Entradas etiquetadas como ‘ordenador cuántico’

El ordenador cuántico: cuando el qubit se coma al bit

Por Mar Gulis (CSIC)

Ordenadores, discos duros, memorias, teléfonos inteligentes, tablets… Estamos acostumbrados a que los dispositivos informáticos sean cada vez más pequeños y potentes. Esta evolución ya fue descrita en los años 60 por Gordon Moore, uno de los fundadores de Intel, quien notó que el tamaño de estos dispositivos se reducía a la mitad cada 18 meses. De mantenerse esta tendencia, cosa que hasta ahora ha ocurrido en líneas generales, en pocos años habremos alcanzado la escala de las partículas atómicas.

Quantum machine

Máquina cuántica de un qubit desarrollada por Aaron D. O’Connell. / Wikipedia

El problema es que el comportamiento de estas partículas es muy distinto al que tienen los cuerpos en el mundo macroscópico, el que habitamos los seres humanos. Las poco intuitivas leyes que rigen el mundo de las partículas atómicas, definidas por la mecánica cuántica, nos obligan a transformar el modo en que transmitimos y procesamos la información. En la escala de los nanómetros, los electrones escapan de los canales por los que deben circular (efecto túnel) haciendo que los chips dejen de funcionar.

Sin embargo, lo que en principio se presenta como una desventaja abre un gran abanico de oportunidades, como la posibilidad de desarrollar ordenadores cuánticos con una capacidad de cálculo extraordinaria. La clave reside en utilizar uno de los fenómenos más desconcertantes del mundo cuántico, la superposición de estados, para sustituir la unidad mínima de información de la computación tradicional, el bit, por una nueva unidad con un potencial mucho mayor, el qubit o quantum bit. Aunque las implicaciones de este concepto son muy serias, el término fue acuñado de forma jocosa por su similitud fonética con el cubit inglés: el codo, una unidad de medida en desuso.

Vayamos por partes. Según la mecánica cuántica todas las partículas atómicas pueden estar en varios estados a la vez. Es la acción de medir algún parámetro (velocidad, posición, etc.) la que rompe la superposición y lleva a la manifestación de un estado determinado. Inspirados en la famosa paradoja de Schrödinger, podríamos decir que un gato cuántico encerrado en una habitación hermética junto a una trampa mortal, está vivo y muerto al mismo tiempo hasta que se abre la puerta del recinto. El acto de abrir la habitación –la observación o medida– es lo que hace que el gato asuma uno de los dos estados posibles: vivo o muerto.

Algo similar puede ocurrir con ciertos parámetros de las partículas cuánticas: aunque se encuentran en una superposición de estados, en el momento de la medición solo pueden adoptar uno de entre dos posibles. Esto sucede en ciertas ocasiones con el nivel energético de los átomos, la polarización de los fotones o el espín de los electrones –la dirección en la que ‘giran’ sobre sí mismos–. En el caso del espín, por ejemplo, al medir solo podemos encontrarlo hacia arriba –digamos arbitrariamente que esto significa que gira en el sentido de las agujas del reloj– o hacia abajo –girando en sentido contrario–.

Pues bien, las partículas con estas propiedades se comportan como qubits. El físico del CSIC Salvador Miret explica que, “a diferencia de un bit, que representa un 0 o un 1, un qubit puede transmitir esos dos estados y una variedad ilimitada de estados intermedios o de superposición”. En otras palabras, mientras que con un bit solo podemos decir si el gato está vivo (0) o muerto (1), un qubit puede albergar el dato de que el gato está mitad vivo, mitad muerto; tres cuartos vivo, un cuarto muerto; o un 25,32% vivo y un 74,68% muerto… “Las posibilidades son infinitas porque los qubits no expresan magnitudes discretas, como los bits, sino continuas”, añade el investigador.

Sistema cuántico

Sistema de cuatro qubits desarrollado por IBM. / IBM

En consecuencia, el comportamiento de las combinaciones de bits y qubits también es muy diferente. Si con un bit podemos expresar dos estados (0 y 1), con dos podemos expresar cuatro (00, 01, 10 y 11) y con tres, ocho (000, 001, 010, 011, 100, 101, 110, 111). Por cada bit que añadamos a la cadena el número de posibilidades se incrementará de forma exponencial. Ahora bien, aunque el número de posibilidades puede llegar a ser enorme, siempre será finito.

Los grupos de qubits no solo permiten albergar una infinidad de valores sino que hacen que la capacidad de procesar información de forma simultánea crezca exponencialmente gracias a la superposición y al entrelazamiento cuánticos –también llamado correlación–. Teóricamente con un qubit podríamos hacer al menos dos operaciones paralelas; con dos, cuatro; con tres, ocho; y así sucesivamente. Esto supone una importante novedad con respecto a la informática tradicional, que hasta hace relativamente poco tiempo afrontaba las operaciones de modo lineal y no ofrece la misma capacidad de los qubits para trabajar de forma simultánea.

Imaginemos, por ejemplo, que queremos encontrar la salida a un enorme laberinto. La computación clásica tendría que procesar los distintos caminos uno por uno o en pequeños grupos hasta encontrarla, mientras que la computación cuántica nos permitiría probar miles de caminos en un solo segundo. Así, un ordenador cuántico de 30 qubits equivaldría a un procesador de 10 teraflops (10 millones de millones de operaciones por segundo), cuando los ordenadores actuales trabajan en el orden de los gigaflops (miles de millones de operaciones). Los investigadores estiman que con 60 bits cuánticos podría construirse un ordenador más potente que todos los ordenadores clásicos de la Tierra.

Llegados a este punto, es inevitable preguntarse por qué no existe aún el ordenador cuántico. La principal dificultad es lograr que las partículas interactúen entre ellas sin interferencias del entorno. La interacción no controlada con otras partículas destruye las propiedades cuánticas de las partículas haciendo que se rompa la coherencia (decoherencia) y que, entre otras cosas, abandonen la superposición de estados; por lo que resulta imposible obtener resultados que vayan más allá de lo que se conseguiría operando con bits.

 

Si quieres más ciencia para llevar sobre este tema consulta el libro Mecánica cuántica (CSIC-Catarata), de Salvador Miret, y la revista LYCHNOS, Cuadernos de la Fundación General CSIC.

El “espeluznante” error de Einstein

Por Mar Gulis (CSIC)*

Una de las ideas más desconcertantes de la mecánica cuántica, la disciplina que estudia el comportamiento de la materia a escala microscópica, es la superposición de estados. Todas las partículas pequeñas –como los electrones o los átomos– pueden estar en varios estados a la vez. Es la acción de medir algún parámetro (velocidad, posición, etc.) la que rompe la superposición y lleva a la manifestación de un estado determinado.

Einstein-Bohr

Einstein y Bohr fotografiados en 1925.

Este planteamiento tan poco intuitivo, pero basado en numerosas evidencias, nunca terminó de convencer a Albert Einstein (1879-1955). El creador de la teoría de la relatividad se negaba a aceptar, por ejemplo, que un electrón pudiese estar en varios puntos a la vez y que fuese el intento de medir su posición lo que lo ‘fijara’ en uno de ellos. El electrón debía estar en un único punto antes de la medida. De ahí su célebre frase: “Dios no juega a los dados con el universo”. Y de ahí también la famosa réplica de su colega Niels Bohr (1885-1962), uno de los ‘padres’ de la mecánica cuántica: “Deje de decirle a Dios qué hacer con sus dados”.

Einstein no dudaba de que las observaciones y la formulación de esta disciplina eran correctas, pero pensaba que su indeterminismo hacía de ella una teoría incompleta. Una de las críticas más elaboradas que le dedicó se conoce como la paradoja EPR, así llamada por el nombre de sus autores: el propio Einstein, Boris Podolsky (1896-1966) y Nathan Rosen (1909-1995).

La paradoja proponía un experimento imaginario en el que, a partir de un fenómeno conocido y controlado, se creaban dos partículas (A y B) correlacionadas de tal forma que si una tenía el espín –la ‘dirección’ en la que las partículas giran sobre sí mismas– hacia arriba (giro a favor de las agujas del reloj), la otra debía tenerlo hacia abajo (giro en contra de las agujas del reloj). Sin embargo, de acuerdo con el principio de superposición, tenemos que suponer que tanto A como B tienen su espín hacia arriba y hacia abajo hasta el momento de la medición. Por tanto, al medir A no solo estaríamos ‘obligando’ a su espín a asumir una dirección determinada, sino que también estaríamos provocando que el espín de B adoptase la contraria. De acuerdo con las leyes de la mecánica cuántica, este entrelazamiento o correlación (como se denominó el fenómeno con posterioridad) debería mantenerse por más alejadas que estuvieran A y B.

Entrelazamiento

Matthias Weinberger

Esta conclusión chocaba con la teoría de la relatividad, según la cual nada puede viajar más rápido que la luz. Si A se queda en la Tierra y B viaja hasta Alfa Centauri, a más de cuatro años luz, ¿cómo una medición en A puede afectar a B inmediatamente? O bien la mecánica cuántica estaba incompleta o bien había que aceptar la existencia de una “espeluznante [o fantasmal] acción a distancia”; una comunicación instantánea entre A y B.

La paradoja EPR quedó en el terreno de la filosofía de la ciencia hasta que en 1964 John Bell (1928-1990) propuso una forma matemática para resolverla. No obstante, hubo que esperar hasta los años 80 para que Alain Aspect (1947) y sus colaboradores lograsen trasladar al laboratorio la propuesta de Bell de forma satisfactoria. Los experimentos dieron la razón a la mecánica cuántica: el entrelazamiento y la acción a distancia son parte del mundo microscópico. Y aquí tenemos una de las diferencias entre la teoría de la relatividad y la cuántica que hace tan difícil unificarlas: si la primera es una teoría local, porque la velocidad de la luz es finita y los fotones necesitan un tiempo para ir de un sitio a otro, la segunda es no local, lo que hace que la acción de una perturbación pueda transmitirse instantáneamente de un sitio a otro muy alejado.

El genial Einstein se equivocó en esta ocasión. Sin embargo, su error resultó enormemente fructífero, pues condujo a verificar la existencia de un fenómeno con amplio potencial de aplicaciones. El entrelazamiento es la base del desarrollo de tecnologías cuánticas que previsiblemente transformarán el mundo tal y como lo conocemos hoy en día. Ordenadores cuánticos mucho más potentes que los actuales, nuevos métodos de encriptación práctiacamente inviolables y hasta la teletransportación de partículas microscópicas son solo algunas de ellas. Te las contaremos en próximos posts.

 

* Si quieres más ciencia para llevar sobre este tema, consulta el libro Mecánica cuántica (CSIC-Catarata), del investigador del CSIC Salvador Miret.