Ciencia para llevar Ciencia para llevar

CURIOSIDADES CIENTÍFICAS PARA COMPARTIR

Entradas etiquetadas como ‘medicina’

¿Puede un robot diagnosticar una enfermedad mejor que un médico?

Por Ramón López de Mántaras y Pedro Meseguer (CSIC)*

La respuesta es ‘sí’. Pero, como casi todas las respuestas, hay que matizarla.

Históricamente, uno de los ámbitos de aplicación de la inteligencia artificial (IA) ha sido la medicina. En la actualidad la técnica de IA que está dando los resultados más espectaculares en el ámbito del diagnóstico basado en la imagen es el llamado aprendizaje profundo, que consiste en aprender a reconocer patrones de manera muy eficiente. Con esta técnica, recientemente científicos de la Universidad de Carnegie Mellón (EE UU), en colaboración con cuatro hospitales de Chicago, han desarrollado un sistema capaz de predecir infartos con cuatro horas de antelación en enfermos ingresados en UCIs, lo que mejora en más de tres horas los tiempos de predicción de los cardiólogos. Otro ejemplo exitoso de aplicación del aprendizaje profundo es el análisis combinado de imágenes médicas de rayos rayos X, MRI y ultrasonidos desarrollado por un grupo de la Universidad de Queensland (Australia), el cual puede diagnosticar el cáncer de mama mejor que los médicos.

diagnostico por ordenadorEste tipo de sistemas se entrenan a partir de enormes cantidades de datos. Así, el software capaz de predecir infartos fue entrenado con datos de 133.000 pacientes, que incluían 72 parámetros presentes en la historia clínica de estas personas (signos vitales, edad, glucemia, recuentos de plaquetas, etc.).

Cuando no se dispone de suficientes datos o el problema médico que se quiere resolver no se basa en el reconocimiento de patrones, sino más bien en razonamiento lógico basado en el procesamiento de conocimientos médicos, entonces es posible recurrir a otra técnica de IA menos novedosa pero también muy útil. Se trata de los denominados sistemas expertos, que utilizan el conocimiento acumulado sobre los síntomas de una enfermedad, el historial médico y los resultados de análisis médicos para llegar a conclusiones sobre el estado de un paciente, es decir, para diagnosticar. Cuanto mayor sea su capacidad para combinar sus conocimientos con las observaciones reales, más exacto será su diagnóstico.

El primer sistema experto médico fue HEURISTIC DENDRAL, desarrollado a partir de los años 70 en la Universidad de Stanford, en el ámbito de la química orgánica. Poco después, en la misma universidad se desarrolló MYCIN, orientado a las enfermedades infecciosas. Una parte del sistema describía posibles síntomas y otra expresaba una posible causa de los mismos. Además de incorporar conocimientos que permitían diagnosticar el agente causante de la infección, MYCIN también contenía información acerca del tratamiento adecuado, por lo que resultaba útil para la toma de decisiones por parte de los médicos.

Hoy ya hay multitud de sistemas en este campo que se usan regularmente en hospitales y centros médicos de todo el mundo. Por ejemplo, ATHENA, que ayuda a los médicos a tratar a pacientes con problemas de hipertensión. Este sistema procesa los datos clínicos de cada paciente y, a partir de su base de conocimientos sobre hipertensión, genera recomendaciones para mejorar la atención clínica personalizada.

Una de las aplicaciones más potentes a nivel mundial es el sistema GIDEON, que ayuda a diagnosticar 337 enfermedades infecciosas específicas en 224 países. Su base de datos cubre 1.147 taxones microbianos y 306 agentes antibacterianos y vacunas. La información que maneja es actualizada semanalmente e incluye más de 20.000 imágenes, gráficos, mapas infografías, etc. Todo ello le permite llegar a un 94% de diagnósticos correctos, y de ahí que sea uno de los sistemas más usados en el ámbito de la medicina. GIDEON es útil tanto para el diagnóstico y tratamiento de las enfermedades infecciosas, como para mejorar su conocimiento, identificar microorganismos patógenos y detectar brotes epidémicos. Básicamente lo que hace GIDEON es mejorar la exactitud del diagnóstico y ampliar la base de conocimientos de la persona experta. Ahora bien, como todo sistema, presenta algunas limitaciones. Por ejemplo, no es capaz de diagnosticar simultáneamente enfermedades concurrentes. Además, los signos y síntomas que se introducen para realizar una consulta se relacionan únicamente con las enfermedades transmisibles registradas en el sistema, por lo que quedan excluidas muchas otras.

En cualquier caso, es importante recalcar que los sistemas basados en IA, a pesar de ser capaces de proporcionar diagnósticos rápidos y certeros, nunca superarán el sentido común y el buen juicio de una persona, ni tampoco el efecto placebo resultante del trato humano y la empatía que caracteriza a un buen profesional de la medicina en la relación con sus pacientes. Otro punto fuerte de los expertos humanos respecto a la inteligencia artificial es la capacidad de aplicar el conocimiento existente cuando, por ejemplo, los datos son incompletos o la información sobre el estado de un paciente no se corresponde bien con los casos usuales.

Sin embargo, para un médico la capacidad de recordar datos organizados puede ser un factor limitante, igual que la de correlacionar los casos observados con el patrón de datos existente. Por ello el uso de sistemas de IA es una excelente ayuda. De hecho, los sistemas de IA en medicina no deberían diseñarse con el objetivo de sustituir al médico u otro personal sanitario, sino como sistemas de ayuda y complemento de su labor.

 

* Ramón López de Mántaras y Pedro Meseguer son investigadores del CSIC en el Instituto de Investigación en Inteligencia Artificial del CSIC y autores del libro de divulgación Inteligencia Artificial (CSIC-Catarata).

¿Habría corrido Ramón y Cajal la Carrera de la Ciencia este domingo?

Por Mar Gulis (CSIC)

Desde bien pequeño, Ramón y Cajal (1852-1934) sintió una precoz obsesión por la actividad física y por destacar entre sus iguales. Mostraba un enérgico empeño por ser el más fuerte, el más ágil, el más fornido. Dado que su entorno era favorable para este fervor por la aventura (nació en un remoto caserío en Petilla de Aragón), desde su niñez pudo dar rienda suelta a ese ansia de exploración de la naturaleza y la montaña, inquietud vital que dejó plasmada en numerosos escritos.

Dibujo de Santiago Ramón y Cajal realizado en 1904. Muestra las neuronas de la corteza cerebral. / Instituto Cajal del CSIC

Dibujo de Santiago Ramón y Cajal realizado en 1904. Muestra las neuronas de la corteza cerebral. / Instituto Cajal del CSIC

Poco conocida es esta vertiente aventurera del premio Nobel de Medicina en 1906. Sin embargo, esta faceta deportista influyó en el devenir de su vida, y no es de extrañar que su habilidad para la ciencia se viera favorecida por su curiosidad y su afición por el medio ambiente y la belleza que emana del entorno natural. No en vano, su especialidad fue el sistema nervioso y la anatomía patológica, y destacó también su lado más estético y artístico, en especial el dibujo. Su obsesión por el riesgo, la montaña y el ejercicio físico (él mismo llegó a denominarla “manía gimnástica”), llevando al cuerpo a situaciones límite, le ayudó también a reponer su maltrecha salud tras sufrir enfermedades como la malaria y la disentería.

Son muchos los investigadores e investigadoras que compaginan la satisfacción por el deporte con la pasión por la ciencia. Una de las citas ineludibles de los aficionados al atletismo y las carreras populares es la Carrera de la Ciencia del CSIC.

Cartel de la XXXVI Carrera de la Ciencia

Cartel de la XXXVI Carrera de la Ciencia 2016

Como todos los años, miles de personas participarán en Madrid este domingo 16 de octubre en un evento que celebra con esta su 36ª edición. Un circuito urbano de 10 kilómetros, que discurrirá por grandes avenidas y lugares emblemáticos como Recoletos, el Paseo de la Castellana o la calle Serrano, será el escenario de la XXXVI Carrera de la Ciencia ICON.

Esta iniciativa del CSIC tiene sus orígenes en una carrera cross-country celebrada en 1925 que formó parte del concurso atlético de la Residencia de Estudiantes. Ya entonces, discípulos de las ideas pedagógicas de la Institución Libre de Enseñanza recorrieron 3.000 metros por los lugares donde se celebra actualmente la prueba.

No sabemos si Santiago Ramón y Cajal habría participado en esta carrera, pero sí que cada año la corren miles de personas, muchas de ellas dedicadas a la ciencia. El punto de partida será el número 117 de la madrileña calle Serrano –sede central de la institución–, donde los corredores se congregarán a las 9:00 para comenzar el recorrido.

Un año más, la Carrera vuelve a sumarse a la campaña solidaria Kilómetros por alimentos (#KmsXalimentos). Todos los participantes podrán aportar kilos de comida, no perecedera y debidamente envasada, que irán destinados al Banco de Alimentos de Madrid.

El único requisito para participar en la Carrera de la Ciencia es ser mayor de edad. Así que, si esta vez se te ha pasado la fecha para apuntarte, la edición del próximo año te espera.

¡A correr!

‘Plásticos’, los nuevos antibióticos

fotogema70

 

Por Gema de la Asunción (CSIC)*

Seguro que conoces a alguien que ha tomado un antibiótico “por si acaso”, o “porque ayuda a las defensas” o porque, en todo caso, “daño no nos va hacer”. Por ejemplo, entre los años 60 y 80 los médicos recetaban mucho las tetraciclinas para tratar catarros y anginas. Entonces no se sabía que este fármaco tiene ‘apego’ por los dientes y se deposita en ellos durante su actividad metabólica, así que cuando se administra a un niño menor de 12 años, afecta al desarrollo de sus huesos y puede teñir su dentadura de color amarillo para el resto de su vida.

 La tetraciclina fue a menudo recetada como antibiótico entre los años 60 y 80 / Rillke / Wikipedia

La tetraciclina fue a menudo recetada como antibiótico entre los años 60 y 80 / Rillke / Wikipedia

Lo de los dientes no deja de ser más un problema estético… Pero lo que verdaderamente preocupa a los científicos es el incremento alarmante de las resistencias provocadas por la administración excesiva e irresponsable de estas medicinas. El microorganismo se hace resistente al antibiótico y este deja de funcionar. Si el descubrimiento de la penicilina inauguró “la era de los antibióticos” e incrementó la esperanza de vida de forma exponencial, el problema de las resistencias provoca cada año 25.000 muertes en Europa.

Por ello se buscan nuevas formas de combatir infecciones más allá de los antibióticos tradicionales, cuya desventaja consiste en que, al atacar solo mediante la vía metabólica, los microbios logran desarrollar un mecanismo de resistencia en una o dos décadas.

Uno de estos nuevos métodos es el uso de polímeros con actividad antimicrobiana. Estos compuestos químicos están formados por la unión repetida de unidades llamadas ‘monómeros’ que forman largas cadenas. Basándose en esta tecnología, investigadores del Instituto de Ciencia y Tecnología de Polímeros (ICTP) del CSIC han desarrollado una nueva familia de polímeros con actividad antimicrobiana. ¿En qué se diferencian de un antibiótico tradicional?

 La bacteria Escherichia Coli, causante de diarreas y dolores estomacales, podría ser combatida con estos nuevos antibióticos / Wikipedia

La bacteria Escherichia Coli, causante de diarreas y dolores estomacales, podría ser combatida con estos nuevos antibióticos / Wikipedia

“Como tienen carga positiva, los nuevos polímeros solubles en agua atraen mediante interacciones electrostáticas a las bacterias cuya membrana celular está cargada negativamente. Al producirse esta interacción, la membrana se destruye y provoca la muerte del hongo o bacteria”, explica Marta Fernández-García, investigadora del ICTP responsable del trabajo. Al morir, el microorganismo no puede mutar y, por tanto, hacerse resistente.

El estudio también confirma que estos materiales, que se obtienen de manera sencilla mediante un método de polimerización convencional, son eficaces a baja concentración contra los patógenos, pero resultan inocuos frente a los glóbulos rojos. Esta es una novedad importante porque aunque en investigaciones previas se habían conseguido moléculas efectivas, se daba la paradoja de que cuanto más activo era el sistema, mayor toxicidad generaba en el organismo.

Las aplicaciones de estos compuestos son prometedoras en la búsqueda de nuevos fármacos con los que tratar enfermedades causadas por Escherichia Coli o Staphylococcus Aureus, resistentes a los ‘últimos cartuchos’ de antibióticos convencionales, pero también podrían usarse en otros campos como la preservación de alimentos y su envasado, pinturas y recubrimientos o industria textil.

 

* Gema de la Asunción trabaja en la Unidad de Cultura Científica del Centro de Química Orgánica “Lora-Tamayo” (CENQUIOR) del CSIC.

Geel, el pueblo que ama a los enfermos mentales

Por Rafael Huertas*

La historia que vamos a contar transcurre en la aldea belga de Geel, situada en la provincia de Amberes y a unos 70 kilómetros de Bruselas. Cuenta la leyenda que a finales del siglo VI, Dimphna, una princesa irlandesa convertida al cristianismo, huyó de su país en compañía de su confesor, un viejo anacoreta llamado Gerebernus, para escapar de las proposiciones incestuosas de su padre. Perseguidos y capturados en Geel, ambos tuvieron un final trágico: el rey de Irlanda ordenó ejecutar a Gerebernus y decapitó personalmente a su hija. En aquel preciso instante, y ante la barbarie del acto, algunos locos presentes recuperaron la razón y, posteriormente, se observaron milagrosas curaciones ante la tumba de la joven mártir.

zvzvc

Santa Dimphna nació en Irlanda en el siglo VII / Wikipedia

A partir del siglo XII, y por razones no bien definidas, Geel se convirtió en un lugar de peregrinación; allí acudían muchas personas con desarreglos mentales con la esperanza de curarse. Dimphna fue canonizada y se construyó una iglesia en su honor a la que se adosó una cámara de enfermos, donde los pacientes tenían que estar recluidos nueve días antes de ser sometidos a un rito para ser exorcizados. Este consistía en pasar en cuclillas por debajo de una especie de altar donde se colocaba una urna con las reliquias de la santa. Dimphna se convirtió así no solo en la patrona de los locos, sino en un instrumento de curación.

Poco a poco, la costumbre de ver locos y convivir con ellos fue arraigando y los canónigos de la iglesia de santa Dimphna fueron confiando a las familias de la ciudad a los cada vez más numerosos enfermos no curados. Esta tradición, iniciada en la Edad Media, se mantuvo en el tiempo y suscitó gran interés y debate entre los alienistas –médicos dedicados al estudio y curación de las enfermedades mentales– del siglo XIX, pues los locos que paseaban libremente por las calles de Geel, con el beneplácito de los vecinos, contrastaban fuertemente con los que eran sometidos al encierro en el manicomio.

sdgdf

Una calle de Geel con la iglesia dedicada a Santa Dimphna al fondo / Wikipedia

Más recientemente, la comunidad de Geel, con unos 35.000 habitantes, se ha considerado un antecedente de las colonias terapéuticas e, incluso, un ejemplo con el que ilustrar la necesaria integración de los servicios de salud mental en el resto de las estructuras sociales. El objetivo sería superar el aislamiento, la estigmatización, la extrema dependencia y la pérdida de autonomía que el asilo produce sobre los enfermos mentales.

Hoy unas 250 familias acogen en sus hogares a enfermos mentales, manteniendo así viva una tradición que comenzó hace siete siglos.

 

 

* Rafael Huertas es historiador de la ciencia en el Instituto de Historia del CSIC. Este post es un extracto de su libro La locura (CSIC-Catarata).

¿Sabías que los balazos de la II Guerra Mundial fueron el origen de los implantes metálicos?

Prótesis

Wikipedia

Por Mar Gulis

Como si de coches o bicicletas se tratara, los humanos tenemos piezas de repuesto que salvan o mejoran nuestra calidad de vida. Para reemplazar huesos y dientes, sustituir tejidos blandos como la piel o remediar  los degastes de nuestro sistema cardiovascular (marcapasos, stents), los biomateriales –materiales implantables en un organismo vivo– son la solución a los posibles defectos ‘de fábrica’ o ‘debidos al uso’ de nuestro cuerpo.

La investigación en materiales útiles para la fabricación de prótesis e implantes  ha avanzado mucho, pero todo comenzó por azar, tal y como cuenta María Vallet en su libro Biomateriales. Tras la Segunda Guerra Mundial los médicos observaron que los soldados con restos de metralla en su cuerpo podían vivir sin problemas. Esto les llevó a deducir que la inclusión de partículas metálicas en el cuerpo no suponía un problema y que, por tanto, estos metales, al ser tolerados por el organismo, se podían emplear para reparar otros tejidos internos. Así fue como empezaron a utilizar implantes metálicos para corregir daños en el cráneo o para la fijación interna de fracturas.

Además de materiales metálicos, para fabricar implantes se utilizan cerámicas, polímeros o materiales compuestos. La lista es larga y variada, porque actualmente los componentes, así como la instrumentación para su colocación, se diseñan para cada problema concreto. Se ha pasado de utilizar materiales inertes para la sustitución de tejidos vivos, como una prótesis de rodilla o cadera, al diseño de materiales bioactivos y biodegradables para la reparación de los mismos. Algunos biomateriales incluso se diseñan para durar lo que viva el paciente, mientras que otros se degradan en productos metabolizables.

La investigación en este campo ha llegado aún más lejos. Ahora la comunidad científica trabaja en la tercera generación de biomateriales, donde el objetivo es la regeneración de tejidos, o incluso de órganos como el hígado o los riñones.

Está claro que los biomateriales han llegado para quedarse. Un dato: más de 50 millones de personas en todo el mundo tienen implantado algún tipo de prótesis.  Y otro dato, ahora de casa: en los últimos 15 años (1997-2012) se han colocado en España 426.500 prótesis de cadera y 430.000 prótesis de rodilla, casi un millón de componentes, lo que da idea del número de personas que hacen vida normal gracias a los avances en este ámbito.

Es más, María Vallet sostiene que cada vez será más frecuente que a lo largo de nuestra vida necesitemos la ayuda de un biomaterial. La buena noticia es que “hay solución prácticamente para todos los órganos y sistemas corporales”, explica. Vamos, que no podemos impedir que nuestros cuerpos  se estropeen en algún momento, pero al menos contamos con prótesis e implantes que nos faciliten la vida.

Implantes y cuerpo

Media de prótesis implantadas al año en España en el periodo 1997-2012.