Archivo de la categoría ‘Tecnologías’

¿Cómo funciona en realidad un ordenador cuántico?

Por Carlos Sabín (CSIC)*

En una entrada reciente hablábamos de uno de los tópicos más resistentes en la divulgación de la física cuántica, aquel según el cual las cosas estarían en «dos sitios a la vez». Cuando esa manera de pensar se traslada a los computadores, el ordenador cuántico es presentado como una máquina que estaría en un montón de estados a la vez y que, por tanto, sería capaz de “hacer un montón de cálculos en paralelo». Este suele ser el enfoque, de hecho, en casi todos los textos divulgativos que se escriben sobre computación cuántica. Es un enfoque consistente desde el punto de visto lógico, pero tiene un problemilla: es falso.

Interior de un ordenador cuántico

Interior de un ordenador cuántico. / IBM Research (CC-BY-SA).

Como explica brillantemente Scott Aaronson en un cómic ilustrado por Zach Weinersmith, la computación cuántica tiene poco que ver con un montón de ordenadores clásicos trabajando en paralelo. De hecho, no sería tan interesante si fuera así, ¿no? En realidad, la computación cuántica se basa en dos ideas, digamos, ‘genuinamente cuánticas’, que en jerga técnica se denominan con las palabrejas ‘superposición’ e ‘interferencia’.

La primera es precisamente la palabra para designar que en la física cuántica las propiedades pueden estar indefinidas o, mejor dicho, definidas solo por probabilidades. Esto hace que el cúbit, la unidad mínima de información en computación cuántica, pueda comportarse de un modo muy distinto a los bits clásicos. Mientras que un bit tiene que estar necesariamente en uno de sus dos estados posibles, 0 ó 1, un cúbit se puede preparar para que tenga una cierta probabilidad de estar en 0 y otra cierta probabilidad de estar en 1. Lo mismo puede hacerse con un conjunto de cubits: se pueden preparar para tener una cierta probabilidad de estar en, digamos, 0000011000… y una cierta probabilidad de estar en 0000111111… o lo que sea.

La segunda palabreja quiere decir que en física cuántica las cosas pueden interferir, de la misma forma que interfiere la luz: cuando dos ondas de luz se encuentran en un sitio, el resultado puede ser que no haya la misma luz que la suma de la luz de las dos ondas por separado: puede haber más luz (interferencia constructiva) o menos luz (interferencia destructiva). Un ordenador usaría la interferencia constructiva para aumentar la probabilidad de tener una de las posibilidades iniciales (la solución del problema) y la interferencia destructiva para reducir las de todas las demás. Esto sólo es posible si en el proceso se genera el famoso entrelazamiento cuántico: es decir, en algún punto es preciso que un conjunto de cubits no solo esté en superposición, sino que existan correlaciones muy fuertes entre ellos, correlaciones que solo pueden alcanzarse en un sistema cuántico. No todas las superposiciones tienen esa propiedad.

Un ejemplo que sí la tiene sería un caso con dos cubits preparados para que tengan una probabilidad del 50% de estar en 00 y la misma probabilidad de estar en 11. El estado de cada cúbit es completamente aleatorio (cada uno de ellos tiene la misma probabilidad de estar en 0 o en 1) pero está totalmente correlacionado con el de su compañero: si hago una medida y determino que el estado de uno de ellos es, por ejemplo, 0, inmediatamente sé que el estado del otro cúbit es también 0.

Circuito de cuatro cubits

Circuito de cuatro cubits. / IBM Research (CC-BY-SA).

El ejemplo de la guía telefónica

Veamos un ejemplo bonito de esto. Por diversos motivos, el interés de este ejemplo es meramente académico, pero confío en que sirva para entender mejor cómo podría funcionar un ordenador cuántico.

Imagine que tiene un número de teléfono pero no sabe a qué persona pertenece. Imagine también que se le ocurre usar la guía telefónica para esto. Puesto que el orden de la guía es alfabético para los nombres, resulta que los números no tienen ninguna ordenación en absoluto, así que ya se puede preparar para una búsqueda lenta y tediosa.

¡Ah, pero podemos usar un ordenador! El ordenador, básicamente, hará lo mismo que haría usted: ir número por número y compararlo con el que tiene usted, hasta que haya una coincidencia. Podría haber mucha suerte y que el ordenador encontrase esa coincidencia tras comparar pocos números… pero también podría haber muy mala suerte y que el ordenador tuviese que rastrear casi toda la guía.

En general, podemos decir que el número de búsquedas que habrá que hacer (el número de pasos del algoritmo que está aplicando el ordenador) crecerá linealmente con el número total de teléfonos de la guía: si multiplicamos por dos el número total de números de teléfono, también aumentará por dos el número de pasos. Pues bien: si tenemos un ordenador cuántico, podemos usar una receta, el ‘algoritmo de Grover’, que hará que encontremos el resultado correcto en menos pasos. Con este algoritmo si aumentamos por dos el número total de teléfonos, el número de pasos aumentará sólo en la raíz cuadrada de dos.

Simplifiquemos aún un poco más, para ver exactamente de qué estamos hablando. Imagine que tras una fiesta usted ha apuntado cuatro números de teléfono en un ordenador (por supuesto, a estos efectos, un teléfono móvil es un pequeño ordenador), cada uno con su nombre correspondiente. Unas semanas más adelante, vaciando los bolsillos, usted se encuentra con una servilleta arrugada donde hay un número escrito, pero ya no se distingue el nombre. No hay problema: solo tiene que introducir el número en su ordenador para que busque a cuál de los cuatro contactos que usted apuntó corresponde.

Si su aparato es clásico, su agenda digital de cuatro números necesitará unos cuantos bits: la información de cada número (por ejemplo, «Nombre: …, Número: …») estará clasificada por el valor de dos bits: o bien 00, o bien 01, o bien 10, o bien 11. Pongamos que el número que busca está guardado en la casilla 10. Cuando usted teclee el número de la servilleta, el ordenador irá casilla por casilla hasta encontrar la 10, identificar el nombre asociado al número y devolvérselo. Con mucha suerte, su número estará en la primera casilla de búsqueda, pero con mala suerte estará en la última, y el ordenador tendrá que dar cuatro pasos antes de encontrar lo que usted busca.

Pero usted mola mucho más que todo eso y tiene un pequeño ordenador cuántico. Entonces, para encontrar su número solo necesita dos cubits y haberse bajado la app ‘Grover’. El primer paso que dará la app será preparar los cubits para que tengan una probabilidad del 25% de estar en 00, una probabilidad del 25% de estar en 01… y así con las cuatro posibilidades. Cuando usted introduzca el número, la app lo identificará como el correspondiente a, por ejemplo, 01, y entonces sabrá la operación (puerta lógica cuántica) que tiene que aplicar sobre el ambos cúbits. Tras esa operación, el algoritmo de Grover nos dice que los cubits ahora estarán en un estado tal que la probabilidad de estar en 01 (o el que sea) es exactamente el 100%. Es decir, en este caso concreto, con solo cuatro números, usted encontrará siempre el número en un solo paso.

Errores cuánticos

Naturalmente, esto (aunque es muy molón) no tiene gran aplicación práctica: la diferencia en el número de pasos no es muy grande, y usted puede encontrar un número en una lista de cuatro con un golpe de vista. Pero si pensamos en una guía de un millón de números, estamos hablando de la diferencia entre hacer un número de pasos del orden de un millón (con un ordenador convencional) o del orden de mil (con un ordenador cuántico). Por supuesto, para eso necesitamos correr la app Grover en un ordenador cuántico con muchos más cubits, y eso todavía no es posible. De momento, los ordenadores cuánticos tienen a lo sumo unas cuantas decenas de cubits, y todavía cometen muchos errores.

Uso dos cubits del ordenador cuántico de IBM para encontrar un número de teléfono en una lista de 4.

Uso dos cubits del ordenador cuántico de IBM para encontrar un número de teléfono en una lista de 4.

Para hacernos una idea, he lanzado el experimento que acabo de describir con dos cubits en el ordenador cuántico de IBM, que es accesible en línea. En la imagen, vemos las operaciones que hay que hacer en el caso de estar buscando el 00. En el primer instante de tiempo (todo lo que ocurre en la misma línea vertical es simultáneo) las dos puertas H sirven para preparar a los cubits en el estado inicial descrito más arriba. Todo lo demás, salvo las dos últimas operaciones, es el proceso de transformación de los cubits, y podemos considerar que es un paso del algoritmo de Grover (este paso sería distinto si estuviera buscando el 01, el 10 o el 11). En el camino, los cubits se entrelazan. Para una búsqueda en una lista más larga, ese paso tendría que repetirse un cierto número de veces.

Las dos últimas operaciones son medidas del estado de los dos cubits. La teoría nos dice que en un ordenador cuántico ideal el resultado de estas medidas sería siempre 00, con probabilidad 100 %. Como los ordenadores cuánticos reales todavía tienen errores que los alejan del comportamiento ideal, el resultado real no es perfecto: como vemos en la segunda imagen, tras 1024 repeticiones del experimento, la probabilidad de obtener el 00 fue del 87 % (ocurrió en 890 ocasiones). Esto nos da una idea realista del estado de la computación cuántica en la actualidad: incluso en ejemplos sencillos y académicos como este los errores son todavía significativos. Por supuesto, esto podría cambiar rápidamente en los próximos años, pero, como ven, hay mucho trabajo por delante todavía.

Resultados de 1024 repeticiones del experimento de la imagen anterio

Resultados de 1024 repeticiones del experimento de la imagen anterior. El resultado correcto se obtuvo el 87% de las veces.

Como resumen, confiamos en que haya quedado claro que un ordenador cuántico no es un aparato que realiza muchas operaciones a la vez o en paralelo. Si así fuera, no sería muy distinto de un supercomputador clásico. Al contrario, un ordenador cuántico usa las propiedades de la física cuántica para acelerar un cálculo concreto. Las correlaciones entre los distintos bits cuánticos pueden hacer que se llegue al resultado deseado significativamente antes de lo que lo haría un ordenador convencional. Eso requiere de recetas específicas para cada problema, las cuales conocemos en un número pequeño de casos, de momento. En el futuro, no solo habrá que diseñar esas recetas para cada caso de interés, sino que habrá que conseguir que los ordenadores cuánticos cometan muchos menos errores, o sean capaces de corregirlos.

* Carlos Sabín es investigador del CSIC en el Instituto de Física Fundamental, responsable del blog Cuantos completos y autor del libro Verdades y mentiras de la física cuántica (CSIC-Catarata).

Zeolitas en Etiopía: una solución ecológica contra la fluorosis

Por Mar Gulis (CSIC)

¿Te has preguntado alguna vez por qué aparecen manchas en los dientes? El tabaco o el vino tinto son algunas de las causas que te vendrán a la cabeza más rápidamente. Entre la multitud de motivos posibles que encontrarás, nos detendremos en uno que va más allá del esmalte dental: la fluorosis. Además de las manchas que produce en los dientes, esta enfermedad ósea causada por el consumo excesivo del ión fluoruro (conocido como flúor) en la dieta, sobre todo a través del agua, puede provocar osteoesclerosis, calcificación de los tendones y ligamentos, deformidades de los huesos, y otras afecciones.

Fuente de agua potabilizada

Fuente de agua potabilizada por la tecnología del CSIC en Etiopía. / César Hernández.

Según estima la Organización Mundial de la Salud (OMS), la fluorosis afecta a unos 300 millones de personas en el mundo. No en vano, la OMS considera que el flúor es una de las diez sustancias químicas que constituyen una preocupación para la salud pública, entre las que también figuran el amianto, el arsénico y el mercurio, entre otras.

A pesar de que el fluoruro tiene efectos beneficiosos para nuestra dentición como la reducción de las caries, la presencia de elevadas cantidades de este elemento en el agua puede convertirlo en un contaminante natural. Consumir agua con una concentración de fluoruro superior a 1,5 miligramos por litro (límite establecido por la OMS) puede provocar problemas de salud asociados a la fluorosis, como los antes citados, y es especialmente perjudicial para mujeres en estado de gestación y niños/as que están formando sus huesos.

La existencia de flúor en el agua tiene un origen geológico, es decir, se debe a que el agua está en contacto con rocas de acuíferos que tienen el ion fluoruro en su composición química. Estas rocas se hallan en terrenos volcánicos, por tanto, más de 25 países en todo el mundo están afectados por la contaminación de fluoruros en el agua, entre los que se encuentran España, China, India, Estados Unidos y Etiopía. En este último país, el 41% de sus fuentes de agua potable tienen una concentración de fluoruro superior a 1,5 mg/l y se calcula que aproximadamente el 15% de la población etíope está afectada por fluorosis.

Zeolitas naturales

Mineral de Estilbita, zeolita natural de Etiopia. / Defluoridation Ethiopia.

Filtros naturales para atrapar el fluoruro

Etiopía es uno de los países pertenecientes al valle del Rift, junto con Kenia, Uganda y Tanzania. En la zona del valle del Rift etíope, “donde se abra un pozo, va a haber contaminación por fluoruro y, por tanto, la enfermedad tiene elevados números”, asegura Isabel Díaz, investigadora del CSIC en el Instituto de Catálisis y Petroleoquímica (ICP). Díaz es además una de las inventoras de una tecnología que permite extraer el fluoruro del agua de una manera barata y sostenible.

Esta tecnología está basada en zeolitas naturales, un mineral abundante en Etiopía, así como en otros lugares del mundo, ya que también es de origen volcánico. “Su principal característica es que es un material muy poroso, lleno de cavidades de tamaño molecular”, explica la científica del CSIC. Gracias a esta estructura, las zeolitas tienen la capacidad de atrapar una amplia variedad de elementos, como sodio, potasio, calcio y magnesio, y son utilizadas como catalizadores y absorbentes en un gran número de procesos químicos industriales, sobre todo en la industria petroquímica.

Estructura zeolita

Estructura atómica de la Estilbita. En azul moléculas de agua, verde cationes calcio y morado cationes sodio. / Defluoridation Ethiopia.

Con la nueva tecnología desarrollada por el grupo del ICP —además de Isabel Díaz como investigadora principal, forman parte del equipo los científicos Joaquín Pérez Pariente y Luis Gómez Hortigüela—, junto con la Universidad de Adís Abeba, se modifica la zeolita para que absorba selectivamente el ion fluoruro. “De esta forma es posible abastecer a la población de agua potable”, afirma Díaz. Esta solución resulta primordial en el valle del Rift en Etiopía, dado que el agua de los pozos en la zona tiene una concentración de fluoruro de 2-3 mg/l, prácticamente el doble del límite que establece la OMS.

Planta potabilizadora

Planta potabilizadora con zeolitas en Etiopía. / César Hernández.

Aunque este tipo de métodos basados en absorbentes generan una gran cantidad de residuos tras su uso, una de las mayores ventajas de la zeolita es que luego puede usarse como fertilizante del suelo. En la actualidad, se han instalado dos plantas potabilizadoras con zeolitas en las localidades etíopes Dida y Obe, gracias al proyecto Defluoridation Ethiopia, del CSIC y la ONG Amigos de Silva. Esta acción supone un primer paso para que empiece a mermar la cifra de 14 millones de personas en riesgo de padecer fluorosis que, según los estudios, viven en el país africano.

 

El negocio de los datos personales en internet: cuando el producto eres tú

Por David Gómez-Ullate Oteiza (CSIC)*

En la era de internet nos hemos acostumbrado a que muchas cosas sean gratis: la información de los diarios, los navegadores GPS, los gestores de correo… Nadie puede resistirse a la atracción de lo gratuito. Uno se pregunta, sin embargo, dónde está el producto detrás de tanta gratuidad: ¿cómo ganan dinero estas grandes compañías? Y aquí viene a la cabeza la frase del mítico jugador de póquer Amarillo Slim: “Mira a tu alrededor, si no sabes identificar al pardillo en la mesa, entonces el pardillo eres tú”. En internet, cuando no sabes cuál es el producto, entonces el producto eres tú. Para Google, Facebook y el resto de gigantes de internet no somos usuarios, sino productos: los destinatarios de sus campañas de publicidad.

Así pues, el modelo de negocio es un intercambio en el que nos ofrecen un gestor de correo electrónico con grandes capacidades, una plataforma para conversar con amigos o para encontrar a antiguos compañeros de clase, un navegador GPS para no perdernos en la ciudad, una carpeta en la nube para almacenar nuestros ficheros… Todo ello a cambio de recopilar una cantidad de datos tan inmensa que probablemente hace que Google nos conozca mejor que nosotros mismos: qué coche te quieres comprar, dónde vas a ir de vacaciones, cuántos hijos tienes, qué camino tomas para ir a trabajar, a quién vas a votar, cómo te sientes hoy, esa pasión oculta que no has confesado a nadie pero has buscado en internet, a qué hora te acuestas y con quién, etc.

Big data

/Wikimedia Commons

Con esta ingente cantidad de datos, la publicidad digital presume de su precisión, al impactar a la persona escogida en el lugar idóneo y el momento adecuado, frente a los anuncios tradicionales en televisión, por ejemplo, que solo permiten segmentar el público objetivo por franja horaria o asociado a ciertos programas. De hecho, cada vez que cargamos la página de nuestro diario favorito para leer las noticias del día, el correspondiente banner publicitario que vemos depende de una compleja subasta (RTB, Real Time Bidding) en la que distintos algoritmos pujan por mostrarnos su anuncio en función de cuánto piensen que nuestro perfil se adapta al producto que desean vender. Todo esto ocurre en la fracción de segundo que tarda el navegador en cargar la página; obviamente, estos algoritmos emplean toda la información que puedan adquirir sobre quién está al otro lado del ordenador para afinar los modelos: más información implica modelos más precisos y, típicamente, mayor rendimiento de la inversión en publicidad.

Así, Google es la mayor agencia de publicidad del mundo. Facebook o Twitter también siguen el mismo modelo de negocio: nos ofrecen una plataforma para que voluntariamente les entreguemos una cantidad inimaginable de datos personales gracias a los cuales pueden afinar campañas de publicidad muy orientadas a su público objetivo.

En la economía digital nadie da duros a cuatro pesetas o, como nos recordaba el Nobel de Economía Milton Friedman: “There ain’t no such a thing as a free lunch (no existen los almuerzos gratis)”. Las principales empresas hoteleras son Airbnb y Booking; no tienen uno solo alojamiento en propiedad. La empresa líder de movilidad es Uber; no posee un solo vehículo. La primera empresa del sector de venta al por menor es Alibaba; no dispone de inventario. La mayor empresa de contenidos digitales es Facebook; no genera su contenido. Todas son empresas de datos. Recopilan, limpian, analizan y desarrollan aplicaciones para poner en contacto productores de servicios con consumidores.

Pero entonces, ¿cuánto deberían valer nuestros datos personales? La pregunta es muy relativa y probablemente tenga dos respuestas bien diferenciadas para la persona que cede los datos y para la que los adquiere. Para el ciudadano o ciudadana media, a tenor del comportamiento observado durante los últimos años, el valor que concedemos a nuestros propios datos es más bien pequeño, pues prácticamente los hemos regalado a cambio de nada a las grandes compañías. Para los gigantes de internet podemos hacer un cálculo sencillo basado en dividir el beneficio del sector publicitario digital en EE UU durante 2016 (83.000 millones de dólares) entre el número de usuarios en el país (280 millones), lo que arrojaría una cifra media de 296 dólares per cápita. Prácticamente nadie en el entorno empresarial duda ya del inmenso valor que tiene la adquisición de datos, aunque la sociedad en su conjunto no sea aún muy consciente de ello.

Privacidad en tiempos de pandemia

Entre 1950 y 1989, la policía política de la RDA articuló métodos de vigilancia que implicaron a 250.000 personas entre empleados e informantes. Para una población de 17 millones suponía un espía por cada 70 habitantes. Con los métodos de supervisión existentes en la actualidad, empleando técnicas de Inteligencia Artificial, tratamiento de imágenes y procesamiento del lenguaje natural, se puede vigilar a miles de millones de ciudadanos con apenas varios miles de empleados.

Big data

/Wikimedia Commons

Aunque cuando una empresa conecta el micrófono de mi móvil no está interesada en lo que digo, solo quiere saber qué canal de televisión estoy mirando o qué estoy pensando en adquirir. Porque una parte importante de la industria publicitaria se basa en pagar por los anuncios en función de la contribución que cada uno haya tenido en conseguir que adquieras el producto. En su jerga, ellos usan el término “conversión”, pero no una conversión a los principios socialistas de la República Democrática de Alemania, sino una conversión para ganar personas adeptas al último coche, tableta o viaje.

En los últimos meses se está produciendo un intenso debate sobre la pertinencia del uso de datos personales para luchar contra la pandemia, lo cual ha puesto en el ojo público muchas de las cuestiones mencionadas arriba. Los datos de geolocalización o los contactos con otras personas se pueden usar para diseñar sistemas más eficientes y dirigidos de contención de la epidemia, aislando sólo personas infectadas y sus contactos, o lanzando alertas en los lugares con mayor probabilidad de infección. Compartir datos clínicos de pacientes permite ampliar la base estadística de los estudios sobre COVID y conocer mejor la enfermedad para mejorar el tratamiento de enfermos o las políticas de salud pública.

Todas estas cuestiones requieren un debate sobre el alcance de dichas medidas, que en cualquier caso debe de ser limitado en el tiempo y no ser usado con fines distintos a los mencionados. Este debate contrasta con la noticia publicada recientemente sobre las denuncias de un empleado de Apple que trabajaba en el programa de transcripción de textos grabados por sus dispositivos, sin ningún consentimiento por parte de los usuarios. Es fundamental que la sociedad sea más consciente del uso y abuso de los datos personales por parte de las grandes corporaciones y participe de manera activa en el debate abierto sobre la gestión de los mismos.

* David Gómez-Ullate Oteiza es investigador en la Universidad de Cádiz y coautor del libro Big data de la colección ¿Qué sabemos de? (CSIC-Catarata).

La ‘huella olfativa’: ¿es posible identificar a una persona por su olor?

Por Laura López Mascaraque (CSIC) *

Hace cien años, Alexander Graham Bell (1847-1922) planteaba lo siguiente: “Es obvio que existen muchos tipos diferentes de olores (…), pero hasta que no puedas medir sus semejanzas y diferencias, no existirá la ciencia del olor. Si eres ambicioso para encontrar un tipo de ciencia, mide el olor”. También decía el científico británico: “Los olores cada vez van siendo más importantes en el mundo de la experimentación científica y en la medicina, y, tan cierto como que el Sol nos alumbra, es que la necesidad de un mayor conocimiento de los olores alumbrará nuevos descubrimientos”.

A día de hoy la ciencia continúa investigando el olfato y sus posibles aplicaciones. De momento sabemos, al menos, que detectar y clasificar los distintos tipos de olores puede ser extremadamente útil. El olfato artificial, también llamado nariz electrónica, es un dispositivo que pretende emular al sistema olfativo humano a fin de identificar, comparar y cuantificar olores.

Los primeros prototipos se diseñaron en los años sesenta, aunque el concepto de nariz electrónica surge en la década de los ochenta, definido como un conjunto de sensores capaces de generar señales en respuesta a compuestos volátiles y dar, a través de una adecuada técnica de múltiples análisis de componentes, la posibilidad de discriminación, el reconocimiento y la clasificación de los olores. El objetivo de la nariz artificial es poder medir de forma objetiva (cuantitativa) el olor. Se asemeja a la nariz humana en todas y cada una de sus partes y está formada por un conjunto de sensores que registran determinadas señales como resultados numéricos, y que un software específico interpreta como olores a través de algoritmos.

Los sensores de olores –equivalentes a los receptores olfativos situados en los cilios de las neuronas sensoriales olfativas del epitelio olfativo– están compuestos por materiales inorgánicos (óxido de metal), materiales orgánicos (polímeros conductores) o materiales biológicos (proteínas/enzimas). El uso simultáneo de estos sensores dentro de una nariz electrónica favorece la respuesta a distintas condiciones.

Comentábamos en otro texto en este mismo blog cómo se puede utilizar el olfato, y en particular el artificial, en el área de la medicina (mediante el análisis de aliento, sudor u orina), para el diagnóstico de enfermedades, sobre todo infecciones del tracto respiratorio. De hecho, en la actualidad se está estudiando la posibilidad de desarrollar y aplicar narices electrónicas para detectar la presencia o no del SARS-CoV-2 en el aliento de una persona, y ayudar así en el diagnóstico de la Covid-19. Pero lo cierto es que su desarrollo podrá tener otras muchas aplicaciones: seguridad (detección de explosivos y drogas, clasificación de humos, descubrimiento de agentes biológicos y químicos), medioambiente (medición de contaminantes en agua, localización de dióxido de carbono y otros contaminantes urbanos o de hongos en bibliotecas), industria farmacéutica (mal olor de medicamentos, control en áreas de almacenamiento) y agroalimentación (detección de adulteración de aceites, maduración de frutas, curación de embutidos y quesos).

De la ‘huella olorosa’ a la odorología criminalística

Las nuevas generaciones de sensores también pueden servir para detectar ese olor corporal personal conocido como huella aromática u olfativa. Esta podría llegar a identificar a una persona como ocurre con la huella digital. Helen Keller (1880-1968) esbozó la idea de que cada persona emite un olor personal, como una huella olfativa única e individual. Para ella, que se quedó sordociega a los 19 meses de edad a causa de una enfermedad, esta huella tenía un valor incalculable y le aportaba datos como el oficio de cada una de las personas con las que tenía relación. Y no se trata del perfume, sino que cada uno de nosotros tenemos un olor particular, un patrón aromático, compuesto por secreciones de la piel, flora bacteriana y olores procedentes de medicamentos, alimentos, cosméticos o perfumes. Este patrón podría emplearse, en el futuro, para la identificación personal e incluso en investigación criminalística para la localización de delincuentes.

 

Ilustración de Lluis Fortes

Ilustración de Lluis Fortes

La odorología criminalística es una técnica forense que utiliza determinados medios y procedimientos para comparar el olor de un sospechoso con las muestras de olor recogidas en el lugar del crimen. De hecho, en algunos países se permite usar como prueba válida la huella del olor. Así mismo, científicos israelíes están desarrollando una nariz electrónica que pueda detectar la huella aromática de seres humanos a nivel individual como si se tratase de una huella digital. Este olor particular está determinado genéticamente y permanece estable a pesar de las variaciones en el ambiente y la dieta. Por tanto, el olor proporciona un rastro reconocible de cada individuo que puede detectarse por la nariz, por un animal entrenado o utilizando instrumentos químicos más sofisticados.

Las narices electrónicas están todavía lejos de imitar el funcionamiento del olfato humano, pero para algunas aplicaciones este último tiene algunos inconvenientes, como la subjetividad en la percepción olfativa, la exposición a gases dañinos para el organismo o la fatiga y el deterioro que implica la exposición constante a estas pruebas. Por tanto, las narices electrónicas resultan un mecanismo rápido y confiable para monitorizar de forma continua y en tiempo real olores específicos.

* Laura López Mascaraque es investigadora del Instituto Cajal del CSIC y autora, junto con José Ramón Alonso, de la Universidad de Salamanca, del libro El olfato de la colección ¿Qué sabemos de? (CSIC -Catarata).

 

 

¿Es posible “oler” una enfermedad?

Por Laura López Mascaraque (CSIC)*

Aunque el olfato es el más desconocido de los sentidos, es bien sabido que los olores pueden provocar reacciones emocionales, físicas y mentales. Así, algunos olores desagradables y penetrantes, denominados hedores, se han asociado históricamente tanto a la muerte como a la transmisión de enfermedades.

Antes de que se comenzaran a perfeccionar los medios de investigación médica a partir del siglo XVIII, el análisis del olor y color de la orina era el recurso más empleado en el diagnóstico. Desde la Edad Media existían ruedas de orina, divididas en 20 colores posibles, con categorías olfativas que marcaban analogías entre estos caracteres y la dolencia. Los pacientes llevaban la orina en frascos de cristal transparente y los médicos, además de observarla, basaban su diagnóstico también en su sabor. En 1764, el inglés Thomas Willis describió como muy dulce, similar a la miel, la orina de una persona diabética, por lo que a esta enfermedad se la denominó Diabetes mellitus, e incluso durante un tiempo se la llamó enfermedad de Willis.

Rueda de orina medieval que se utilizaba para la realización de uroscopias

Rueda de orina medieval que se utilizaba para la realización de uroscopias.

Hay otras anécdotas curiosas, como la “enfermedad del jarabe del arce”, una patología rara de origen metabólico así llamada por el olor dulzón de la orina de los pacientes, similar al de este alimento. En otros casos, la orina puede oler a pescado si se padece trimetilaminuria (o síndrome de olor a pescado), mientras que el olor a levadura o el olor a amoniaco se debe a la presencia de determinadas bacterias.

El cirujano francés Landré-Beauvais (1772-1840) recomendaba a los médicos memorizar los diferentes olores que exhalaban los cuerpos, tanto sanos como enfermos, a fin de crear una tabla olfativa de las enfermedades para elaborar un primer diagnóstico. En concreto, él y sus seguidores entendían que la halitosis es uno de los signos del empacho e intentaban descubrir determinadas enfermedades por las alteraciones del aliento. Pensaban que algunas patologías tenían un determinado olor, es decir, hacían emanar del cuerpo del paciente compuestos orgánicos volátiles específicos. No les faltaba razón, y aunque hoy día el uso del olfato en la práctica médica ha desaparecido, sabemos que el patrón aromático que desprende una persona enferma es distinto al de una sana:

  • Un aliento con olor afrutado se manifiesta a medida que el organismo elimina el exceso de acetona a través de la respiración, lo que puede ocurrir en caso de diabetes.
  • Un aliento que huele a pescado crudo se produce por un trastorno del hígado (insuficiencia hepática).
  • Un aliento con olor a vinagre es desprendido por algunos pacientes con esquizofrenia.
  • El olor similar al amoniaco (parecido a la orina) suele ser signo de insuficiencia renal o infección en la vejiga.

El análisis moderno del aliento empezó en la década de 1970, cuando el doble premio Nobel de Química (1954) y de la Paz (1962) Linus Pauling detectó por cromatografía de gases más de doscientos compuestos orgánicos volátiles, aunque en la actualidad sabemos que por nuestra boca podemos exhalar más de tres mil compuestos. Entre las pruebas de aliento más conocidas actualmente destacan la que se realiza para detectar la presencia de la bacteria Helicobacter pylori, responsable de úlceras e inflamación del estómago y de la gastritis; las pruebas de alcoholemia que identifican la presencia de etanol y acetaldehído; y las que detectan óxido nítrico como predictivo del asma infantil.

Del olfato canino a las narices electrónicas

Existen indicios de que perros bien entrenados pueden detectar tumores cancerígenos a partir del aliento y las heces. Distintos laboratorios intentan descubrir algún elemento común de los diferentes tumores y, dado que estos animales poseen una enorme capacidad de discriminación odorífera, incluso con olores extremadamente parecidos en su composición química, están siendo entrenados para que, oliendo la orina de los pacientes, puedan indicar o predecir la existencia de cáncer de próstata, pulmón y piel. Una vez se conozcan los tipos de compuestos segregados por las células tumorales que identifican los perros, se podrán desarrollar narices electrónicas para complementar la práctica clínica.

Las narices electrónicas utilizan sensores químicos de vapores (gases) para analizar algunos compuestos orgánicos volátiles que se exhalan en el aliento. Esperamos que, en un futuro próximo, esta identificación electrónica de los olores permita establecer biomarcadores que contribuyan al diagnóstico precoz de diferentes tipos de asma, diabetes, cáncer o enfermedades tropicales como hidatidosis, leishmaniasis y dengue.

De hecho, en la actualidad, se está estudiando la posibilidad de desarrollar narices electrónicas para ayudar en el diagnóstico de la enfermedad Covid-19 a través del aliento de una persona, a fin de detectar la presencia o no del SARS-CoV-2. El paso previo imprescindible será identificar los compuestos orgánicos volátiles propios de esta enfermedad. También, varios estudios a nivel internacional han reportado una asociación directa de la pérdida abrupta del olfato y/o gusto (anosmia/ageusia) como un síntoma temprano común de esta enfermedad. Por ello, varias asociaciones médicas, y en distintos países, han apuntado que la anosmia podría ser un buen marcador de presencia en casos asintomáticos. Además, parece que este síntoma también podría indicar que la infección por SARS-CoV-2 no será tan severa.

 

Laura López Mascaraque es investigadora del Instituto Cajal del CSIC y autora, junto con José Ramón Alonso, de la Universidad de Salamanca, del libro El olfato de la colección ¿Qué sabemos de? (CSIC-Catarata).

10 experimentos con luz para hacer en casa: crea un arcoíris en tu habitación, monta un microscopio casero o descubre cómo funciona la fibra óptica

Por Mar Gulis (CSIC)

Estos días de confinamiento muchas personas estamos aprovechando para, al fin, hacer limpieza y poner un poco de orden en casa, ese espacio en el que últimamente pasamos todo el tiempo. Llega el momento de deshacerse de cosas: CDs antiguos que aún conservamos a pesar de no tener dispositivos para ver su contenido, cajas o cartones que acumulábamos esperando darles un nuevo uso o, incluso, algún esmalte de uñas que se ha quedado un poco seco y ya no vamos a utilizar.

Pero, antes de desechar definitivamente estos y otros objetos, ¿por qué no darles una nueva oportunidad y pasar con ellos un rato entretenido? Eso es lo que te proponemos en este post: sacarles partido para descubrir de manera sencilla y amena los espectaculares efectos que tiene la luz.

Si hace unas semanas te animábamos a realizar experimentos relacionados con el agua y sus propiedades, esta vez te invitamos a jugar y aprender con la luz. Es tan fácil como descargar de manera gratuita diez fichas de experimentos de la web del CSIC y seguir sus sencillas instrucciones e ilustraciones, que te permitirán entender, y también enseñar a los más pequeños de la familia, conceptos y propiedades de la luz.

¿Qué puedes conseguir con estos experimentos? Cosas tan variadas como crear imágenes de tres dimensiones como si de un holograma se tratase, desmentir que el blanco sea un color y argumentarlo sin problemas o construir un espectroscopio casero con el que observar los espectros de colores que se dibujan con diferentes fuentes de luz.

Holograma creado durante una actividad de la Semana de la Ciencia del IOSA Student Chapter en el Instituto de Óptica del CSIC. Juan Aballe/Cultura Científica CSIC

Además, gracias a estos experimentos podrás conocer cómo funcionan tecnologías que nos facilitan mucho la vida –sobre todo en estos días de confinamiento–, como los láseres o la fibra óptica. También tendrás la oportunidad de fabricar un microscopio casero y observar con él una gota de agua ampliada hasta 10.000 veces para ver lo que se mueve en su interior. Seguramente te sorprenda lo que podemos encontrar en una muestra de saliva de nuestra boca y en el agua que beben nuestras mascotas, la que se filtra tras regar las plantas o la que podemos recoger de cualquier charco que se forme tras la lluvia; pero también podrás entender en qué consiste la convergencia de la luz.

Además de sacar ese lado curioso que todos llevamos dentro, estos experimentos te ayudarán también a entender y asimilar conceptos complejos, como la reflexión y refracción de la luz, la dispersión de los rayos de luz o el funcionamiento de las cámaras oscuras, que supusieron uno de los primeros pasos en el mundo de la fotografía.

¿Quién no se ha maravillado al observar un arcoíris o un hermoso atardecer? ¿Quién no se ha quedado hipnotizado viendo el baile de una vela o el crepitar del fuego de una chimenea? ¿Y qué decir cuando una pajita parece partida dentro de un vaso de agua? Si eres de los que siente curiosidad por estas cosas y quieres saber por qué ocurren, ponte manos a la obra y encuentra las respuestas que buscas.

Un universo de luz

Estas fichas de experimentos forman parte de los recursos elaborados por el Consejo Superior de Investigaciones Científicas (CSIC), con ayuda de la Fundación Española para la Ciencia y la Tecnología (FECYT), en el marco del Año internacional de la luz 2015. Si después de hacer los experimentos te quedas con ganas de saber más, siempre puedes descargar otros materiales elaborados durante esta conmemoración, como la exposición Un Universo de luz, que incluye impresionantes imágenes y textos divulgativos, y las unidades didácticas para diferentes niveles educativos que la acompañan.

Para conocer otros materiales que el CSIC pone a tu disposición para aprender ciencia desde casa de una manera divertida, pincha aquí.

Descubre las revoluciones matemáticas que cambiaron el mundo

Por Mar Gulis (CSIC)

Los ordenadores, la energía, la teoría del caos, el número pi… las matemáticas están por todas partes, y esto se debe a las contribuciones de grandes matemáticos y matemáticas que cambiaron el mundo. ¿Te gustaría conocer a algunas de estas figuras? Puedes hacerlo desde tu casa con la serie de animación ‘Revoluciones Matemáticas’, que en su segunda temporada presenta a cuatro personajes clave de esta disciplina: Emmy Noether, creadora del álgebra moderna; Leonhard Euler, precursor de la topología; Ada Lovelace, pionera de la programación; y Henri Poncairé, que sentó las bases de la teoría del caos.

Cada vídeo, de dos a tres minutos de duración, está acompañado por un taller de matemáticas recreativas en el que se abordan con mayor profundidad los conceptos presentados. Con ellos podrás entender las bases de la teoría del caos, fabricar una máquina para sumar o jugar con grafos de gominolas. Todos los materiales han sido elaborados por el Instituto de Ciencias Matemáticas, adscrito al CSIC y varias universidades madrileñas, y Divermates en el marco del proyecto Ciudad Ciencia. Aquí te contamos algunos de sus contenidos.

La “genio” alabada por Einstein

Comencemos por el álgebra moderna y por su creadora, Emmy Noether (1822-1935). Nadie esperaba a principios del siglo XX que esta matemática alemana fuera a convertirse en la artífice de la teoría que permitiría entender la conservación de la energía. Sin embargo, al morir, el mismísimo Albert Einsten llegó a definirla como “la genio creativa de las matemáticas más significativa que ha existido desde que comenzó la educación superior para las mujeres”.

Muchos sostienen que las matemáticas no volvieron a ser lo mismo después de Emmy Noether. Además de realizar grandes aportaciones al álgebra o la física, Noether fue la primera mujer en participar como ponente en un Congreso Internacional de Matemáticas. Lo hizo en 1932, mientras que la segunda, Karen K. Uhlenbeck, no lo haría hasta 1990. Durante el nazismo, Noether tuvo que trabajar en casa con sus estudiantes y finalmente abandonar Alemania para continuar su labor docente. Se refugió en Estados Unidos hasta su temprana muerte.

El ‘cíclope’ de los poliedros

¿Qué sabemos de cubos, prismas u octaedros? El matemático Leonhard Euler (1707-1783) con su fórmula para poliedros introdujo ideas precursoras de la topología. Entre otras cosas, logró establecer un patrón común para los poliedros convexos con independencia del número de caras, vértices o aristas.

A Euler le gustaron las matemáticas desde pequeño y realizó aportaciones fundamentales a la geometría analítica moderna, la trigonometría y la teoría de los números. Desarrolló el concepto de función matemática y, para ello, definió el número e (o número de Euler), la base de la función exponencial. Además, hablando de números, fue quien popularizó el número π (‘pi’ o 3,141592…). Se le conocía como el ‘cíclope matemático’ ya que perdió la visión de un ojo a los 31 años. 17 años antes de morir se quedó totalmente ciego, pero esto tampoco frenó su carrera ni sus innumerables aportaciones en diferentes campos, que llegaron a publicarse hasta cincuenta años después de su muerte.

La primera programadora

El desarrollo de nuestros ordenadores modernos tiene su origen en Ada Lovelace (1815-1852), pionera de la programación y autora del primer programa de ordenador de la historia. Apasionada de las matemáticas desde pequeña, Ada Byron se codeaba con intelectuales y celebridades como Dickens, Faraday o Darwin. En una de esas reuniones conoció a Charle Babbage, inventor de la máquina diferencial (nuestra calculadora), y con quien trabajó en la máquina analítica. En sus notas a los trabajos de Babbage, Lovelace incluyó una serie de instrucciones, consideradas el germen de la programación y los algoritmos. Para ella, “las maquinas podían ir más allá de los simples cálculos numéricos”, cosa que demostró.

A pesar de su muerte prematura a los 36 años y de que se ha tardado más de cien años en reconocer su relevancia, hoy en día es todo un referente femenino en el campo de la tecnología. Incluso cuenta actualmente con un día propio: el segundo martes de octubre se celebra el ‘Ada Lovelace Day’ para impulsar la participación de las mujeres en la ciencia.

El ‘abuelo’ de la teoría del caos

Y, para terminar, volvemos a la topología moderna de la mano de su fundador, Henri Poincaré (1854-1912), precursor de la teoría del caos. En el instituto, el francés destacó en todas las asignaturas, pero especialmente en matemáticas, como también lo hizo a lo largo de su vida. Fue nombrado miembro de la Academia de Ciencias de Francia y llegó a ser presidente de la institución en 1906.

Poincaré basaba sus resultados en principios básicos y supo de buena tinta que de los errores se aprende. Aunque llegó a publicar alrededor de 500 artículos, tuvo que destruir uno cuando ya estaba en imprenta: el artículo contenía una resolución errónea del famoso problema de los tres cuerpos (trayectoria de tres objetos atraídos por la fuerza de la gravedad). Aunque no pudo solucionar el problema, sus observaciones fueron los primeros pasos de la teoría del caos, capaz de dar respuesta a problemas antes intratables en ámbitos como la economía, la biología o la meteorología.

 

Únete a la ciencia ciudadana: pon a tu ordenador a cribar fármacos contra el coronavirus

Por Mar Gulis (CSIC)

Colaborar desde casa en la búsqueda de medicamentos que frenen el coronavirus ya es posible gracias a un nuevo proyecto de ciencia ciudadana impulsado por el CSIC y la Fundación Ibercivis. Basta con tener un ordenador, conexión a internet y unirse, instalando un programa, a la red de computación distribuida de Ibercivis. A partir de ese momento, cada vez que se active el salvapantallas, tu ordenador se pondrá a hacer cálculos que servirán para conocer si fármacos que se están utilizando para tratar otras enfermedades víricas, como el ébola, la infección por VIH (causante del sida), la hepatitis B o la gripe, logran inhibir una proteína clave en la reproducción del virus SARS-CoV-2. Si quieres saber más, aquí te damos algunas claves del proyecto, que responde a las siglas ‘COVID-PHYM’.

Ciencia ciudadana

¿Por qué probar compuestos que ya existen?

Pues para ganar tiempo en el control de la pandemia. Como los medicamentos aprobados ya han demostrado ser suficientemente seguros para nuestra salud, podrían estar disponibles para tratar a pacientes con COVID-19 mucho antes que un fármaco de nueva creación.

En cualquier caso, aunque un medicamento esté aprobado, hay que demostrar que es eficaz contra este coronavirus. Los ensayos clínicos con personas son muy costosos en términos económicos, de tiempo y de esfuerzo para los pacientes y el sistema sanitario. Así que, antes de hacer pruebas de este tipo, conviene utilizar técnicas informáticas para seleccionar buenos candidatos, es decir, fármacos que tengan realmente oportunidades de funcionar.

¿Cuál es la diana terapéutica?

La proteína que se quiere inhibir se conoce como ARN polimerasa dependiente de ARN’ y ha sido escogida porque juega un papel central en la replicación y transcripción del material genético del virus. Si se neutraliza, se puede frenar la propagación del virus en el organismo y ayudar en la curación.

¿Qué pintan los ordenadores personales en todo esto?

Como explica Javier Martínez de Salazar, investigador del CSIC en el Instituto de Estructura de la Materia y líder del grupo que está detrás de esta iniciativa (Biophym), buscar con técnicas informáticas un compuesto capaz de neutralizar una proteína concreta es como probar un enorme número de llaves para abrir una cerradura. “Como en el caso de una llave y una cerradura, hay que encontrar el fármaco que mejor se adapte a la estructura de la zona de la proteína en la que esta realiza su función; el problema es que los modelos basados en la química-física que nos permiten hacerlo implican realizar cientos de miles de cálculos para medir la fuerza de la interacción de cada una de las posibles asociaciones entre el fármaco y la proteína”, advierte Javier Ramos Díaz, uno de los investigadores del grupo.

Un ordenador convencional tardaría varios años en ejecutar los cálculos necesarios para llevar a cabo la investigación. Por eso, el proyecto necesita la colaboración ciudadana: es decir, muchos ordenadores de personas voluntarias que reciban y procesen pequeños paquetes de trabajo. De este modo será posible conseguir una potencia de cálculo similar a la de un supercomputador y realizar todas las tareas previstas.

Coronavirus y proteina diana

Principal: imagen al microscopio electrónico del virus SARS-CoV-2 . Arriba a la derecha: estructura de la ARN-Polimerasa del SARS-CoV-2. / Center for Disease Control/epa/dpa y PDB Id: 6M71.

Realmente, ¿es eficaz distribuir el trabajo en muchos ordenadores?

Sí. Esta forma de trabajar se conoce como computación distribuida, y lleva cerca de 20 años ayudando con éxito a llevar a cabo proyectos científicos que demandan una gran capacidad de procesamiento. Uno de los ejemplos más vistosos es el proyecto SETI, que ha conseguido que millones de voluntarios y voluntarias contribuyan con sus ordenadores a analizar señales de radio procedentes del espacio en busca de indicios de vida extraterrestre. Para facilitar su puesta en marcha, la Universidad de Berkeley desarrolló la plataforma de computación distribuida BOINC, un programa de código abierto que actualmente utilizan numerosos centros de investigación de todo el mundo en áreas tan diversas como la física, las matemáticas, la climatología o la astrofísica.

En España, uno de los principales impulsores de este paradigma de computación ha sido Ibercivis. Aunque actualmente esta fundación se dedica a promover todo tipo de iniciativas de ciencia ciudadana, cuenta con una infraestructura de computación distribuida basada en BOINC con más de 20.000 voluntarios y voluntarias que ceden la potencia de cálculo de sus ordenadores y que ha dado soporte a más de 15 proyectos de investigación.

¿Qué hay que hacer para colaborar?

Solo necesitas descargar el programa BOINC y unirte a ‘Ibercivis BOINC’ en el momento de la instalación. Al hacerlo podrás elegir fácilmente cuándo y cómo participar. Si no quieres que el rendimiento del ordenador se vea afectado mientras lo usas, deja activada la configuración por defecto para que el programa solo se ejecute en los tiempos de pausa, cuando salta el salvapantallas.

Ciencia online: más de 100 conferencias de divulgación del CSIC para ver en casa

Por Mar Gulis (CSIC)

¿Por qué el cambio climático es un problema urgente? ¿De qué está hecho el universo? ¿Cómo se extinguieron los Neandertales? ¿Tiene la vida un origen extraterrestre? Estos días de confinamiento suponen una excelente oportunidad para saciar tu curiosidad científica. Las más de 100 charlas para todos los públicos que el Consejo Superior de Investigaciones Científicas (CSIC) ofrece en sus canales online te ayudarán a buscar respuestas a estas y otras muchas preguntas. Además, te permitirán conocer los últimos avances de la ciencia por boca de investigadores e investigadoras que trabajan en una gran variedad de campos, como la demografía, la biología, la geología o la física teórica.

Fernando Valladares

Fernando Valladares, investigador del Museo Nacional de Ciencias Naturales (MNCN-CSIC), en una de sus charlas sobre cambio climático.

Del universo a las partículas elementales

Si lo que te interesa son los meteoritos, las estrellas o la vida extraterrestre, puedes asomarte al impresionante catálogo de conferencias del Ciclo Lucas Lara, organizado por el Instituto de Astrofísica de Andalucía (IAA-CSIC). En ellas no solo oirás hablar de astronomía, sino también de asuntos como la inteligencia artificial, el dolor o los mosaicos de La Alhambra.

En caso de que te vaya más la física ‘pura y dura’, las conferencias del Instituto de Física Teórica (IFT-CSIC/UAM) no te defraudarán. El bosón de Higgs y el misterio de la masa, el fin del espacio-tiempo o las misteriosas propiedades de los neutrinos son solo algunas de las muchísimas cuestiones tratadas en ellas. De todas formas, la física del CSIC no se agota aquí. En esta misma área del conocimiento, tampoco puedes perderte las charlas del Instituto de Física Fundamental (IFF-CSIC), que se ocupan de temas como la antimateria, los mitos de la física cuántica o la computación cuántica.

La investigadora Laura López-Mascaraque, del Instituto Cajal (IC-CSIC), habla de la ruta de los aromas de la nariz al cerebro en el ciclo ‘¿Qué sabemos de?’.

Para saber de todo

Para quienes no tengan tan definida una temática de interés, el ciclo Jam Science ofrece la oportunidad de ver a investigadores e investigadores de perfil muy diverso hablando de su trabajo en un ambiente muy distendido: nada más y nada menos que un bar. Organizada por la científica del CSIC Carmen Fernández, esta iniciativa ha abordado cuestiones como el enigma de los Neandertales, el posible origen extraterrestre de la vida en nuestro planeta, la exploración antártica o la importancia de las vacunas. Los vídeos de estas charlas están disponibles en los canales de Youtube DC SciCommAgora Mundi Ciencia.

Otro ciclo de contenido científico amplio que te permitirá aumentar tus conocimientos son las Friday Talks. ‘Música y neurociencia’, ‘Un nuevo océano en la era del plástico’ o ‘Gatos y tigres… ¿bajo el mar?’ son títulos de algunas de las intervenciones recogidas por esta propuesta del Instituto de Ciencias del Mar (ICM-CSIC).

Y aún hay más. ¿Qué somos capaces de hacer editando genes? ¿Cómo sabe el cerebro lo que la nariz huele? ¿Se va a convertir la Comunidad Valenciana en un desierto? Estos interrogantes sirven de partida a tres de las conferencias del ciclo ‘¿Qué sabemos de?’ con el que la Delegación del CSIC en Valencia te propone indagar en las claves científicas del bienestar.

Los Neandertales son el eje de esta charla de Antonio Rosas, del MNCN-CSIC, en el ciclo Jam Science.

Cambio climático y geología

Volviendo a temáticas más específicas, el investigador del Museo Nacional de Ciencias Naturales (MNCN-CSIC) Fernando Valladares te invita a reflexionar sobre el cambio climático y los desafíos que plantea en su serie de vídeos La salud de la humanidad, en la que intercala conferencias con varias piezas informativas de elaboración propia. Y en una línea similar, Daniel García-Castellanos, del Instituto de Ciencias de la Tierra Jaume Almera (ICTJA-CSIC), comparte su pasión por la geología en sus charlas sobre megainundaciones, tectónica de placas y erosión del suelo.

Y para terminar, puedes darte una vuelta por los ciclos Demografía hoy y ¿Qué sabemos del arte rupestre?, así como los seminarios de la Estación Biológica de Doñana. Estos vídeos, de contenido algo más especializado que los anteriores, te permitirán profundizar en las cuestiones que tratan.

Como ves, tienes muchas conferencias para elegir. ¿Por cuál quieres empezar?

Si quieres conocer más recursos del CSIC para aprender ciencia desde casa, pincha aquí.

Radio cognitiva, la tecnología que hará más eficientes nuestros móviles

José M. de la Rosa (CSIC)*

Nos encontramos en los albores de la mayor revolución tecnológica que ha conocido la humanidad. Las primeras décadas del siglo XXI serán recordadas por la expansión de las tecnologías de la información y las comunicaciones (TIC) y de dispositivos como los teléfonos móviles, las tablets y los ordenadores personales. Gracias a ellos podemos acceder a la información a través de internet de una forma ubicua y con velocidades de conexión cada vez mayores.

Este desarrollo sin precedentes se debe en gran medida a la microelectrónica y los chips. Estos microingenios han evolucionado en los últimos 50 años de manera exponencial según la ley de Moore, y contienen miles de componentes en unos pocos nanómetros. Una de las consecuencias de este escalado es la integración de la microelectrónica en objetos de uso cotidiano, que ha dado lugar al denominado Internet de las cosas, IoT por sus siglas en inglés.

La computación neuronal artificial ya se ha comenzado a utilizar en algunos dispositivos comerciales

IoT comprende la interconexión de miles de millones de entidades ciberfísicas con una estructura híbrida software/hardware capaces de comunicarse entre ellas sin necesidad de intervención humana. La educación a través de plataformas de enseñanza virtual, la teleasistencia sanitaria personalizada, las operaciones bursátiles automatizadas, las redes energéticas inteligentes, la robotización en procesos industriales y redes de transporte, o los vehículos autónomos, son solo algunos ejemplos del sinfín de aplicaciones de IoT, cada vez más presente en nuestras vidas.

Para una implementación adecuada del Internet de las cosas se requiere el desarrollo de dispositivos electrónicos seguros y eficientes, tanto en coste como en consumo de energía. Tales dispositivos deben estar dotados de una cierta inteligencia y autonomía para poder tomar decisiones en tiempo real y ser robustos frente a las condiciones del medio en que se van a desenvolver. Y para que esto ocurra es necesario desarrollar tecnologías que hagan viable la construcción de un puente sólido entre el medio físico (real) y su versión virtualizada (digital).

Del 1G al 5G

Microfotografía de un chip del Instituto de Microelectrónica de Sevilla/ IMSE (CSIC-US)

Una de esas tecnologías para ‘construir puentes’ son las comunicaciones móviles. Hace poco más de un par de décadas, los terminales móviles eran simplemente teléfonos inalámbricos, cuya única funcionalidad era la transmisión de voz (primera generación o 1G), a la que se añadió posteriormente la transmisión de SMS en la segunda generación (2G), con velocidades de transmisión de unos pocos de kilobits por segundo. Con el desarrollo del 3G, los móviles pasaron a ofrecer servicios multimedia y conexión a internet de banda ancha con velocidades de acceso de varios Megabits/s (Mb/s). En la actualidad, la mayoría de las redes operan con terminales móviles de cuarta generación (4G), que permiten alcanzar velocidades de hasta centenares de Mb/s, y ya se empieza a implantar la red 5G, con velocidades de Gigabits/s (Gb/s).

Sin embargo, las comunicaciones móviles tienen un problema: las bandas del espectro electromagnético por donde se propagan las ondas radioeléctricas con la información transmitida por muchos aparatos electrónicos se pueden saturar y convertirse en un cuello de botella para la implementación práctica de IoT. Esto ha motivado la investigación y desarrollo de tecnologías para hacer un uso más eficiente y sostenible del espectro electromagnético. Una de ellas es la denominada radio cognitiva o CR por sus siglas en inglés.

En esencia, la radio cognitiva se basa en la convergencia de tecnologías de comunicación y de computación que permiten ajustar de forma autónoma y transparente para el usuario los parámetros de transmisión y recepción de los dispositivos electrónicos en función de la información que detectan del entorno radioeléctrico donde se utilizan. Para ello, dichos dispositivos han de incluir sistemas de comunicaciones en los que la digitalización (transformación digital de las señales que portan la información) se realice lo más cerca posible de la antena (tanto en el receptor como en el transmisor). Así, el procesamiento de la información se hace mediante software y puede ejecutarse en un microprocesador digital. Esto aumenta significativamente el grado de programabilidad y adaptabilidad de los terminales móviles a diferentes modos o estándares de comunicación.

Inteligencia artificial en nuestros móviles

Además de un sistema de comunicación basado en software, la radio cognitiva requiere del uso de algoritmos de inteligencia artificial (IA) para identificar de forma automática la banda óptima del espectro electromagnético en la que se pueda transmitir mejor la información. Con la inteligencia artificial se maximiza la cobertura, se minimiza el efecto de las interferencias y se incrementa la durabilidad y la vida útil de la batería, entre otras muchas ventajas.

Sin embargo, los microprocesadores empleados en dispositivos convencionales resultan ineficientes para realizar las tareas de inteligencia artificial requeridas en sistemas de radio cognitiva. Al llevarlas a cabo, estos dispositivos consumen mucha energía y reducen la durabilidad de la batería. Esto ha motivado la investigación de alternativas como los procesadores neuromórficos, los cuales realizan el tratamiento de la información inspirándose en el cerebro humano.

Esquema de funcionamiento de un procesador neuromórfico/ José M. de la Rosa

Hay tareas computacionales, como el cálculo, en las que los procesadores convencionales son más eficientes que el cerebro, pero otras, como el reconocimiento de patrones, son ejecutadas mejor por los sistemas neuronales. Es lo que ocurre, por ejemplo, en el reconocimiento facial, que el ojo y el cerebro humanos realizan de forma mucho más eficaz en términos de velocidad, precisión y consumo energético. En el caso de la radio cognitiva, los procesadores neuromórficos deben encargarse de reconocer patrones de señales radioeléctricas, que son las que transmiten la información en la telefonía móvil.

De hecho, la computación neuronal artificial ya se ha comenzado a utilizar en algunos dispositivos comerciales. Por ejemplo, la compañía Apple incorpora módulos neuronales de aprendizaje automático (o Machine learning) en sus procesadores más recientes incluidos en los últimos modelos de iPhone. Estos dispositivos contienen 8.500 millones de transistores integrados en una tecnología de 7 nanómetros. Otras compañías como Intel y Qualcom han desarrollado procesadores neuromórficos fabricados también en tecnologías nanométricas.

Aunque aún se está lejos de desarrollar ordenadores completamente basados en procesamiento neuronal, hay un interés creciente por integrar la inteligencia artificial en el hardware de los dispositivos. Esta es una de las líneas de investigación en las que se trabaja en el Instituto de Microelectrónica de Sevilla (CSIC-US). En un futuro, se espera poder incorporar procesamiento neuromórfico en chips de comunicaciones que hagan posible la realización de dispositivos IoT/5G más eficientes gracias al uso de la radio cognitiva.

*José M. de la Rosa es investigador del Instituto de Microelectrónica de Sevilla, centro mixto del CSIC y la Universidad de Sevilla.