Entradas etiquetadas como ‘neurociencia’

La ‘huella olfativa’: ¿es posible identificar a una persona por su olor?

Por Laura López Mascaraque (CSIC) *

Hace cien años, Alexander Graham Bell (1847-1922) planteaba lo siguiente: “Es obvio que existen muchos tipos diferentes de olores (…), pero hasta que no puedas medir sus semejanzas y diferencias, no existirá la ciencia del olor. Si eres ambicioso para encontrar un tipo de ciencia, mide el olor”. También decía el científico británico: “Los olores cada vez van siendo más importantes en el mundo de la experimentación científica y en la medicina, y, tan cierto como que el Sol nos alumbra, es que la necesidad de un mayor conocimiento de los olores alumbrará nuevos descubrimientos”.

A día de hoy la ciencia continúa investigando el olfato y sus posibles aplicaciones. De momento sabemos, al menos, que detectar y clasificar los distintos tipos de olores puede ser extremadamente útil. El olfato artificial, también llamado nariz electrónica, es un dispositivo que pretende emular al sistema olfativo humano a fin de identificar, comparar y cuantificar olores.

Los primeros prototipos se diseñaron en los años sesenta, aunque el concepto de nariz electrónica surge en la década de los ochenta, definido como un conjunto de sensores capaces de generar señales en respuesta a compuestos volátiles y dar, a través de una adecuada técnica de múltiples análisis de componentes, la posibilidad de discriminación, el reconocimiento y la clasificación de los olores. El objetivo de la nariz artificial es poder medir de forma objetiva (cuantitativa) el olor. Se asemeja a la nariz humana en todas y cada una de sus partes y está formada por un conjunto de sensores que registran determinadas señales como resultados numéricos, y que un software específico interpreta como olores a través de algoritmos.

Los sensores de olores –equivalentes a los receptores olfativos situados en los cilios de las neuronas sensoriales olfativas del epitelio olfativo– están compuestos por materiales inorgánicos (óxido de metal), materiales orgánicos (polímeros conductores) o materiales biológicos (proteínas/enzimas). El uso simultáneo de estos sensores dentro de una nariz electrónica favorece la respuesta a distintas condiciones.

Comentábamos en otro texto en este mismo blog cómo se puede utilizar el olfato, y en particular el artificial, en el área de la medicina (mediante el análisis de aliento, sudor u orina), para el diagnóstico de enfermedades, sobre todo infecciones del tracto respiratorio. De hecho, en la actualidad se está estudiando la posibilidad de desarrollar y aplicar narices electrónicas para detectar la presencia o no del SARS-CoV-2 en el aliento de una persona, y ayudar así en el diagnóstico de la Covid-19. Pero lo cierto es que su desarrollo podrá tener otras muchas aplicaciones: seguridad (detección de explosivos y drogas, clasificación de humos, descubrimiento de agentes biológicos y químicos), medioambiente (medición de contaminantes en agua, localización de dióxido de carbono y otros contaminantes urbanos o de hongos en bibliotecas), industria farmacéutica (mal olor de medicamentos, control en áreas de almacenamiento) y agroalimentación (detección de adulteración de aceites, maduración de frutas, curación de embutidos y quesos).

De la ‘huella olorosa’ a la odorología criminalística

Las nuevas generaciones de sensores también pueden servir para detectar ese olor corporal personal conocido como huella aromática u olfativa. Esta podría llegar a identificar a una persona como ocurre con la huella digital. Helen Keller (1880-1968) esbozó la idea de que cada persona emite un olor personal, como una huella olfativa única e individual. Para ella, que se quedó sordociega a los 19 meses de edad a causa de una enfermedad, esta huella tenía un valor incalculable y le aportaba datos como el oficio de cada una de las personas con las que tenía relación. Y no se trata del perfume, sino que cada uno de nosotros tenemos un olor particular, un patrón aromático, compuesto por secreciones de la piel, flora bacteriana y olores procedentes de medicamentos, alimentos, cosméticos o perfumes. Este patrón podría emplearse, en el futuro, para la identificación personal e incluso en investigación criminalística para la localización de delincuentes.

 

Ilustración de Lluis Fortes

Ilustración de Lluis Fortes

La odorología criminalística es una técnica forense que utiliza determinados medios y procedimientos para comparar el olor de un sospechoso con las muestras de olor recogidas en el lugar del crimen. De hecho, en algunos países se permite usar como prueba válida la huella del olor. Así mismo, científicos israelíes están desarrollando una nariz electrónica que pueda detectar la huella aromática de seres humanos a nivel individual como si se tratase de una huella digital. Este olor particular está determinado genéticamente y permanece estable a pesar de las variaciones en el ambiente y la dieta. Por tanto, el olor proporciona un rastro reconocible de cada individuo que puede detectarse por la nariz, por un animal entrenado o utilizando instrumentos químicos más sofisticados.

Las narices electrónicas están todavía lejos de imitar el funcionamiento del olfato humano, pero para algunas aplicaciones este último tiene algunos inconvenientes, como la subjetividad en la percepción olfativa, la exposición a gases dañinos para el organismo o la fatiga y el deterioro que implica la exposición constante a estas pruebas. Por tanto, las narices electrónicas resultan un mecanismo rápido y confiable para monitorizar de forma continua y en tiempo real olores específicos.

* Laura López Mascaraque es investigadora del Instituto Cajal del CSIC y autora, junto con José Ramón Alonso, de la Universidad de Salamanca, del libro El olfato de la colección ¿Qué sabemos de? (CSIC -Catarata).

 

 

Cerebros de plastilina: ¿es posible conseguir una “supermemoria”?

Por Sandra Jurado Sánchez (CSIC)*

Ilustración de Silvia Jurado Sánchez

       Ilustración de Silvia Jurado Sánchez

En estas fechas de junio ya casi se pueden tocar las tan ansiadas vacaciones… Durante este mes, miles de estudiantes se han tenido que enfrentar a los exámenes de fin de curso, a la temida EBAU (antes Selectividad o PAU) o incluso a los exámenes de recuperación. En estas semanas el alumnado pone a prueba su templanza, pero sobre todo su memoria y conocimiento. Algunos demuestran una excelente capacidad de retención de manera innata (o, más probablemente, producto del trabajo continuado durante el curso), mientras que otros creen “conveniente” mejorar sus posibilidades con la ayuda de suplementos alimenticios. También hay quienes, dudando de su propia capacidad, se dedican al diseño de complejas formas de outsourcing intelectual o “chuletas” de última generación.

En estos momentos de incertidumbre, qué no daríamos por conocer los secretos de la memoria: ¿cómo aprendemos?, ¿cómo se forman nuestras memorias y recuerdos? Y sobre todo, ¿cómo podemos potenciar estas capacidades y generar una “supermemoria”? El cerebro guarda la clave de estos misterios, y la neurociencia, la ciencia encargada de estudiar el funcionamiento cerebral, trabaja sin descanso para entenderlos.

El desarrollo temprano durante la infancia es un momento crítico para el aprendizaje, pero las personas adultas seguimos aprendiendo y formando recuerdos sin que se produzcan cambios significativos en nuestro volumen cerebral. Una posible estrategia del cerebro adulto para codificar nueva información implicaría remodelar las conexiones neuronales ya existentes en función de su frecuencia de uso. Por ejemplo, consideremos el aprendizaje de un instrumento musical principalmente adquirido a través de constante repetición. Aquellos contactos neuronales o sinapsis que comienzan a emplearse con mayor frecuencia podrían verse potenciados, mientras que si abandonamos el entrenamiento, estos contactos o conexiones podrían comenzar a debilitarse, llegando incluso a desaparecer. Los puntos de contacto entre neuronas, o sinapsis, son regiones extremadamente flexibles que tienen la capacidad de responder a distintas necesidades según los estímulos que reciben, potenciándose o debilitándose en función de la frecuencia de uso durante un proceso conocido  como plasticidad sináptica.

El concepto del cerebro como una estructura plástica se introduce por primera vez en el siglo XIX por el psicólogo estadounidense William James, y posteriormente es asimilado por los padres de la neurociencia moderna, con su máximo exponente en la figura de Santiago Ramón y Cajal. Meticulosas observaciones de las redes neuronales en cerebros embrionarios convencieron a Cajal de que el tejido neuronal era lo suficientemente flexible como para permitir la formación y desaparición de conexiones dependiendo del momento del desarrollo, y que posiblemente esta flexibilidad se encontrara en la base de la formación de memorias y recuerdos en el cerebro adulto.

Dibujo de corteza cerebelosa realizado por Santiago Ramón y Cajal en 1904. / Ministerio de Ciencia, Innovación y Universidades

Dibujo de corteza cerebelosa realizado por Santiago Ramón y Cajal en 1904. / Ministerio de Ciencia, Innovación y Universidades

Aunque plausible e interesante, la plasticidad cerebral acabó siendo un concepto puramente teórico. Habría que esperar hasta principios de los años setenta para que los investigadores Timothy Bliss y Terje Lømo, de la Universidad de Oslo, detectaran por primera vez un fenómeno de plasticidad sináptica. Así, lograron demostrar que en respuesta a un aumento de la frecuencia de estimulación, la fuerza de las sinapsis en el hipocampo, una región cerebral importante para la memoria y afectada severamente en la enfermedad de Alzheimer, aumentaba muy rápidamente: ¡en cuestión de segundos podía aumentar hasta un 200%! Lo más importante era que estas conexiones permanecían potenciadas durante horas. Este aumento en la frecuencia de estimulación en el laboratorio mediante técnicas de electrofisiología in vivo pretendía mimetizar el aumento de la actividad de determinadas conexiones durante el proceso de aprendizaje. El resultado fue que estas conexiones eran capaces de adaptarse muy rápidamente y facilitarse tal y como se venía especulando desde el siglo XIX.

Este hallazgo revolucionó la neurociencia, ya que proporcionaba evidencias experimentales para el concepto de plasticidad cerebral, que hasta entonces era una mera hipótesis. En los años sucesivos, numerosos laboratorios profundizaron en el estudio de la plasticidad sináptica y, gracias al avance de las técnicas de biología molecular, electrofisiología y microscopía, se pudieron identificar diferentes moléculas claves para este fenómeno neuronal.

La identificación de estas moléculas abre la puerta al diseño de nuevas estrategias y fármacos destinados a potenciar los procesos cognitivos, principalmente en individuos afectados por patologías que afectan a la memoria, como las enfermedades neurodegenerativas. Aunque la tan ansiada “píldora de la memoria” aún está fuera de nuestro alcance, es intrigante pensar qué efectos podrían provocar estos fármacos en individuos sanos. Intuitivamente podríamos imaginar la aparición de una “supermemoria”. Sin embargo, es probable que llegar a obtenerla no sea tan sencillo. Consideremos que el efecto de estos fármacos, aún en vías de desarrollo, podría ser diferente en un cerebro sano y en un cerebro afectado por neurodegeneración, en donde el entorno neuronal se ve profundamente alterado con la aparición de agregados moleculares inexistentes en situaciones normales. En este escenario, es esperable que el uso de fármacos que modulan moléculas cuyo efecto es predominante en el cerebro enfermo no tendría por qué afectar positivamente a las capacidades de memoria de un cerebro saludable que carece de estas dianas.

Todas estas cuestiones han de ser analizadas meticulosamente, incluyendo la reflexión acerca de si es necesario desarrollar una “píldora para la memoria” en un mundo en donde gran parte de nuestros recuerdos se almacenan de manera digital. Tal vez mucha memoria no suponga ya una ventaja pues, como dijo Nietzsche, “la buena memoria es a veces un obstáculo al buen pensamiento”.

* Sandra Jurado Sánchez es investigadora en el Instituto de Neurociencias de Alicante, del CSIC y la Universidad Miguel Hernández. Más sobre su trabajo en: https://www.juradolab.com/