Entradas etiquetadas como ‘inteligencia artificial’

Radio cognitiva, la tecnología que hará más eficientes nuestros móviles

José M. de la Rosa (CSIC)*

Nos encontramos en los albores de la mayor revolución tecnológica que ha conocido la humanidad. Las primeras décadas del siglo XXI serán recordadas por la expansión de las tecnologías de la información y las comunicaciones (TIC) y de dispositivos como los teléfonos móviles, las tablets y los ordenadores personales. Gracias a ellos podemos acceder a la información a través de internet de una forma ubicua y con velocidades de conexión cada vez mayores.

Este desarrollo sin precedentes se debe en gran medida a la microelectrónica y los chips. Estos microingenios han evolucionado en los últimos 50 años de manera exponencial según la ley de Moore, y contienen miles de componentes en unos pocos nanómetros. Una de las consecuencias de este escalado es la integración de la microelectrónica en objetos de uso cotidiano, que ha dado lugar al denominado Internet de las cosas, IoT por sus siglas en inglés.

La computación neuronal artificial ya se ha comenzado a utilizar en algunos dispositivos comerciales

IoT comprende la interconexión de miles de millones de entidades ciberfísicas con una estructura híbrida software/hardware capaces de comunicarse entre ellas sin necesidad de intervención humana. La educación a través de plataformas de enseñanza virtual, la teleasistencia sanitaria personalizada, las operaciones bursátiles automatizadas, las redes energéticas inteligentes, la robotización en procesos industriales y redes de transporte, o los vehículos autónomos, son solo algunos ejemplos del sinfín de aplicaciones de IoT, cada vez más presente en nuestras vidas.

Para una implementación adecuada del Internet de las cosas se requiere el desarrollo de dispositivos electrónicos seguros y eficientes, tanto en coste como en consumo de energía. Tales dispositivos deben estar dotados de una cierta inteligencia y autonomía para poder tomar decisiones en tiempo real y ser robustos frente a las condiciones del medio en que se van a desenvolver. Y para que esto ocurra es necesario desarrollar tecnologías que hagan viable la construcción de un puente sólido entre el medio físico (real) y su versión virtualizada (digital).

Del 1G al 5G

Microfotografía de un chip del Instituto de Microelectrónica de Sevilla/ IMSE (CSIC-US)

Una de esas tecnologías para ‘construir puentes’ son las comunicaciones móviles. Hace poco más de un par de décadas, los terminales móviles eran simplemente teléfonos inalámbricos, cuya única funcionalidad era la transmisión de voz (primera generación o 1G), a la que se añadió posteriormente la transmisión de SMS en la segunda generación (2G), con velocidades de transmisión de unos pocos de kilobits por segundo. Con el desarrollo del 3G, los móviles pasaron a ofrecer servicios multimedia y conexión a internet de banda ancha con velocidades de acceso de varios Megabits/s (Mb/s). En la actualidad, la mayoría de las redes operan con terminales móviles de cuarta generación (4G), que permiten alcanzar velocidades de hasta centenares de Mb/s, y ya se empieza a implantar la red 5G, con velocidades de Gigabits/s (Gb/s).

Sin embargo, las comunicaciones móviles tienen un problema: las bandas del espectro electromagnético por donde se propagan las ondas radioeléctricas con la información transmitida por muchos aparatos electrónicos se pueden saturar y convertirse en un cuello de botella para la implementación práctica de IoT. Esto ha motivado la investigación y desarrollo de tecnologías para hacer un uso más eficiente y sostenible del espectro electromagnético. Una de ellas es la denominada radio cognitiva o CR por sus siglas en inglés.

En esencia, la radio cognitiva se basa en la convergencia de tecnologías de comunicación y de computación que permiten ajustar de forma autónoma y transparente para el usuario los parámetros de transmisión y recepción de los dispositivos electrónicos en función de la información que detectan del entorno radioeléctrico donde se utilizan. Para ello, dichos dispositivos han de incluir sistemas de comunicaciones en los que la digitalización (transformación digital de las señales que portan la información) se realice lo más cerca posible de la antena (tanto en el receptor como en el transmisor). Así, el procesamiento de la información se hace mediante software y puede ejecutarse en un microprocesador digital. Esto aumenta significativamente el grado de programabilidad y adaptabilidad de los terminales móviles a diferentes modos o estándares de comunicación.

Inteligencia artificial en nuestros móviles

Además de un sistema de comunicación basado en software, la radio cognitiva requiere del uso de algoritmos de inteligencia artificial (IA) para identificar de forma automática la banda óptima del espectro electromagnético en la que se pueda transmitir mejor la información. Con la inteligencia artificial se maximiza la cobertura, se minimiza el efecto de las interferencias y se incrementa la durabilidad y la vida útil de la batería, entre otras muchas ventajas.

Sin embargo, los microprocesadores empleados en dispositivos convencionales resultan ineficientes para realizar las tareas de inteligencia artificial requeridas en sistemas de radio cognitiva. Al llevarlas a cabo, estos dispositivos consumen mucha energía y reducen la durabilidad de la batería. Esto ha motivado la investigación de alternativas como los procesadores neuromórficos, los cuales realizan el tratamiento de la información inspirándose en el cerebro humano.

Esquema de funcionamiento de un procesador neuromórfico/ José M. de la Rosa

Hay tareas computacionales, como el cálculo, en las que los procesadores convencionales son más eficientes que el cerebro, pero otras, como el reconocimiento de patrones, son ejecutadas mejor por los sistemas neuronales. Es lo que ocurre, por ejemplo, en el reconocimiento facial, que el ojo y el cerebro humanos realizan de forma mucho más eficaz en términos de velocidad, precisión y consumo energético. En el caso de la radio cognitiva, los procesadores neuromórficos deben encargarse de reconocer patrones de señales radioeléctricas, que son las que transmiten la información en la telefonía móvil.

De hecho, la computación neuronal artificial ya se ha comenzado a utilizar en algunos dispositivos comerciales. Por ejemplo, la compañía Apple incorpora módulos neuronales de aprendizaje automático (o Machine learning) en sus procesadores más recientes incluidos en los últimos modelos de iPhone. Estos dispositivos contienen 8.500 millones de transistores integrados en una tecnología de 7 nanómetros. Otras compañías como Intel y Qualcom han desarrollado procesadores neuromórficos fabricados también en tecnologías nanométricas.

Aunque aún se está lejos de desarrollar ordenadores completamente basados en procesamiento neuronal, hay un interés creciente por integrar la inteligencia artificial en el hardware de los dispositivos. Esta es una de las líneas de investigación en las que se trabaja en el Instituto de Microelectrónica de Sevilla (CSIC-US). En un futuro, se espera poder incorporar procesamiento neuromórfico en chips de comunicaciones que hagan posible la realización de dispositivos IoT/5G más eficientes gracias al uso de la radio cognitiva.

*José M. de la Rosa es investigador del Instituto de Microelectrónica de Sevilla, centro mixto del CSIC y la Universidad de Sevilla.

¿Puede un robot diagnosticar una enfermedad mejor que un médico?

Por Ramón López de Mántaras y Pedro Meseguer (CSIC)*

La respuesta es ‘sí’. Pero, como casi todas las respuestas, hay que matizarla.

Históricamente, uno de los ámbitos de aplicación de la inteligencia artificial (IA) ha sido la medicina. En la actualidad la técnica de IA que está dando los resultados más espectaculares en el ámbito del diagnóstico basado en la imagen es el llamado aprendizaje profundo, que consiste en aprender a reconocer patrones de manera muy eficiente. Con esta técnica, recientemente científicos de la Universidad de Carnegie Mellón (EE UU), en colaboración con cuatro hospitales de Chicago, han desarrollado un sistema capaz de predecir infartos con cuatro horas de antelación en enfermos ingresados en UCIs, lo que mejora en más de tres horas los tiempos de predicción de los cardiólogos. Otro ejemplo exitoso de aplicación del aprendizaje profundo es el análisis combinado de imágenes médicas de rayos rayos X, MRI y ultrasonidos desarrollado por un grupo de la Universidad de Queensland (Australia), el cual puede diagnosticar el cáncer de mama mejor que los médicos.

diagnostico por ordenadorEste tipo de sistemas se entrenan a partir de enormes cantidades de datos. Así, el software capaz de predecir infartos fue entrenado con datos de 133.000 pacientes, que incluían 72 parámetros presentes en la historia clínica de estas personas (signos vitales, edad, glucemia, recuentos de plaquetas, etc.).

Cuando no se dispone de suficientes datos o el problema médico que se quiere resolver no se basa en el reconocimiento de patrones, sino más bien en razonamiento lógico basado en el procesamiento de conocimientos médicos, entonces es posible recurrir a otra técnica de IA menos novedosa pero también muy útil. Se trata de los denominados sistemas expertos, que utilizan el conocimiento acumulado sobre los síntomas de una enfermedad, el historial médico y los resultados de análisis médicos para llegar a conclusiones sobre el estado de un paciente, es decir, para diagnosticar. Cuanto mayor sea su capacidad para combinar sus conocimientos con las observaciones reales, más exacto será su diagnóstico.

El primer sistema experto médico fue HEURISTIC DENDRAL, desarrollado a partir de los años 70 en la Universidad de Stanford, en el ámbito de la química orgánica. Poco después, en la misma universidad se desarrolló MYCIN, orientado a las enfermedades infecciosas. Una parte del sistema describía posibles síntomas y otra expresaba una posible causa de los mismos. Además de incorporar conocimientos que permitían diagnosticar el agente causante de la infección, MYCIN también contenía información acerca del tratamiento adecuado, por lo que resultaba útil para la toma de decisiones por parte de los médicos.

Hoy ya hay multitud de sistemas en este campo que se usan regularmente en hospitales y centros médicos de todo el mundo. Por ejemplo, ATHENA, que ayuda a los médicos a tratar a pacientes con problemas de hipertensión. Este sistema procesa los datos clínicos de cada paciente y, a partir de su base de conocimientos sobre hipertensión, genera recomendaciones para mejorar la atención clínica personalizada.

Una de las aplicaciones más potentes a nivel mundial es el sistema GIDEON, que ayuda a diagnosticar 337 enfermedades infecciosas específicas en 224 países. Su base de datos cubre 1.147 taxones microbianos y 306 agentes antibacterianos y vacunas. La información que maneja es actualizada semanalmente e incluye más de 20.000 imágenes, gráficos, mapas infografías, etc. Todo ello le permite llegar a un 94% de diagnósticos correctos, y de ahí que sea uno de los sistemas más usados en el ámbito de la medicina. GIDEON es útil tanto para el diagnóstico y tratamiento de las enfermedades infecciosas, como para mejorar su conocimiento, identificar microorganismos patógenos y detectar brotes epidémicos. Básicamente lo que hace GIDEON es mejorar la exactitud del diagnóstico y ampliar la base de conocimientos de la persona experta. Ahora bien, como todo sistema, presenta algunas limitaciones. Por ejemplo, no es capaz de diagnosticar simultáneamente enfermedades concurrentes. Además, los signos y síntomas que se introducen para realizar una consulta se relacionan únicamente con las enfermedades transmisibles registradas en el sistema, por lo que quedan excluidas muchas otras.

En cualquier caso, es importante recalcar que los sistemas basados en IA, a pesar de ser capaces de proporcionar diagnósticos rápidos y certeros, nunca superarán el sentido común y el buen juicio de una persona, ni tampoco el efecto placebo resultante del trato humano y la empatía que caracteriza a un buen profesional de la medicina en la relación con sus pacientes. Otro punto fuerte de los expertos humanos respecto a la inteligencia artificial es la capacidad de aplicar el conocimiento existente cuando, por ejemplo, los datos son incompletos o la información sobre el estado de un paciente no se corresponde bien con los casos usuales.

Sin embargo, para un médico la capacidad de recordar datos organizados puede ser un factor limitante, igual que la de correlacionar los casos observados con el patrón de datos existente. Por ello el uso de sistemas de IA es una excelente ayuda. De hecho, los sistemas de IA en medicina no deberían diseñarse con el objetivo de sustituir al médico u otro personal sanitario, sino como sistemas de ayuda y complemento de su labor.

 

* Ramón López de Mántaras y Pedro Meseguer son investigadores del CSIC en el Instituto de Investigación en Inteligencia Artificial del CSIC y autores del libro de divulgación Inteligencia Artificial (CSIC-Catarata).

¿Puede un robot pintar un Rembrandt?

Por Mar Gulis (CSIC)

“¿Sería posible revivir a Rembrandt?”. A partir de esta provocadora pregunta, Ramón López de Mántaras, investigador del CSIC, explica uno de los éxitos de la inteligencia artificial aplicada al arte: la creación de un cuadro que, según los expertos consultados, podría pasar por un auténtico Rembrandt. Científicos, ingenieros e historiadores del arte trabajaron durante más de un año para ‘enseñar’ a una computadora a ser ‘el próximo Rembrandt’. The Next Rembrandt, como se denomina este proyecto, ha sido impulsado por varias multinacionales, la Universidad Técnica de Delft y los museos Mauritshuis y Rembrandthuis. ¿El resultado? Este cuadro, una obra que imita a la perfección los trazos y el estilo del gran pintor holandés.

El software ‘pintó’ la obra tras analizar 326 obras del famoso pintor holandés / The Next Rembrandt

Para ello, “el software analiza detalladamente el trazo de las pinturas originales, las proporciones y distancias que se observan en los retratos de Rembrandt y otras muchas variables que se repiten en las obras del pintor: rostros masculinos, con bigote o barba, con sombrero, con la cabeza generalmente ladeada y mirando a la derecha… Después, con una impresora 3D, esta inteligencia artificial ‘pinta’ un Rembrandt”, comentó Mántaras, director del Instituto de Investigación en Inteligencia Artificial del CSIC, durante una charla del ciclo Inteligencia artificial y robótica en la Residencia de Estudiantes de Madrid.

Previamente, los desarrolladores identificaron y clasificaron los patrones más comunes de la obra del pintor, desde su composición hasta las dimensiones de los rasgos faciales de los personajes retratados. Así, la obra resultante se basa en el análisis pormenorizado de miles y miles de fragmentos pictóricos de los 346 cuadros conocidos del autor. El procesamiento estadístico de todos los datos hace que el software ‘fabrique’ un cuadro que integra las variables que más se repiten; en este caso, la pintura resultante debía ser un retrato de un hombre caucásico, de entre 30 y 40 años, con vello facial, ropa oscura, cuello blanco, sombrero y la cara girada hacia la derecha, como muchas de las obras del maestro del barroco.

A lo largo del proceso, la computadora combina un algoritmo de reconocimiento facial con un software de aprendizaje profundo. Después, ‘aprende’ a pintar una nariz, unos ojos o una boca como lo haría Rembrandt. Como resultado, pinta un nuevo cuadro, no una réplica de uno existente.

El proyecto refleja hasta qué punto está perfeccionándose la capacidad de los ordenadores para realizar tareas específicas mejor que las personas. Este no es el único ejemplo: jugar al ajedrez, buscar soluciones a fórmulas lógicas o realizar diagnósticos más rápido que los médicos son actividades que algunas máquinas resuelven con más pericia que los humanos. Ahora bien, ¿es posible construir máquinas con una inteligencia similar a la humana? Esta es una de las preguntas que planteaba Mántaras, también coautor del libro Inteligencia artificial (CSIC-Catarata). En su opinión, “los intentos de crear este tipo de inteligencia artificial se enfrentan a la dificultad de dotar a las máquinas de sentido común”. Este conocimiento es fruto de nuestras vivencias y experiencias, que a su vez son el resultado de una interacción constante con el entorno, algo que no pueden adquirir las computadoras.

“Ese es el gran desafío. No nos acercamos a la inteligencia artificial general porque desarrollamos inteligencias muy específicas. Hay que integrar todo eso”, añadió. Como señala en su libro, “necesitamos nuevos algoritmos que puedan responder a preguntas sobre prácticamente cualquier tema. Y además, estos sistemas deberán ser capaces de aprender nuevos conocimientos a lo largo de toda su existencia”. Eso sí, mientras se avanza hacia esa inteligencia profunda, ya podemos admirar obras maestras realizadas por computadoras; aunque quizá nos hallemos también ante una nueva pérdida del aura de la obra de arte, tal y como advirtió Walter Benjamin.

 

¿Podrán los robots tener inteligencia emocional?

armada57Por Elena G. Armada (CSIC)*

Tras analizar los tests realizados a 10.000 personas, el Instituto Carnegie de Tecnología de EEUU llegó a la siguiente conclusión: el 15% del éxito profesional se debe a la inteligencia académica y el 85% a la inteligencia emocional. Esta última implicaría cuestiones tan dispares como la conducta, la observación, la imaginación creadora, la intuición, la habilidad organizativa, la adaptabilidad o la expresión. En definitiva, todo lo relacionado con la personalidad y la capacidad para tratar con otras personas.

el lado...

La inteligencia emocional se hallaría localizada en el hemisferio derecho del cerebro.

Cuando hablamos de inteligencia conviene aclarar a qué nos estamos refiriendo. El Coeficiente de Inteligencia Intelectual (CI) se utiliza desde principios del siglo XX para clasificar la inteligencia de las personas a partir de un test escrito. Concretamente una serie de preguntas sirven para calificar los conocimientos matemáticos, lingüísticos y de razonamiento de quien es examinado.

Sin embargo, ya en los años 80 el psicólogo de la Universidad de Harvard Howard Gardner refutó este concepto de CI a través de su libro Frames of Mind: The Theory of Multiple Intelligences. A lo largo de sus páginas el autor defiende la existencia de otros tipos de inteligencia, refiriéndose a las siguientes variedades:

  1. Inteligencia verbal, asociada al lenguaje y a la inteligencia académica.
  2. Inteligencia lógico-matemática, asociada con la inteligencia académica en el razonamiento matemático.
  3. Inteligencia espacial, asociada con el arte.
  4. Inteligencia kinestésica, asociada al baile y al deporte.
  5. Inteligencia musical, vinculada a la música.
  6. Inteligencia personal, que caracterizaría a los líderes.
  7. Inteligencia intrapsíquica, que es lo que conocemos como intuición.

Mientras que las dos primeras corresponden a lo que el CI puede medir, las cinco restantes quedarían fuera de este índice y se corresponderían con lo que denominamos inteligencia emocional.

Según el planteamiento del Carnegie, la inteligencia emocional se encuentra localizada en el hemisferio derecho del cerebro, mientras que la académica se halla en el lado izquierdo. Esta parte es analista, calculadora, detallista, lógico-racional, secuencial y objetiva. Al actuar secuencialmente, procesa la información de una en una. Su velocidad de procesamiento es de 40 bits por segundo.

En cambio, el hemisferio derecho procesa la información de forma global; no analiza sino que sintetiza, capta el todo y llega a las partes. Es sentimental, soñador, holístico, subjetivo. Y trabaja de forma simultánea, es decir, procesa la información a un mismo tiempo, a una velocidad de entre 1 y 10 millones de bits por segundo, siendo mucho más rápido que el izquierdo.

adfsa

Los robots pueden realizar cálculos más rápido que los humanos, pero carecen de intuición. / Wikipedia

Esto tiene importantes implicaciones para el desarrollo de la inteligencia artificial. La capacidad de cómputo de los procesadores es mucho más rápida que la de un ser humano. Un robot puede analizar todas las combinaciones de acciones posibles en milésimas de segundo. A partir de ahí, puede escoger una y tomar una decisión en base a un criterio matemático (por ejemplo, la trayectoria más rápida o el movimiento que menos energía consume). Esto es posible porque, gracias a la investigación y la tecnología, los humanos hemos replicado nuestro hemisferio izquierdo -el racional, el académico- en máquinas y procesadores de todo tipo.

Pero para que un robot pueda tomar decisiones humanas y aprender como lo hace un niño, tendrá que llegar el día en el que entendamos cómo funciona nuestro hemisferio derecho y, más aún, aprendamos a modelarlo matemáticamente.

La inteligencia artificial aplicada a la robótica ha permitido resolver muchos problemas computacionales de toma de decisión, todos ellos basados en teoría de probabilidades. Sin embargo, aún no se ha conseguido emular el comportamiento del cerebro. Quizá porque pretendemos programar la inteligencia cuando todavía no sabemos con certeza qué es y de dónde proviene.

 

*Elena G. Armada es investigadora en el Centro de Automática y Robótica (UPM-CSIC). Este post es un extracto de su libro Robots. Al servicio del ser humano (CSIC-Catarata).