Entradas etiquetadas como ‘CO2’

¿Cómo lograr las emisiones cero? La solución está en el subsuelo

Por Víctor Vilarrasa (CSIC)*

En pocos años, para poder cumplir con los objetivos climáticos del Acuerdo de París de limitar el aumento de temperatura por debajo de 2 °C, y preferiblemente por debajo de 1,5 °C, muchos de nuestros desplazamientos tendrán que hacerse en coches eléctricos. Tras circular sin emitir gases de efecto invernadero, será necesario cargar el automóvil. ¿Pero de dónde procederá la energía con la que lo carguemos?

Por descontado, tiene que ser de origen renovable para no emitir dióxido de carbono (CO2) por otro lado. La mayoría de las veces tendremos que cargar el coche de noche, cuando por razones obvias los paneles fotovoltaicos no pueden producir electricidad. Tampoco hay garantías de que el viento sople cada noche, ni de que haya oleaje. La energía hidroeléctrica podría proporcionar parte de la demanda, pero difícilmente podrá satisfacerla por completo dado que el agua es un bien preciado y escaso, y su consumo se prioriza frente a la producción de energía. La solución al problema está bajo nuestros pies.

Energía geotérmica

Central geotérmica de Nesjavellir (Islandia).

La Tierra es una fuente inagotable de energía geotérmica. En la corteza terrestre, la temperatura aumenta de media 30 °C por cada kilómetro a medida que nos dirigimos hacia el interior de la Tierra. Por lo tanto, en torno a los 4 kilómetros de profundidad respecto a la superficie acostumbramos a encontrar temperaturas superiores a los 100 °C. Si hacemos circular agua hasta esas profundidades y la devolvemos a la superficie una vez se ha calentado, produciremos vapor de agua, ya que el agua entra en ebullición a 100 °C y a presión atmosférica. Este vapor lo podemos utilizar para mover turbinas que generen electricidad sin emitir emisiones de gases de efecto invernadero.

El vapor de agua, después de turbinado, se enfría y se condensa, pero mantiene una temperatura elevada, cercana a los 80 °C. El agua caliente resultante se puede utilizar como fuente de calor para proporcionar calefacción a un gran número de viviendas, con lo que eliminaremos también las emisiones de CO2 asociadas a calentar nuestras casas en invierno.

Un almacén subterráneo de energía

En verano, la demanda de calor es menor, por lo que habrá un excedente que conviene almacenar. De nuevo, el subsuelo nos proporciona la solución. El excedente de agua caliente se puede inyectar o hacer circular por un intercambiado de calor en el subsuelo. Este proceso aumenta la temperatura del suelo, que puede almacenar el calor durante largos periodos de tiempo con unas pérdidas de energía pequeñas. Para recuperar el calor, no hay más que inyectar agua fría y dejar que ésta se caliente al circular por el suelo que hemos calentado previamente.

El calor no es la única fuente de energía que tendremos que almacenar en la transición hacia un sistema económico con emisiones netas de carbono nulas. De hecho, las fluctuaciones de las renovables, tanto en la producción a lo largo del día como entre las diferentes estaciones del año, exigen disponer de cantidades inmensas de almacenamiento para poder utilizar los excedentes en periodos en los que la producción sea menor que la demanda. El almacenamiento necesario no se podrá cubrir con baterías, por gigantes que las lleguemos a construir.

eneergía eólica

Uno de los mayores desafíos de las energías renovables son sus fluctuaciones.

Una solución que se plantea es producir combustibles que no contengan carbono, como el hidrógeno, a partir de los excedentes de energía renovable; y luego almacenarlos para utilizarlos en periodos de escasez de producción de este tipo de energía. Garantizar la demanda energética en esos periodos implicará almacenar millones de toneladas de hidrógeno. Uno de los mejores lugares para hacerlo son las capas permeables con alta porosidad del subsuelo, que permiten que el combustible se inyecte y recupere con facilidad.

Captura de CO2 bajo tierra

El reto de descarbonizar la economía va más allá de producir energía limpia con las renovables y electrificar los modos de transporte. Existen procesos industriales que difícilmente pueden dejar de emitir CO2, ya que este gas de efecto invernadero es el resultado de las reacciones químicas que tienen lugar en diversos procesos productivos. Por ejemplo, la fabricación de acero y cemento conlleva la emisión de CO2.

Las emisiones asociadas a procesos industriales representan el 20% de las emisiones actuales. La solución a estas emisiones vuelve a estar en el subsuelo. En este caso hay que capturar el CO2 antes de que sea emitido a la atmósfera, para lo que existen diferentes técnicas, y posteriormente inyectarlo en formaciones geológicas profundas para su almacenamiento permanente. Con esto, no estaríamos más que devolviendo el carbono a su lugar de origen, ya que el carbono que hemos emitido y seguimos emitiendo a la atmósfera proviene de la quema de combustibles fósiles, que hemos extraído y extraemos del subsuelo.

Campo de géiseres El Tatío (Chile).

Aunque hacemos vida sobre él, el hecho de no poder ver lo que hay en el subsuelo lo convierte en un gran desconocido. Y, como todo lo desconocido, produce temores y cierta desconfianza. Sin embargo, no nos podemos permitir excluir los recursos geológicos en el gran reto de alcanzar la neutralidad de carbono. No existe una única solución para conseguir la descarbonización y necesitamos de la contribución de todas las tecnologías disponibles.

Al igual que el resto de tecnologías, las relacionadas con el subsuelo no están exentas de riesgos, como por ejemplo la sismicidad inducida, desafortunadamente conocida en España por los terremotos del almacén de gas de Castor. La investigación científica en geoenergías pretende minimizar esos riesgos para poder contar con el subsuelo en la descarbonización. Los recursos geológicos, como origen del problema, deben formar parte también de la solución.

 

* Víctor Vilarrasa es investigador del Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA-CSIC) y del Instituto Mediterráneo de Estudios Avanzados (IMEDEA, CSIC-UIB). Actualmente dirige un proyecto del European Research Council (ERC) para aumentar la viabilidad de las geoenergías.

Zonas áridas: la tercera trinchera contra el cambio climático

Por J.M. Valderrama y Francisco Domingo (CSIC)*

El papel del suelo y, más precisamente, de las cavidades subterráneas que se forman en determinados lugares con sustrato calizo, como las zonas áridas, podría resultar decisivo para el cambio global: según investigaciones llevadas a cabo por la Estación Experimental de Zonas Áridas del CSIC, una parte significativa del CO2 atmosférico podría estar confinado en almacenes subterráneos. La alteración de estos suelos podría repercutir significativamente en la cantidad de CO2 emitido a la atmósfera.

Los científicos llevan años estudiando los procesos ligados al carbono con el fin de conocer los sumideros y fuentes de CO2, cuya acumulación en la atmósfera es una de las razones del calentamiento de la Tierra. Los estudios tratan de explicar por qué el incremento anual de la concentración de este gas debido a la actividad humana parece ser la mitad del esperado, un dato que no terminaba de cuadrar a la comunidad científica, que busca con ahínco el sumidero perdido del CO2.

torres correlacion

Torre de Correlación de Remolinos en el Llano de los Juanes, Sierra de Gádor, Almería.

Los resultados de este y de otros trabajos ponen de relieve el papel fundamental de las tierras áridas. Junto a océanos y zonas forestales, representan los tres grandes ámbitos que es preciso explorar para comprender el metabolismo del planeta. Hasta muy recientemente los esfuerzos se han concentrado en océanos y zonas forestales, mientras que las regiones áridas y semiáridas son las grandes desconocidas. Trabajos como el desarrollado por el equipo de investigación del CSIC, hacen pensar en estas zonas como un tercer bastión del planeta en la lucha contra el cambio global.

Lo primero que llama la atención en las zonas áridas es la relevancia de los procesos abióticos (no biológicos) en los que está envuelto el carbono. Es decir, que el carbono que forma parte de las rocas (como por ejemplo la caliza), lejos de ser un elemento estático e inmutable, participa activamente en varios procesos geoquímicos y se moviliza en determinadas condiciones. Otro hallazgo sorprendente ha sido constatar que parte del origen del carbono del subsuelo es biológico. La compleja maraña que entrevera procesos abióticos y bióticos (biológicos), en los que juega un papel muy relevante el carbono, aún está por desenmascarar.

De manera resumida puede afirmarse que estos procesos generan CO2. Parte del gas generado se emite a la atmósfera por ventilación (por efecto del viento y cambios de presión atmosférica) y parte se almacena, incluso en capas profundas a muchos metros, pues el CO2 desciende por gravedad. El tiempo que está almacenado se desconoce, de ahí que cuando se emite se confunde con el que respiran los seres vivos en superficie.

Estos procesos se han detectado y medido gracias al establecimiento de Torres de Correlación de Remolinos, unos aparatos capaces de apreciar el intercambio neto de CO2 entre la atmósfera y la superficie terrestre. La Estación Experimental de Zonas Áridas dispone, en colaboración con grupos de las Universidades de Granada y Almería, de tres estaciones de este tipo, integradas en la red internacional FLUXNET, que cuenta con más de 500 torres de flujo repartidas por todo el mundo.

sondas

Sondas utilizadas para medir la concentración de CO2 en el suelo

El análisis de los datos que se han ido tomando mediante este y otros procedimientos empieza a revelar una serie de resultados interesantes, como el que señalábamos sobre el almacenamiento de CO2. Estos hallazgos son algunas de las piezas de un rompecabezas gigantesco que todavía hay que encajar. Mientras los investigadores se encuentran en esa fase de formular hipótesis y corroborar hechos, las torres continúan recogiendo información.

La degradación de las tierras áridas y la importancia que están revelando tener estos ecosistemas en relación con el calentamiento global hace necesario continuar investigando sobre el balance del CO2 en estas tierras.

*J. M. Valderrama colabora con la Estación Experimental Zonas Áridas del CSIC y escribe en el blog Dando bandazos, en el que entremezcla literatura, ciencia y amor a la montaña. Francisco Domingo Poveda es investigador y director de la Estación Experimental de Zonas Áridas. Los proyectos de investigación citados en esta entrada son CARBORAD (ref.CGL2011-27493) y GEOCARBO (ref. P08RNM3721), financiados por el Plan Nacional de I+D+i la Junta de Andalucía, respectivamente, y liderados por Francisco Domingo Poveda.

Corales: los chivatos del océano

Por Mar Gulis (CSIC)

En plena revolución industrial, los canarios, muy a su pesar, cumplieron un importante papel en las minas de carbón. Al ser unos pájaros muy sensibles al metano y al monóxido de carbono, los mineros los utilizaban como señal de alarma. Los llevaban a la mina y cuando los canarios dejaban de cantar, los mineros escapaban a toda velocidad. Afortunadamente hoy se utilizan detectores de gases y sistemas de ventilación como métodos de alerta.

Corales marinos. / USFWS/Jim Maragos. Flickr

Corales marinos / USFWS/Jim Maragos. Flickr

El científico John Veron, descubridor de innumerables especies de corales marinos, se refirió a esta anécdota para ilustrar la importancia de estos organismos en los ecosistemas oceánicos. En un artículo en Yale Environment 360, el investigador australiano concluyó que los arrecifes de coral son los canarios de los océanos, y que, por ello, los humanos debemos estar atentos a sus señales. En otras palabras, el delicado estado de estos animales –sí, aunque parezcan plantas, son animales– es un indicador del empeoramiento de la salud de los océanos. Según el World Resources Institute, alrededor del 75% de los corales que hay en el mundo está en peligro.

Estos organismos calcáreos, que se componen de animales diminutos –pólipos– y de los esqueletos que dejan al morir, están sufriendo las consecuencias de la progresiva acidificación de los océanos. El aumento de emisiones de CO2 explicaría este fenómeno. Precisamente cuando comenzó la revolución industrial, mientras los mineros utilizaban a los canarios en las minas, empezaba a detectarse la peligrosa acidificación en las aguas oceánicas. Desde entonces, la acidez promedio del océano superficial ha aumentado un 30%, según el proyecto Malaspina, liderado por el CSIC.

Al absorber parte del CO2 que emitimos los humanos a la atmósfera, los océanos están experimentando un descenso del pH del agua, que pierde alcalinidad. En eso consiste la acidificación, que a su vez provoca una disminución de la capacidad del océano de absorber más CO2 atmosférico. Así, cada vez será más difícil estabilizar las concentraciones de este gas de efecto invernadero que contribuye al cambio climático.

No solo los corales se ven afectados por el aumento de la acidificación, también otros organismos calcáreos como los mejillones. / Flickr

No solo los corales se ven afectados por el aumento de la acidificación, también otros organismos calcáreos como los mejillones / Flickr

Durante la expedición Malaspina, cuyo objetivo principal era evaluar el impacto del cambio global en los océanos, las mediciones que se realizaron en el Atlántico Norte Subtropical demostraron que la acidificación ha penetrado ya en las profundidades oceánicas y es perceptible hasta los 1.000 metros de profundidad. Así se explica en uno de los paneles que conforman la exposición Un mar de datos, que compila los principales resultados obtenidos en este ambicioso proyecto de investigación oceanográfica. Un agua oceánica cada vez más ácida tendrá efectos negativos para la biodiversidad, especialmente para los organismos que construyen estructuras de carbonato, como corales, moluscos, crustáceos y erizos de mar.

Sin embargo, la pérdida de corales tiene consecuencias especialmente desastrosas, pues estos organismos son el hábitat natural de miles de especies marinas (en torno al 25% del total), algunas de ellas de consumo humano. No solo eso. Gracias a su consistencia, los arrecifes de coral protegen a las costas de la erosión y los embates de las olas, formando recintos poblados por muchos animales que son fuente de alimento de otros organismos superiores. Si el coral sufre daños irreparables y es incapaz de regenerarse, otras especies estarían condenadas a la desaparición.

Con los niveles actuales de emisión de CO2, las concentraciones de este gas podrían aumentar exponencialmente para finales de este siglo. Y mientras la acidificación puede acelerarse en cortos períodos de tiempo, la comunidad científica cree que no existen soluciones capaces de invertir el proceso en el corto plazo. Pero no es esta la única amenaza para los arrecifes de coral: la sobrepesca, la contaminación y los vertidos, el exceso de sedimentación, o los aumentos de la temperatura del agua también juegan en su contra.

Los corales, como los canarios, ya nos están avisando.