Entradas etiquetadas como ‘Instituto de Catálisis y Petroleoquímica’

La asimetría, una propiedad esencial para la vida

Por Luis Gómez-Hortigüela y Mar Gulis (CSIC)*

Los documentos del caso es una novela epistolar de misterio escrita por Dorothy Sayers en 1930. En la trama —atención, spoiler—, Harrison, un marido engañado aficionado a buscar setas, aparece muerto, aparentemente tras haber consumido una seta venenosa por error. Sospechando que podría haber sido asesinado por el amante de su madre, el hijo del fallecido, Paul, decide investigar su muerte. Descubre que la muscarina, el veneno que acabó con la vida de Harrison, es un producto natural procedente del hongo Amanita muscaria, pero también puede ser preparado artificialmente en el laboratorio. Entonces, ¿falleció el padre de Paul por comerse la seta equivocada o alguien acabó con su vida deliberadamente?

La respuesta a esta cuestión está en la quiralidad, una propiedad que compartimos seres vivos, objetos cotidianos como un tornillo o un sacacorchos y compuestos químicos como la muscarina. Un objeto es quiral cuando no es superponible con su imagen especular. El ejemplo clásico son nuestras manos. Si ponemos la mano izquierda frente a un espejo, se convierte en la derecha. Y si hacemos lo mismo con un tornillo, veremos que la rosca parece girar en sentido contrario. A escala humana, se manifiesta entre otros rasgos en que tenemos el corazón desviado a la izquierda y un cerebro que compartimenta las funciones de forma asimétrica en sus dos hemisferios, así como en la mayor habilidad en nuestra mano diestra (o zurda). La quiralidad está pues estrechamente asociada a la asimetría, es decir, a la falta de simetría. Las dos formas especulares no superponibles entre sí de un objeto o de una molécula quiral se denominan enantiómeros. Si retomamos el ejemplo de nuestras manos, la derecha y la izquierda serían los dos enantiómeros. Lo mismo sucede a nivel molecular, donde muchos compuestos son quirales y poseen dos enantiómeros, ambos imágenes especulares que no son superponibles entre sí, constituyendo por tanto diferentes entidades.

Ejemplar de cangrejo violinista (Uca tangeri) con una de sus pinzas claramente mayor que la otra. / Esmeralda Ramos-García Neto. Fundación Aquae

Pero lo que en el mundo macroscópico es fácil de comprobar —podemos observar a simple vista las diferencias entre nuestras manos o pies derechos e izquierdos— ¿cómo se manifiesta en el microscópico? Uno de los principales rasgos de los compuestos quirales es que poseen actividad óptica, es decir, cuando son expuestos a la luz polarizada tienen la propiedad de rotar el plano de luz un cierto ángulo en uno u otro sentido, según el enantiómero de que se trate.

Volvamos a nuestro protagonista fallecido y su hijo con sed de verdad. A estas alturas ya intuirán que la asimetría algo tiene que ver con la resolución del misterio de la muerte de Harrison. Pues sí. La muscarina es un compuesto quiral. Tanto la muscarina natural como la sintética comparten la misma composición y propiedades, salvo una sutil diferencia: la de procedencia natural tiene actividad óptica, mientras que la sintética es ópticamente inactiva, no produce ningún cambio en el plano de la luz. Al analizar la muscarina ingerida por su difunto progenitor con un polarímetro, Paul observa que esta no posee actividad óptica, lo que no deja lugar a dudas sobre su origen artificial. Descartada la procedencia natural de la muscarina que tomó su padre, Paul consigue demostrar que, efectivamente, Harrison había sido deliberadamente envenenado. Fue Louis Pasteur quien descubrió la quiralidad molecular a mediados del siglo XIX en un experimento que ha sido calificado como el más hermoso de la historia de la química, y constituye la clave para explicar qué le ocurrió a Harrison.

‘Homoquiralidad’: la naturaleza es asimétrica

La investigación del asesinato que plantea Sayers pone de manifiesto una diferencia crucial entre los compuestos quirales de origen sintético, preparados en el laboratorio, y los de origen natural, extraídos a partir de algún componente de un ser vivo. Los primeros, al ser preparados a partir de reacciones químicas que implican movimientos de electrones —sometidos a fuerzas electromagnéticas que no distinguen entre derecha e izquierda— se obtienen como mezclas al 50% de ambos enantiómeros, siendo ópticamente inactivos –la rotación de la luz polarizada en un sentido propiciada por un enantiómero se cancela por la rotación en sentido inverso del otro enantiómero. Por el contrario, los de origen natural, que se obtienen a partir de rutas metabólicas reguladas por diversas entidades bioquímicas presentes en todos los seres vivos, constan de un solo enantiómero, siendo por tanto ópticamente activos. Así, en palabras de Pasteur, la actividad óptica es una firma de la vida.

Moléculas quirales que conforman las macromoléculas funcionales de los seres vivos. En la imagen aparece a la izquierda un L-aminoácido y a la derecha un D-aminoácido. Solo los primeros se encuentran en las proteínas de la materia viva. / Wikipedia

La materia inanimada o inerte está asociada a la existencia de simetría, bien por estar constituida por elementos no quirales o por la existencia de ambas formas especulares en igual proporción de elementos quirales, mientras que la materia animada está invariablemente asociada a la quiralidad en su forma enantioméricamente pura. Podríamos decir que la naturaleza en su conjunto es un sistema quiral.

La mayoría de las moléculas que constituyen los organismos vivos son quirales y, en todos los casos, existe una clara preferencia por uno de los dos enantiómeros, lo que se conoce como ‘homoquiralidad’. Esto es lo que ocurre con los ‘ladrillos’ de los que estamos formados todos los seres vivos: los aminoácidos que componen las proteínas y los azúcares que conforman los ácidos nucleicos, el ADN, con sus hélices retorciéndose invariablemente hacia la derecha, y el ARN.

Así, a través de mecanismos aún desconocidos quiso la vida comenzar su andadura usando exclusivamente la forma L de los aminoácidos y exclusivamente la forma D de los azúcares. A su vez, quiso la evolución imprimir esta caprichosa selección quiral en todos y cada uno de los seres vivos existentes, al menos en lo que a nuestro planeta concierne, haciendo de la asimetría una propiedad esencial asociada intrínsecamente a la vida.

Luis Gómez-Hortigüela es investigador del Instituto de Catálisis y Petroleoquímica del CSIC y autor del libro ‘La quiralidad’ (CSIC-Catarata) de la colección ¿Qué sabemos de?

Zeolitas en Etiopía: una solución ecológica contra la fluorosis

Por Mar Gulis (CSIC)

¿Te has preguntado alguna vez por qué aparecen manchas en los dientes? El tabaco o el vino tinto son algunas de las causas que te vendrán a la cabeza más rápidamente. Entre la multitud de motivos posibles que encontrarás, nos detendremos en uno que va más allá del esmalte dental: la fluorosis. Además de las manchas que produce en los dientes, esta enfermedad ósea causada por el consumo excesivo del ión fluoruro (conocido como flúor) en la dieta, sobre todo a través del agua, puede provocar osteoesclerosis, calcificación de los tendones y ligamentos, deformidades de los huesos, y otras afecciones.

Fuente de agua potabilizada

Fuente de agua potabilizada por la tecnología del CSIC en Etiopía. / César Hernández.

Según estima la Organización Mundial de la Salud (OMS), la fluorosis afecta a unos 300 millones de personas en el mundo. No en vano, la OMS considera que el flúor es una de las diez sustancias químicas que constituyen una preocupación para la salud pública, entre las que también figuran el amianto, el arsénico y el mercurio, entre otras.

A pesar de que el fluoruro tiene efectos beneficiosos para nuestra dentición como la reducción de las caries, la presencia de elevadas cantidades de este elemento en el agua puede convertirlo en un contaminante natural. Consumir agua con una concentración de fluoruro superior a 1,5 miligramos por litro (límite establecido por la OMS) puede provocar problemas de salud asociados a la fluorosis, como los antes citados, y es especialmente perjudicial para mujeres en estado de gestación y niños/as que están formando sus huesos.

La existencia de flúor en el agua tiene un origen geológico, es decir, se debe a que el agua está en contacto con rocas de acuíferos que tienen el ion fluoruro en su composición química. Estas rocas se hallan en terrenos volcánicos, por tanto, más de 25 países en todo el mundo están afectados por la contaminación de fluoruros en el agua, entre los que se encuentran España, China, India, Estados Unidos y Etiopía. En este último país, el 41% de sus fuentes de agua potable tienen una concentración de fluoruro superior a 1,5 mg/l y se calcula que aproximadamente el 15% de la población etíope está afectada por fluorosis.

Zeolitas naturales

Mineral de Estilbita, zeolita natural de Etiopia. / Defluoridation Ethiopia.

Filtros naturales para atrapar el fluoruro

Etiopía es uno de los países pertenecientes al valle del Rift, junto con Kenia, Uganda y Tanzania. En la zona del valle del Rift etíope, “donde se abra un pozo, va a haber contaminación por fluoruro y, por tanto, la enfermedad tiene elevados números”, asegura Isabel Díaz, investigadora del CSIC en el Instituto de Catálisis y Petroleoquímica (ICP). Díaz es además una de las inventoras de una tecnología que permite extraer el fluoruro del agua de una manera barata y sostenible.

Esta tecnología está basada en zeolitas naturales, un mineral abundante en Etiopía, así como en otros lugares del mundo, ya que también es de origen volcánico. “Su principal característica es que es un material muy poroso, lleno de cavidades de tamaño molecular”, explica la científica del CSIC. Gracias a esta estructura, las zeolitas tienen la capacidad de atrapar una amplia variedad de elementos, como sodio, potasio, calcio y magnesio, y son utilizadas como catalizadores y absorbentes en un gran número de procesos químicos industriales, sobre todo en la industria petroquímica.

Estructura zeolita

Estructura atómica de la Estilbita. En azul moléculas de agua, verde cationes calcio y morado cationes sodio. / Defluoridation Ethiopia.

Con la nueva tecnología desarrollada por el grupo del ICP —además de Isabel Díaz como investigadora principal, forman parte del equipo los científicos Joaquín Pérez Pariente y Luis Gómez Hortigüela—, junto con la Universidad de Adís Abeba, se modifica la zeolita para que absorba selectivamente el ion fluoruro. “De esta forma es posible abastecer a la población de agua potable”, afirma Díaz. Esta solución resulta primordial en el valle del Rift en Etiopía, dado que el agua de los pozos en la zona tiene una concentración de fluoruro de 2-3 mg/l, prácticamente el doble del límite que establece la OMS.

Planta potabilizadora

Planta potabilizadora con zeolitas en Etiopía. / César Hernández.

Aunque este tipo de métodos basados en absorbentes generan una gran cantidad de residuos tras su uso, una de las mayores ventajas de la zeolita es que luego puede usarse como fertilizante del suelo. En la actualidad, se han instalado dos plantas potabilizadoras con zeolitas en las localidades etíopes Dida y Obe, gracias al proyecto Defluoridation Ethiopia, del CSIC y la ONG Amigos de Silva. Esta acción supone un primer paso para que empiece a mermar la cifra de 14 millones de personas en riesgo de padecer fluorosis que, según los estudios, viven en el país africano.

 

¿Qué son las “enzimas promiscuas”?

Por Francisco J. Plou (CSIC)*

Las enzimas son catalizadores biológicos, o biocatalizadores, responsables de regular y acelerar de forma sustancial la velocidad de las reacciones químicas en los seres vivos. Trabajos de los químicos estadounidenses Sumner y Northrop (ambos compartieron Premio Nobel de Química en 1946, junto con Stanley) permitieron determinar que las enzimas eran proteínas. Por tanto, al igual que estas últimas, las enzimas están formadas por aminoácidos y juegan un papel crucial en casi todos los procesos biológicos. El potencial químico de un ser vivo queda definido por su información genética, y las enzimas son las entidades biológicas que convierten dicha información en acción. Dicho de otro modo, las enzimas son proteínas que incrementan la velocidad de una reacción química sin consumirse y recuperándose sin cambios esenciales. Así, las enzimas son muy eficaces y específicas, ya que cada una está especializada en procesar una reacción concreta.

En esta imagen de microscopía electrónica de barrido se pueden observar tres enzimas distintas formando complejos cristalinos con fosfato de cobre. Los complejos de proteína y sal crecen formando estructuras semejantes a algunas flores. / David Talens Perales (IATA-CSIC). FOTCIENCIA16

En esta imagen de microscopía electrónica de barrido se pueden observar tres enzimas distintas formando complejos cristalinos con fosfato de cobre. Los complejos de proteína y sal crecen creando estructuras semejantes a algunas flores. / David Talens Perales (IATA-CSIC). FOTCIENCIA16

En los últimos años, un nuevo concepto, que se contrapone a esta especificidad de las enzimas, ha adquirido un notable protagonismo: la promiscuidad. Este término nos puede evocar a relaciones poco estables o “de flor en flor” entre personas, pero también se ha he­cho un hueco en el ámbito de la bioquímica, si bien suele utilizarse en su lugar el concepto más académico de “amplia especificidad”. En el metabolis­mo cada enzima se ha especializado, a través de la evolución, en una determinada reacción química, para lo que es necesa­rio que la enzima reconozca un sustrato muy concreto. Este es el caso de la glucosa oxidasa, una enzima que solo reconoce a la glucosa y se muestra indiferente con azúcares muy similares como la galactosa o la fructosa. Por ello tiene múltiples aplicaciones en biotecnología, entre las que destaca el poder cuantificar la glucosa libre en los fluidos biológicos (sangre y orina), base de los biosensores de las personas diabéticas. Sin embargo, cada año se publican nuevos artículos en los que se reseña cómo una enzima es capaz de aceptar sustratos alternativos al original (lo que se denomina “promiscuidad de sustrato”) o, lo que resulta mucho más rompedor, catali­zar otro tipo de transformaciones químicas (lo que se conoce como “promiscuidad catalítica”). La mayoría de enzimas, entonces, son promiscuas.

¿De dónde proviene esta propiedad? Se cree que las enzimas actuales han evolucionado a partir de enzimas ancestrales que mostraban una gran promiscuidad, esto es, las primeras enzimas eran generalistas y realizaban por tanto funciones muy diversas. Así, las células no podían gastar energía en producir enzimas especializadas y preferían en­zimas multifunción, como esos sacacorchos que, además de permitirnos abrir una botella de vino, incluyen una pequeña navaja y un sinfín de accesorios. Pero con el tiempo fue nece­sario dotar a las enzimas de mayor actividad catalítica y espe­cificidad, como laboriosa “mano de obra” cada vez más especializada y eficaz. Parece ser una consecuencia evidente de la divergencia evolutiva.

Estos conceptos chocan de frente con los descritos en uno de los libros más vendidos sobre estas cuestiones en los últimos años, La enzi­ma prodigiosa, del médico Hiromi Shinya. El autor señala, con poca base científica, que en nuestro organismo “hay una enzima madre, una enzima prototipo, sin especialización. Hasta que esta enzima madre se convierte en una enzima específica como respuesta a una necesidad particular, tiene el potencial de convertirse en cual­quier enzima”.

La Mata Hari de las enzimas

Pero sigamos con nuestras enzimas promiscuas. Desde el punto de vista aplicado, la promiscuidad de sustrato presenta connotaciones de gran interés. Por un lado, para ciertos usos es deseable que las enzimas sean poco es­pecíficas. Nos referimos, por ejemplo, a su empleo en deter­gentes, donde una lipasa debe atacar cuantos más tipos de manchas de grasa, mejor, o a su utilización en descontaminación, en la que una oxidorreductasa es preferible que oxide el mayor número posible de compuestos recalcitrantes.

En cuanto a la promiscuidad catalítica, que implica que una misma enzima es funcional en reacciones que pertenecen a varias de las seis clases descritas en el cuadro de la imagen (tabla 1), es notorio el caso de la lipasa B de la levadura Candida an­tarctica. Esta enzima, a la que podríamos denominar la Mata Hari de la enzimología, se ha convertido en uno de los bio­catalizadores con mayores aplicaciones industriales. Por citar algunas: cataliza reaccio­nes diversas que incluyen la hidrólisis e interesterificación de grasas, la obtención de poliésteres, la síntesis de amidas, reso­luciones racémicas, condensaciones aldólicas, epoxidaciones y la reacción de Mannich, que se usa por ejemplo para sintetizar fármacos, entre otras cosas. Como señalan algunos científicos, “es el momento de investigar nuevas re­acciones para viejas enzimas”. Con ello aumentarán las posibilidades catalizadoras de las enzimas.

 

* Francisco J. Plou es investigador en el Instituto de Catálisis y Petroleoquímica del CSIC y autor del libro ‘Las enzimas’ (Editorial CSIC  Los Libros de la Catarata).

¿Manchas difíciles? La solución está en las enzimas

Por Francisco J. Plou (CSIC)*

Ana Yacobi / Flickr

Ana Yacobi / Flickr

En la actualidad, de cada 100 gramos de cualquier detergente, entre uno y dos corresponden a enzimas, es decir, a catalizadores biológicos utilizados para acelerar las reacciones químicas. El auge del uso de las enzimas en productos para la limpieza de ropa y vajillas es tan grande que en Dinamarca, el principal productor de estas proteínas, hay un detergente que contiene hasta nueve enzimas distintas. ¿De verdad merece la pena añadir enzimas a los detergentes o se trata de una cuestión de marketing?

Antes de responder a esta pregunta, conviene saber que el empleo de enzimas en productos de limpieza es relativamente nuevo en la historia de la humanidad y que no ha estado exento de polémicas.

En 1913 el científico alemán Otto Röhm (1876-1939) patentó el uso de extractos de páncreas de animales muertos en el prelavado de prendas de vestir. Sin embargo, no fue hasta la década de 1960 cuando en los detergentes para la ropa se empezaron a introducir masivamente enzimas, cuya producción se realiza generalmente a partir de cultivos de bacterias, levaduras y hongos. Esto sucedió de forma paralela a la implantación de las lavadoras, que requerían productos cada vez más eficientes capaces de eliminar las manchas a temperaturas bajas o moderadas.

Esta innovación fue velozmente popularizada en Europa pero no en Estados Unidos, donde creció el temor de que las enzimas pudieran causar reacciones alérgicas. Los ánimos se apaciguaron en 1971, cuando la Academia Nacional de Ciencias de este país dictaminó que el empleo de enzimas en detergentes representaba un avance tecnológico sin riesgo alguno para la salud.

De hecho, en 1975 se produjo otro logro biotecnológico que impulsó definitivamente este mercado, al conseguir encapsular las enzimas en pequeñísimos gránulos recubiertos por un material inerte que se dispersaba en contacto con el agua de lavado, liberándolas poco a poco. Esta liberación a través del agua de lavado no supone ningún problema ecológico, pues su naturaleza proteica las convierte en biodegradables.

Daniel Lobo / Flickr

Daniel Lobo / Flickr

Pero entonces, ¿las enzimas son realmente útiles en los detergentes? La respuesta es “sí”. Una de sus principales ventajas es el tratamiento de manchas difíciles que de otra manera sería difícil quitar. Así, los detergentes actuales suelen incorporar al menos cuatro tipos de enzimas, la mayoría especializados en un tipo distinto de mancha:

  1. Lipasas, que sirven para eliminar las manchas que contienen sustancias lipídicas, como las procedentes de grasas y aceites alimenticios, cosméticos, pintalabios o sudor. Las lipasas, además, permiten reducir casi un 25% la cantidad de agentes surfactantes o tensioactivos presentes en el detergente.
  2. Proteasas (las primeras enzimas empleadas en detergentes), que se utilizan para degradar las manchas que tienen una base de proteína, por ejemplo las de sangre, huevo o leche.
  3. Amilasas, que eliminan los depósitos de almidón, muy abundantes en patatas, salsas, pasta o arroz, por ejemplo.
  4. Celulasas, que se añaden para un mejor cuidado de las fibras celulósicas de las prendas de algodón, proporcionando una mayor suavidad a las telas y restaurando los colores.

Algunas compañías, en aras de obtener una eficiencia todavía mayor en el lavado, añaden otros dos tipos de enzimas:

  1. Mananasas, que degradan las manchas que contienen mananos, muy difíciles de eliminar. Los mananos, también llamados gomas, se emplean como espesantes en alimentos como helados y salsas, y también están presentes en lociones corporales o pasta de dientes.
  2. Pectinasas, para eliminar los residuos de la pectina de las frutas, por ejemplo en mermeladas, zumos o yogures.

Además, las enzimas generan una serie de beneficios medioambientales. El más destacado es la posibilidad de emplear programas de lavado más cortos y a temperatura ambiente, lo que supone un notable ahorro energético y de agua. De hecho, la mayor parte de la energía consumida en un lavado se utiliza para calentar el agua.

Pero también las enzimas permiten reducir, e incluso suprimir, la incorporación a los detergentes de algunas sustancias químicas que contaminan las aguas de lavado, fundamentalmente los fosfatos, que tienen un efecto demoledor sobre los medios acuáticos y que, poco a poco, están siendo prohibidos en los productos de limpieza en todo el mundo.

Así pues, como vemos, el tambor de la lavadora es una especie de reactor químico en el que las enzimas tienen que hacer su trabajo durante el breve tiempo de lavado, sorteando todo tipo de dificultades derivadas de la presencia de tensioactivos, agentes blanqueantes y suavizantes, en un entorno alcalino de un pH entre 9 y 12. ¡Y lo consiguen!

 

* Francisco J. Plou es investigador científico en el Instituto de Catálisis y Petroleoquímica del CSIC y autor del libro ‘Las enzimas’, disponible en la Editorial CSIC Los Libros de la Catarata.

Los biocombustibles pueden ser más nocivos que el petróleo

Por Joaquín Pérez Pariente (CSIC)*

Bajo las etiquetas ‘combustible ecológico’ y ‘diésel verde’ circulan por las ciudades del mundo occidental vehículos que utilizan como combustible sustancias obtenidas a partir de productos agrícolas. Son los denominados biocombustibles, en los que el prefijo ‘bio’ pretende resaltar sus bondades medioambientales. Sin embargo, la realidad es que los biocombustibles pueden llegar a ser incluso más nocivos que el petróleo por su emisión de gases de efecto invernadero, responsables del cambio climático que está experimentando nuestro planeta. La causa de ese daño medioambiental estriba en la forma en la que se obtienen.

Si somos rigurosos, recibe el nombre de biocombustible todo combustible de origen biológico. El más común es la madera, pero también son biocombustibles las grasas animales y los aceites vegetales que han servido para iluminar durante siglos nuestros hogares. Pero los que nos interesan son los que se utilizan hoy en día en vehículos de transporte, que son de dos tipos. Uno es el alcohol denominado etanol, el mismo que se encuentra en el vino o la cerveza, que se obtiene mediante fermentación de azúcares como los de la caña de azúcar, o los de los cereales, entre los cuales destaca el maíz. El segundo es el biodiesel, que se produce mediante una reacción química entre el alcohol denominado metanol y aceites vegetales. Aunque se pueden utilizar diferentes aceites como materia prima para fabricar el biodiesel, en la práctica en todo el mundo se elabora a partir de aceites de soja y palma y, en mucha menor medida, de colza, sobre todo en Europa.

Los defensores del empleo de biocombustibles líquidos como sustitutos de la gasolina y gasoil derivados del petróleo argumentan sus efectos beneficiosos de la siguiente manera. Las plantas de las que se extraen las materias primas necesarias para su elaboración absorben dióxido de carbono, el principal gas de efecto invernadero, durante su crecimiento. Cuando los biocombustibles se queman en un vehículo, se emite dióxido de carbono a la atmósfera. Pero eso no supone un problema, porque las plantas volverán a asimilarlo cuando crezcan de nuevo. Tendríamos así un ciclo cerrado de captura-emisión de ese gas, que por lo tanto no produciría ningún aumento de su concentración en la atmósfera.

 

Producción mundial de bioetanol y biodiesel en miles de barriles por día. En el caso del etanol, 100.000 barriles por día equivalen a 3 millones de toneladas de petróleo anuales, mientras que para el biodiesel equivalen a 4,9 millones. La cantidad total de biocombustibles producidos en 2016 equivalió a 86 millones de toneladas de petróleo.

Sin embargo, esa explicación tan simple oculta un conejo en la chistera, que salta fuera de ella en cuanto nos asomamos a su interior. Esas plantas productoras de biocombustibles no crecen precisamente en el desierto, sino que se cultivan en terrenos fértiles que previamente estaban cubiertos por selvas y sabanas. Esos grandes bosques tropicales y subtropicales se destruyen simplemente quemándolos, para sustituirlos por los cultivos destinados a la producción masiva de biocombustibles, como la soja y la palma. Esos gigantescos incendios, visibles desde los satélites que orbitan el planeta y en ocasiones objeto por ello de atención televisiva, liberan a la atmósfera enormes cantidades de dióxido de carbono: entre 200 y 300 toneladas por hectárea, entre 20.000 y 30.000 toneladas por cada kilómetro cuadrado. Así se deforestan cada año decenas de miles de kilómetros cuadrados, hasta tal punto que provocan unas emisiones de gases de efecto invernadero casi iguales a las provenientes de los vehículos que utilizan combustibles derivados del petróleo. Aunque los biocombustibles contribuyen todavía relativamente poco a esa deforestación global, su amenaza es tan grave que el Parlamento Europeo aprobó en el mes de abril de este año una resolución para eliminar el aceite de palma como fuente de biocombustibles para el año 2020.

Por si fuera poco, los agrocombustibles, como en realidad deberían denominarse los biocombustibles, compiten con la producción de alimentos porque, al igual que estos, necesitan terrenos fértiles donde cultivarse. Y se trata de una competencia desleal, porque si se quisiera sustituir con ellos solo una parte de los que provienen del petróleo, habría que producirlos en tal cantidad que toda la superficie de nuestro planeta no bastaría para ello. Ahí radica el verdadero problema, en que los terrenos cultivables ya escasean y no podemos permitirnos el lujo de malgastarlos en un mundo que no es capaz de alimentar decentemente a toda su población.

No hay ninguna duda de que es necesario buscar alternativas al uso del petróleo, pero los biocombustibles no son la respuesta.

 

Joaquín Pérez Pariente es investigador del Instituto de Catálisis y Petroleoquímica del CSIC y es autor del libro Biocombustibles. Sus implicaciones energéticas, ambientales y sociales, editado por Fondo de Cultura Económica. La obra se presentará el día 19 en la librería Juan Rulfo (Madrid) a las 19:00 horas.