Ciencia para llevar Ciencia para llevar

CURIOSIDADES CIENTÍFICAS PARA COMPARTIR

Entradas etiquetadas como ‘olfato’

¿Cómo detectamos el ‘umami’ y otros sabores?

Por Laura López Mascaraque* y Mar Gulis

Cierra los ojos. Piensa en algo ácido. ¿Qué te viene a la mente? ¿Un limón, una naranja? Seguro que también visualizas rápidamente alimentos asociados a sabores dulces, salados y amargos. Pero, ¿puedes pensar en el sabor umami? Probablemente muchas personas se quedarán desconcertadas ante la pregunta, por desconocer la existencia de este quinto sabor o no identificar los alimentos vinculados al mismo. Aquí van algunos ejemplos: el queso parmesano, las algas, la sopa de pescado y la salsa de soja comparten este sabor, que se suma a los otros cuatro clásicos: dulce, salado, ácido y amargo.

El sabor umami es típico de la cocina asiática, en la que son habituales sopas que cuentan con soja y algas entre sus ingredientes / Zanpei

En 1908 el japonés Kikunae Ikeda descubrió el umami. Químico de la Universidad Imperial de Tokio, eligió esta palabra, que proviene del japonés y significa “buen sabor”, “sabroso” o “delicioso”, para designar su hallazgo. Ikeda dedujo que el glutamato monosódico era el responsable de la palatabilidad del caldo del alga kombu y otros platos. De hecho, el umami es característico de cocinas como la japonesa, la china, la tailandesa y también la peruana, donde se conoce como ajinomoto. El glutamato monosódico es un compuesto que se deriva del ácido glutámico, uno de los aminoácidos no esenciales más abundantes en la naturaleza (se denominan no esenciales porque el propio cuerpo los puede sintetizar, es decir, fabricar).

Pero, ¿cómo detectamos el umami? ¿O por qué decimos que algo está demasiado salado o dulce? ¿Qué proceso fisiológico desencadena estas percepciones? La mayor parte de lo que llamamos sabor tiene que ver, en realidad, no con el gusto, sino con el olfato. Por eso los sabores parecen desvanecerse cuando estamos resfriados. Juntos, el olfato y el gusto constituyen los denominados sentidos químicos, pues funcionan mediante la interacción directa de ciertos compuestos químicos con receptores situados en el epitelio olfatorio, localizado en la parte superior de la nariz, y las papilas gustativas, situadas en la lengua.

El olor llega al cerebro por dos vías; una directa y ortonasal y la otra indirecta o retronasal. La primera se da cuando inhalamos directamente a través de la nariz. La otra, cuando, al masticar o tragar el alimento, se liberan moléculas que alcanzan la cavidad nasal desde la boca (vía retronasal), es decir, cuando exhalamos. Con la masticación y la deglución, los vapores de las sustancias ingeridas son bombeados en la boca por movimientos de la lengua, la mandíbula y la garganta hacia la cavidad nasal, donde se produce la llamada percepción olfativa retronasal. Así, gran parte de las sensaciones percibidas en alimentos y bebidas se deben al olfato.

Las sensaciones gustativas las percibimos a través de las miles de papilas gustativas que tenemos en la lengua / Pixabay

Por otra parte, ciertos alimentos considerados irritantes (condimentos picantes, quesos muy fuertes, etc.) pueden ser percibidos como olores/sabores a través del sistema quimiosensitivo trigeminal, con receptores localizados en la cavidad nasal y la boca.

En resumen, los receptores del olfato, el gusto y el nervio trigémino contribuyen al sabor, que se define por la suma de tres sensaciones: olfativas, gustativas y trigeminales. Las olfativas se perciben por la nariz desde concentraciones muy bajas y son las más variadas y complejas. Las gustativas lo hacen gracias a los receptores de la lengua y el paladar, localizados en las aproximadamente 5.000-10.000 papilas gustativas, que conducen información de la composición química de los alimentos hacia una parte del cerebro especializada en interpretar estos mensajes de acuerdo a las cinco cualidades gustativas básicas que mencionábamos al principio: salado, dulce, amargo, ácido y umami.

Cada uno de estos sabores puede asociarse a una o varias sustancias químicas caracterizadas por tener fórmulas y propiedades específicas que permiten su reconocimiento. Por ejemplo, los ácidos, como el zumo de limón o el vinagre, liberan iones de hidrógeno y, por lo tanto, presentan sabor ácido, mientras que la sal de cocina libera iones sodio y cloruro y, así, manifiesta sabor salado. Lo mismo les sucede a las moléculas de glucosa o azúcar con el dulce, a las del café o el bíter que libera alcaloides con el amargo, y al glutamato monosódico y otros aminoácidos con el umami. Actualmente se investiga la posibilidad de que existan receptores específicos en la lengua para reconocer el sabor de la grasa y el de las harinas o el almidón (sabor starchy).

En cuanto a las sensaciones trigeminales, estas se perciben en las terminaciones del nervio trigémino de la nariz y la boca a través de bebidas y alimentos que producen una sensación de irritación (picor, frío…). Por tanto, cuando hablamos de percepción del sabor, nos referimos a una respuesta conjunta de señales que provienen del olfato, del gusto y del trigémino, combinadas con otras características físicas como la textura, la temperatura y la presión.

 

* Laura López Mascaraque es investigadora del Instituto Cajal  del CSIC y autora, junto con José Ramón Alonso de la Universidad de Salamanca, del libro El olfato de la colección ¿Qué sabemos de?, disponible en la Editorial CSIC y Los Libros de la Catarata.

Feromonas: cuestión de (algo más que) sexo

Por Laura López Mascaraque (CSIC)* y Mar Gulis (CSIC)

En 1959, un grupo de químicos alemanes, liderado por Adolf Butenandt, reunieron 313.000 mariposas hembras y les cortaron el extremo del abdomen. Como si de una poción de brujería se tratara, trituraron estas porciones y las disolvieron en diferentes sustancias para observar la respuesta que provocaban los brebajes en los machos de esta especie. De este modo, comprobaron que bastaba con una trillonésima parte de un gramo (10-18 gramos) de mezcla para conseguir algún tipo de reacción por parte del macho. Gracias a este experimento identificaron por primera vez una feromona, a la que denominaron bombicol y que es la responsable de que el macho de la mariposa de la seda (Bombyx mori) mueva sus alas al percibirla.

Mariposa de la seda (Bombyx mori)/ Csiro.

Las feromonas son claves para determinadas relaciones sociales, y sobre todo sexuales, entre varias especies animales, ya sean organismos simples, invertebrados o vertebrados. ¿Qué es y cómo funciona esta potente herramienta capaz de favorecer la comunicación entre individuos en unas concentraciones tan bajas?

Se trata de un tipo de estímulos químicos que transmiten información específica entre individuos de la misma especie, generando normalmente una respuesta tipo. En los casos más evidentes provocan un cambio inmediato en el comportamiento del animal receptor o un cambio en su desarrollo: generan movimientos determinados, actúan sobre la fisiología reproductiva o transmiten un estado de salud determinado o un estatus social dentro de una comunidad.

Las feromonas pueden ser compuestos específicos o mezclas de ellos. En cualquier caso, son compuestos con propiedades físicas y químicas concretas. Una vez liberada se podría decir que la feromona tiene vida propia. La duración de su mensaje dependerá de la persistencia de las moléculas en el ambiente, y el alcance dependerá tanto de esa vida media como de la facilidad de ser transportada por el aire o por una corriente de agua.

En general son sustancias pequeñas, volátiles, que se dispersan con facilidad en el ambiente y que generan efectos en cantidades minúsculas. Según sea su función, así serán sus características: estables y poco volátiles cuando el objetivo es marcar los límites de un territorio, o bien de corta vida y rápida difusión cuando lo que se busca es alarmar ante una situación de peligro…En definitiva, el requisito indispensable es que sean capaces de generar una reacción determinada dentro de la misma especie.

Protozoo, lombriz de tierra y ratón doméstico/ EPA, Holger Casselmann y George Shulkin.

Existen feromonas en organismos simples, como ciertos protozoos (Chlamydomonas) que producen esta sustancia en sus flagelos para conseguir que otros protozoos se agreguen a él. También existen estos compuestos en invertebrados, como la lombriz de tierra (Lumbricus terrestres), que bajo situaciones de estrés segrega una feromona que alerta al resto sobre algún peligro inminente. O en algunos vertebrados, como el macho del ratón doméstico (Mus musculus domesticus), que emite una feromona que genera agresividad en el resto de machos a la vez que atrae a las hembras maduras y acelera la pubertad en las más jóvenes. Pero, ¿qué pasa con los humanos? ¿existen feromonas que influyan en nuestro comportamiento?

Parece mentira, pero aún se desconoce la existencia de feromonas en los seres humanos. Hay diversos estudios que pueden relacionar las feromonas con fenómenos como el reconocimiento recíproco entre una madre y su hijo recién nacido, la denominada sincronía menstrual que ocurre entre las mujeres que viven o trabajan juntas o la reacción que puede provocar sobre los que nos rodean el olor corporal que emitimos en situaciones de estrés. Sin embargo, la creencia es que los olores personales están influidos por la dieta, el ambiente, la salud y la genética. Se piensa que tienen demasiadas sustancias para ser descritos como feromonas y, de hecho, no se ha podido identificar una molécula que se haya definido como feromona humana. Eso no ha disuadido a un grupo de emprendedores para montar empresas que venden pociones de amor que supuestamente contienen feromonas, aunque en realidad, en el mejor de los casos, contienen feromonas, sí, pero de cerdo.

* Laura López Mascaraque es investigadora del Instituto Cajal  del CSIC y autora, junto con José Ramón Alonso de la Universidad de Salamanca, del libro El olfato de la colección ¿Qué sabemos de?, disponible en la Editorial CSIC y Los Libros de la Catarata.

 

¿Se pueden clasificar los olores?

Por Laura López Mascaraque (CSIC)* y Mar Gulis (CSIC)

En los últimos años nos han llegado noticias de la posible existencia de nuevos sabores. A los que ya nos son conocidos (dulce, salado, amargo, ácido y umami), se van sumando otros como el ‘oleogustus’ o sabor a grasa o el ‘sabor a almidón’ de los alimentos ricos en carbohidratos o azúcares complejos. No obstante, ninguno de estos sabores está confirmado, dado que todavía no se han descubierto receptores específicos en la lengua que los identifiquen. Pero, ¿qué pasa con los olores? Ambos sentidos, el gusto y el olfato han estado siempre muy ligados. Somos capaces de detectar infinidad de olores, eso es cierto, pero, ¿somos capaces de definirlos? ¿Percibimos todos los humanos los mismos olores y nos provocan a todos la misma sensación?

De los cinco sentidos, el olfato es el más desconocido, pero también el más primitivo, el más directo, el que más recuerdos evoca y el que perdura más en nuestra memoria. Nos da información de nuestro mundo exterior; aunque con frecuencia esto sucede de forma inconsciente. Cuando olemos, las moléculas emitidas por una determinada sustancia viajan por el aire y llegan a las neuronas sensoriales olfativas, situadas en la parte superior de la nariz, que son las responsables de reconocer el olor y hacer una conexión directa entre el mundo exterior y el cerebro.

El olfato es el sentido más primario. / Christoph Schültz.

El mecanismo es el siguiente: en nuestra nariz se encuentra el epitelio olfativo donde hay millones de células denominadas neuronas sensoriales olfativas.  En los cilios que tienen estas neuronas (receptores olfativos) es donde ocurre la interacción entre el compuesto volátil y el sistema nervioso. Las moléculas de olor encajan en los receptores olfativos como una llave en una cerradura. Cuando esto ocurre, se libera una proteína y tras una serie de acontecimientos se crea una señal que finalmente es procesada por el encéfalo. Parece un mecanismo relativamente sencillo, pero si tenemos en cuenta que nuestra nariz conserva aproximadamente 400 tipos de receptores olfativos o que las neuronas olfativas se renuevan constantemente a lo largo de nuestra vida, la única población neuronal donde esto sucede, la cosa se complica.

En nuestra cultura el valor que se le atribuye al sentido del olfato es muy bajo. Es casi imposible explicar cómo huele algo o describir cómo es un olor a alguien que carece de olfato, que es anósmico. Ya que no existe un nombre para un olor determinado, es generalmente el objeto lo que da nombre a ese olor: a limón, a jazmín…pero, ¿existe alguna clasificación? A lo largo de la historia los olores se han tratado de clasificar de diferentes maneras. Platón ya distinguía entre olores agradables y desagradables y, más adelante, el naturalista Linneo distinguía hasta siete tipologías de olores basándose en que los olores de ciertas plantas nos evocan olores corporales o recuerdos. Así, teníamos olorosas o perfumadas, aromáticas, fuertes o con olor a ajo, pestilentes o con olor a cabra o sudor, entre otras. En 1895, Zwaardemaker agregó a la lista de Linneo dos olores (etéreo y quemado) y en 1916, Hans Henning presentó un diagrama en forma de prisma donde colocaba seis olores básicos en la base y olores intermedios en las aristas y caras. John Amoore, ya en el siglo XX, clasificaba siete olores primarios en la naturaleza basándose en el tamaño y forma de sus moléculas: alcanfor, almizcle, menta, flores, éter, picante y podrido.

Ninguna de estas clasificaciones ha llegado a aceptarse universalmente. Una de las más recientes utiliza métodos matemáticos y, tras el estudio de 144 olores, los clasifica en diez categorías: fragante/floral, leñoso/resinosa, frutal no cítrico, químico, mentolado/refrescante, dulce, quemado/ahumado, cítrico, podrido y acre/rancio. Sin embargo, probablemente ninguna de estas clasificaciones representa las sensaciones primarias verdaderas del olfato. Los aromas son mezcla de olores primarios formados por diferentes compuestos químicos y cada estructura molecular confina un olor propio. Hasta la orientación de las moléculas afecta a su olor, ya que cuando una molécula es quiral o espejo (sin eje de simetría), en una forma huele a una cosa y en su forma especular, a algo distinto. Este es el caso de la carvona, que puede oler a comino o a menta según su orientación, o del limonelo, que asociamos a la naranja o al limón.

Esquema funcional de olor. / Lluis Fortes.

A estas alturas ya habrá quedado claro que es muy complejo llegar a una clasificación concreta y a gusto de todos. Además hay que tener muy en cuenta la importancia de la componente social, cultural y personal de los olores. Al percibir determinados olores, estos evocan imágenes, sensaciones o recuerdos. Esto se debe a que el olfato forma parte del llamado sistema límbico, el centro de emociones del cerebro, formado por varias estructuras que gestionan las respuestas fisiológicas ante estímulos emocionales.

La información olfativa se procesa en la corteza olfatoria primaria, que tiene una conexión directa con la amígdala y el hipocampo. Dado que la amígdala está relacionada con la memoria emocional y el hipocampo con la memoria y el aprendizaje, ambos tienen un potencial enorme para evocar recuerdos. Los recuerdos asociados a olores no son tanto hechos o acontecimientos, como las emociones que estos olores pudieron haber provocado en nosotros en un momento determinado de nuestras vidas.

En definitiva, el olfato tiene unas implicaciones sociales y emocionales muy importantes: determinados olores pueden cambiar nuestro humor, despertar emociones o evocar recuerdos ¿Podremos llegar en un futuro a poder guardar olores en alguna ‘caja de recuerdos’? Esto nos permitiría destaparlos y desencadenar un torrente de emociones en todos los sentidos.

* Laura López Mascaraque es investigadora del Instituto Cajal  del CSIC y autora, junto con José Ramón Alonso de la Universidad de Salamanca, del libro El olfato de la colección ¿Qué sabemos de?, disponible en la Editorial CSIC y Los Libros de la Catarata.