a la popular diosa cazadora Diana, virgen también y diosa de la Luna. Así, la perfección lunar era una alegoría perfecta de la Inmaculada Concepción.

Sin embargo, con una mirada a nuestro satélite nos damos cuenta de que su superficie no es perfecta, sino que presenta contrastes entre zonas claras y oscuras; son las popularmente llamadas ‘manchas’ de la Luna. Hoy sabemos que se deben a variaciones de las propiedades geológicas y de composición de unas regiones a otras. Son apreciables a simple vista y en siglos pasados trataron de explicarse de diferentes maneras.

La idea de una superficie lunar irregular e imperfecta, con valles y montañas como la Tierra, había sido ya planteada en la era precristiana. Sin ir más lejos, de Plutarco proviene la idea de que las manchas oscuras visibles sobre la Luna debían ser mares, cuando al compararla con la Tierra escribió: “De igual forma que en la Tierra hay grandes y profundos mares, […] también los hay en la Luna”. Sin embargo, hacia la Edad Media y siglos posteriores aún había intentos de reconciliar esas ‘manchas’ con la filosofía aristotélica. Para ello, unos pensaron que nuestro satélite había sido parcialmente contaminado por la corrupción de la Tierra en el mundo sublunar. Otros, siguiendo a Clearco, discípulo de Aristóteles, defendían que la Luna era un espejo perfecto que reflejaba los continentes de la Tierra. Rodolfo II de Bohemia, patrón de Kepler, incluso aseguraba identificar la península italiana en las manchas lunares.

Con todo, la idea de una Luna lisa e inmaculada era la norma en las representaciones artísticas. Sin embargo, algunos artistas se alejaron de la norma y representaron nuestro satélite en su obra de manera bastante realista. El ejemplo más antiguo conocido corresponde al pintor flamenco Jan van Eyck (h. 1390-1441), que ejecutó un díptico de la Crucifixión y el Juicio Final hacia 1435-1440 (actualmente en el Museo Metropolitano de Arte de Nueva York). En la escena del Calvario la imagen de la Luna es diminuta, de no más de unos pocos centímetros de diámetro, pero de tamaño suficiente para ilustrar una serie de claroscuros, algunos de los cuales han sido identificados con rasgos lunares reales. Se considera la primera imagen realista de nuestro satélite, anterior incluso a los dibujos realizados por Leonardo da Vinci unos setenta años más tarde, hacia 1510.

Díptico de La Crucifixión y el Jucio Final

Díptico de La Crucifixión y el Jucio Final (Jan van Eyck, h. 1435-1440).

En 1609 Galileo utilizó por primera vez un telescopio para estudiar el Cosmos. Sus dibujos representando las fases lunares y el relieve de nuestro satélite son, además de un valioso documento científico, una obra de extraordinaria belleza. Curiosamente no consta que realizara ninguna observación telescópica de eclipses lunares, como el que tendremos oportunidad de ver en la madrugada del 27 al 28 de septiembre, aunque sin duda debió observarlos. Lo que sí mostró su estudio de la Luna es que lejos de ser perfecta, es rugosa; está llena de cráteres y montañas. Era la prueba definitiva de su imperfección. El cambio de visión hacia esta nueva Luna quedaría plasmado en el arte por primera vez por el pintor florentino Ludovico Cigoli (1559-1613), amigo y admirador de Galileo. En su última obra (1612), la Inmaculada de los frescos de Santa Maria Maggiore en Roma, la Virgen aparece sobre una Luna plagada de cráteres, muy parecida a la que dibujara Galileo a partir de sus observaciones y en cuyos dibujos se inspiró el artista. De esta manera Cigoli incorporaba en su trabajo artístico y difundía los resultados de los estudios de Galileo. Dejaba además constancia de una convicción profunda: la religión debe dar cabida a los avances científicos. O, dicho de otra manera, la fe debe adaptarse al progreso del conocimiento.

Dibujos de la Luna de Galileo y Virgen de Cigoli

Dibujos de la Luna realizados por Galileo (izqda.) y Virgen Inmaculada de Cigoli (derecha).

* Montserrat Villar es investigadora en el Centro de Astrobiología (INTA/CSIC) en el grupo de Astrofísica extragaláctica. Fernando J. Ballesteros es jefe de instrumentación en el Observatorio Astronómico de la Universidad de Valencia.

A la caza del agujero negro en el corazón de la Vía Láctea

M. VillarPor Montserrat Villar (CSIC)*

Si pudiéramos reducir el tamaño de la Tierra al de un azucarillo, nuestro planeta se convertiría en un agujero negro. En teoría, lo mismo ocurriría con cualquier objeto siempre que contáramos con un sistema capaz de comprimirlo lo suficiente: una casa, una mesa, yo misma. Por debajo de un tamaño crítico el efecto de la gravedad será imparable: ninguna fuerza podrá impedir el colapso e inevitablemente se formará un agujero negro. Ese tamaño crítico viene determinado por el llamado ‘radio de Schwarschild’ y depende únicamente de la masa del objeto en cuestión. Es decir, conocida la masa, el radio de Schwarschild se deduce con facilidad. Para la Tierra es aproximadamente 1 centímetro, mientras que para el Sol son unos 3 kilómetros. Por tanto, si el Sol se redujera a una bola de unos 3 kilómetros de radio, nada impediría que se convirtiera en un agujero negro.

Agujero negro

Distorsión visual que observaríamos en las proximidades del agujero negro en el centro de la Vía Láctea debida a los efectos de la gravedad.

La existencia de un agujero negro en el centro de nuestra galaxia, la Vía Láctea, fue propuesta en 1971 a partir de evidencias indirectas. Las pruebas concluyentes empezaron a acumularse hacia 1995 y hoy su existencia está confirmada. ¿Cómo lo sabemos?

Para comprobarlo necesitamos determinar cuánta masa hay en el centro galáctico y el volumen que ocupa. Si es menor que el correspondiente al ‘radio de Schwarchild’, tendremos la prueba definitiva. Sin embargo, no podemos ver un agujero negro. En el interior de dicho radio (que coincide con el llamado horizonte de sucesos del agujero negro), la fuerza de la gravedad es tan intensa que nada, ni siquiera la luz, puede escapar. ¿Cómo medir la masa y el volumen de algo que no podemos ver?

Esto se ha logrado estudiando cómo se mueven las estrellas más cercanas a la localización de ese objeto invisible en el centro de nuestra galaxia, región llamada Sagitario A*. Puesto que la fuerza de la gravedad determina los movimientos de dichas estrellas, midiendo la velocidad, forma y tamaño de sus órbitas podremos inferir la masa responsable y determinar su tamaño máximo.

A mediados de la década de los 90 y durante casi veinte años se han rastreado los movimientos de unas treinta estrellas, las más próximas conocidas a Sagitario A*. Para estas observaciones astronómicas se utilizaron los mayores telescopios ópticos del mundo (telescopios VLT y Keck, en Chile y Hawai respectivamente). Así se obtuvo la visión más nítida conseguida hasta la fecha del centro de nuestra galaxia.

örbitas

Imagen generada por ordenador. Órbitas de las estrellas conocidas más próximas a Sagitario A* rastreadas a lo largo de veinte años (Keck/UCLA/A. Ghez).

La estrella más cercana a Sagitario A* tarda poco más de quince años en describir su órbita y se acerca a una distancia mínima equivalente a unas tres veces la distancia media entre el Sol y Plutón. Llega a alcanzar una velocidad de ¡18 millones de kilómetros por hora! Para explicar movimientos tan extremos se necesita una masa equivalente a cuatro millones de soles. El ‘radio de Schwarschild’ correspondiente a esta masa es de unos 13 millones de kilómetros. Medidas realizadas con técnicas diversas demuestran que ese objeto invisible ocupa un volumen con un radio de, como máximo, unos 45 millones de kilómetros; es decir, unas 3.5 veces el ‘radio de Schwarschild’. Aunque estrictamente no podemos afirmar que la masa central está contenida en un volumen inferior al de Schwarshchild, sabemos que se trata de un agujero negro. Pensemos que en un volumen menor que el que contiene al Sol y Mercurio, tendríamos que ‘empaquetar’ cuatro millones de soles. No hay explicación alternativa: nada que conozcamos puede tener una masa tan enorme y ocupar un volumen tan pequeño.

 

* Montserrat Villar es investigadora en el Centro de Astrobiología (INTA/CSIC) en el grupo de Astrofísica extragaláctica