Ciencia para llevar Ciencia para llevar

CURIOSIDADES CIENTÍFICAS PARA COMPARTIR

Entradas etiquetadas como ‘Instituto de Catálisis y Petroleoquímica’

¿Manchas difíciles? La solución está en las enzimas

Por Francisco J. Plou (CSIC)*

Ana Yacobi / Flickr

Ana Yacobi / Flickr

En la actualidad, de cada 100 gramos de cualquier detergente, entre uno y dos corresponden a enzimas, es decir, a catalizadores biológicos utilizados para acelerar las reacciones químicas. El auge del uso de las enzimas en productos para la limpieza de ropa y vajillas es tan grande que en Dinamarca, el principal productor de estas proteínas, hay un detergente que contiene hasta nueve enzimas distintas. ¿De verdad merece la pena añadir enzimas a los detergentes o se trata de una cuestión de marketing?

Antes de responder a esta pregunta, conviene saber que el empleo de enzimas en productos de limpieza es relativamente nuevo en la historia de la humanidad y que no ha estado exento de polémicas.

En 1913 el científico alemán Otto Röhm (1876-1939) patentó el uso de extractos de páncreas de animales muertos en el prelavado de prendas de vestir. Sin embargo, no fue hasta la década de 1960 cuando en los detergentes para la ropa se empezaron a introducir masivamente enzimas, cuya producción se realiza generalmente a partir de cultivos de bacterias, levaduras y hongos. Esto sucedió de forma paralela a la implantación de las lavadoras, que requerían productos cada vez más eficientes capaces de eliminar las manchas a temperaturas bajas o moderadas.

Esta innovación fue velozmente popularizada en Europa pero no en Estados Unidos, donde creció el temor de que las enzimas pudieran causar reacciones alérgicas. Los ánimos se apaciguaron en 1971, cuando la Academia Nacional de Ciencias de este país dictaminó que el empleo de enzimas en detergentes representaba un avance tecnológico sin riesgo alguno para la salud.

De hecho, en 1975 se produjo otro logro biotecnológico que impulsó definitivamente este mercado, al conseguir encapsular las enzimas en pequeñísimos gránulos recubiertos por un material inerte que se dispersaba en contacto con el agua de lavado, liberándolas poco a poco. Esta liberación a través del agua de lavado no supone ningún problema ecológico, pues su naturaleza proteica las convierte en biodegradables.

Daniel Lobo / Flickr

Daniel Lobo / Flickr

Pero entonces, ¿las enzimas son realmente útiles en los detergentes? La respuesta es “sí”. Una de sus principales ventajas es el tratamiento de manchas difíciles que de otra manera sería difícil quitar. Así, los detergentes actuales suelen incorporar al menos cuatro tipos de enzimas, la mayoría especializados en un tipo distinto de mancha:

  1. Lipasas, que sirven para eliminar las manchas que contienen sustancias lipídicas, como las procedentes de grasas y aceites alimenticios, cosméticos, pintalabios o sudor. Las lipasas, además, permiten reducir casi un 25% la cantidad de agentes surfactantes o tensioactivos presentes en el detergente.
  2. Proteasas (las primeras enzimas empleadas en detergentes), que se utilizan para degradar las manchas que tienen una base de proteína, por ejemplo las de sangre, huevo o leche.
  3. Amilasas, que eliminan los depósitos de almidón, muy abundantes en patatas, salsas, pasta o arroz, por ejemplo.
  4. Celulasas, que se añaden para un mejor cuidado de las fibras celulósicas de las prendas de algodón, proporcionando una mayor suavidad a las telas y restaurando los colores.

Algunas compañías, en aras de obtener una eficiencia todavía mayor en el lavado, añaden otros dos tipos de enzimas:

  1. Mananasas, que degradan las manchas que contienen mananos, muy difíciles de eliminar. Los mananos, también llamados gomas, se emplean como espesantes en alimentos como helados y salsas, y también están presentes en lociones corporales o pasta de dientes.
  2. Pectinasas, para eliminar los residuos de la pectina de las frutas, por ejemplo en mermeladas, zumos o yogures.

Además, las enzimas generan una serie de beneficios medioambientales. El más destacado es la posibilidad de emplear programas de lavado más cortos y a temperatura ambiente, lo que supone un notable ahorro energético y de agua. De hecho, la mayor parte de la energía consumida en un lavado se utiliza para calentar el agua.

Pero también las enzimas permiten reducir, e incluso suprimir, la incorporación a los detergentes de algunas sustancias químicas que contaminan las aguas de lavado, fundamentalmente los fosfatos, que tienen un efecto demoledor sobre los medios acuáticos y que, poco a poco, están siendo prohibidos en los productos de limpieza en todo el mundo.

Así pues, como vemos, el tambor de la lavadora es una especie de reactor químico en el que las enzimas tienen que hacer su trabajo durante el breve tiempo de lavado, sorteando todo tipo de dificultades derivadas de la presencia de tensioactivos, agentes blanqueantes y suavizantes, en un entorno alcalino de un pH entre 9 y 12. ¡Y lo consiguen!

 

* Francisco J. Plou es investigador científico en el Instituto de Catálisis y Petroleoquímica del CSIC y autor del libro ‘Las enzimas’, disponible en la Editorial CSIC Los Libros de la Catarata.

Los biocombustibles pueden ser más nocivos que el petróleo

Por Joaquín Pérez Pariente (CSIC)*

Bajo las etiquetas ‘combustible ecológico’ y ‘diésel verde’ circulan por las ciudades del mundo occidental vehículos que utilizan como combustible sustancias obtenidas a partir de productos agrícolas. Son los denominados biocombustibles, en los que el prefijo ‘bio’ pretende resaltar sus bondades medioambientales. Sin embargo, la realidad es que los biocombustibles pueden llegar a ser incluso más nocivos que el petróleo por su emisión de gases de efecto invernadero, responsables del cambio climático que está experimentando nuestro planeta. La causa de ese daño medioambiental estriba en la forma en la que se obtienen.

Si somos rigurosos, recibe el nombre de biocombustible todo combustible de origen biológico. El más común es la madera, pero también son biocombustibles las grasas animales y los aceites vegetales que han servido para iluminar durante siglos nuestros hogares. Pero los que nos interesan son los que se utilizan hoy en día en vehículos de transporte, que son de dos tipos. Uno es el alcohol denominado etanol, el mismo que se encuentra en el vino o la cerveza, que se obtiene mediante fermentación de azúcares como los de la caña de azúcar, o los de los cereales, entre los cuales destaca el maíz. El segundo es el biodiesel, que se produce mediante una reacción química entre el alcohol denominado metanol y aceites vegetales. Aunque se pueden utilizar diferentes aceites como materia prima para fabricar el biodiesel, en la práctica en todo el mundo se elabora a partir de aceites de soja y palma y, en mucha menor medida, de colza, sobre todo en Europa.

Los defensores del empleo de biocombustibles líquidos como sustitutos de la gasolina y gasoil derivados del petróleo argumentan sus efectos beneficiosos de la siguiente manera. Las plantas de las que se extraen las materias primas necesarias para su elaboración absorben dióxido de carbono, el principal gas de efecto invernadero, durante su crecimiento. Cuando los biocombustibles se queman en un vehículo, se emite dióxido de carbono a la atmósfera. Pero eso no supone un problema, porque las plantas volverán a asimilarlo cuando crezcan de nuevo. Tendríamos así un ciclo cerrado de captura-emisión de ese gas, que por lo tanto no produciría ningún aumento de su concentración en la atmósfera.

 

Producción mundial de bioetanol y biodiesel en miles de barriles por día. En el caso del etanol, 100.000 barriles por día equivalen a 3 millones de toneladas de petróleo anuales, mientras que para el biodiesel equivalen a 4,9 millones. La cantidad total de biocombustibles producidos en 2016 equivalió a 86 millones de toneladas de petróleo.

Sin embargo, esa explicación tan simple oculta un conejo en la chistera, que salta fuera de ella en cuanto nos asomamos a su interior. Esas plantas productoras de biocombustibles no crecen precisamente en el desierto, sino que se cultivan en terrenos fértiles que previamente estaban cubiertos por selvas y sabanas. Esos grandes bosques tropicales y subtropicales se destruyen simplemente quemándolos, para sustituirlos por los cultivos destinados a la producción masiva de biocombustibles, como la soja y la palma. Esos gigantescos incendios, visibles desde los satélites que orbitan el planeta y en ocasiones objeto por ello de atención televisiva, liberan a la atmósfera enormes cantidades de dióxido de carbono: entre 200 y 300 toneladas por hectárea, entre 20.000 y 30.000 toneladas por cada kilómetro cuadrado. Así se deforestan cada año decenas de miles de kilómetros cuadrados, hasta tal punto que provocan unas emisiones de gases de efecto invernadero casi iguales a las provenientes de los vehículos que utilizan combustibles derivados del petróleo. Aunque los biocombustibles contribuyen todavía relativamente poco a esa deforestación global, su amenaza es tan grave que el Parlamento Europeo aprobó en el mes de abril de este año una resolución para eliminar el aceite de palma como fuente de biocombustibles para el año 2020.

Por si fuera poco, los agrocombustibles, como en realidad deberían denominarse los biocombustibles, compiten con la producción de alimentos porque, al igual que estos, necesitan terrenos fértiles donde cultivarse. Y se trata de una competencia desleal, porque si se quisiera sustituir con ellos solo una parte de los que provienen del petróleo, habría que producirlos en tal cantidad que toda la superficie de nuestro planeta no bastaría para ello. Ahí radica el verdadero problema, en que los terrenos cultivables ya escasean y no podemos permitirnos el lujo de malgastarlos en un mundo que no es capaz de alimentar decentemente a toda su población.

No hay ninguna duda de que es necesario buscar alternativas al uso del petróleo, pero los biocombustibles no son la respuesta.

 

Joaquín Pérez Pariente es investigador del Instituto de Catálisis y Petroleoquímica del CSIC y es autor del libro Biocombustibles. Sus implicaciones energéticas, ambientales y sociales, editado por Fondo de Cultura Económica. La obra se presentará el día 19 en la librería Juan Rulfo (Madrid) a las 19:00 horas.