Entradas etiquetadas como ‘Antártida’

Apúntate a la Semana de la Ciencia del CSIC: hay más de 140 actividades para elegir… y muchas son online

Por Mar Gulis (CSIC)

¿Te interesa saber cómo ventilar una habitación para reducir el riesgo de contagiarse de coronavirus? ¿Quieres descubrir cómo las matemáticas están cambiando a los robots? ¿Te animas a participar en un escape room ambientado en un agujero negro, de donde ni siquiera la luz puede salir? Propuestas como estas forman parte de la programación del CSIC para la Semana de la Ciencia y la Tecnología: más de 140 actividades gratuitas, algunas presenciales y otras virtuales, que se desarrollarán a lo largo de noviembre en 12 comunidades autónomas (Andalucía, Aragón, Asturias, Canarias, Cantabria, Castilla y León, Cataluña, Comunidad Valenciana, Galicia, Islas Baleares, Madrid y País Vasco).

SCT en el IEM-CSIC

Taller escolar en el Instituto de Estructura de la Materia durante la Semana de la Ciencia de 2019. / Sandra Diez (CSIC)

En la web www.semanadelaciencia.csic.es encontrarás todas las iniciativas del CSIC para este gran evento de divulgación y podrás informarte de cómo inscribirte en las que más te interesen; pero, atención:  todavía estamos ultimando los preparativos, así que en los próximos días iremos añadiendo nuevas propuestas. ¿Quieres conocer algunas de ellas? Te las contamos a continuación.

Lo que sabemos (hasta ahora) sobre la pandemia

Como es lógico, la pandemia provocada por el SARS-CoV-2 se dejará notar en el contenido de esta Semana de la Ciencia. El estado de desarrollo de las vacunas españolas, las pruebas PCR, o los mecanismos moleculares, celulares y epidemiológicos que contribuyen a la propagación del patógeno serán el eje de varias conferencias que, de forma presencial o virtual, impartirán especialistas del Centro de Investigaciones Biológicas Margarita Salas, el Centro de Biología Molecular Severo Ochoa o el Centro Nacional de Biotecnología.

Otras propuestas abordarán la epidemia desde un enfoque multidisciplinar. Es el caso de dos actividades virtuales del Instituto de Diagnóstico Ambiental y Estudios del Agua: la charla Daños colaterales de la COVID-19: la pandemia del plástico, sobre el aumento en el consumo de este material que ha supuesto la crisis del coronavirus, y el taller Aprende a medir la ventilación de un espacio cerrado, que aportará pautas para reducir el riesgo de contagio. Por su parte el debate presencial Biodiversidad y zoonosis, que tendrá lugar en el Real Jardín Botánico, se centrará en cómo una naturaleza sana puede evitar que nuevos virus salten de los animales a los seres humanos.

Eventos online para todos los públicos

Además, el coronavirus ha traído consigo algunos cambios en el formato de las actividades y muchas se llevarán a cabo de manera virtual, para que cualquiera pueda participar desde casa. Entre ellas figuran un escape room del Instituto de Física de Cantabria, en el que el objetivo será evadirse de donde ninguna partícula logra hacerlo: un agujero negro, o la gymkhana sobre la luz que todos los años organiza el Instituto de Óptica, y que en esta edición se traslada a Youtube. Así mismo, el taller (R)Evoluciona la vida de los océanos del Instituto de Biología Evolutiva desafiará al público a diseñar una nueva especie marina adaptada al calentamiento de los océanos y al aumento de microplásticos en sus aguas.

SCT 2019 en el Instituto de Biologia Funcional y Genomica de Salamanca

Visita al Instituto de Biología Funcional y Genómica de Salamanca durante la pasada edición de la Semana de la Ciencia. / CSIC

Entre las propuestas virtuales no faltan tampoco las dirigidas a niños y niñas. La Delegación del CSIC en las Islas Baleares invita al alumnado de primaria a divertirse y aprender con el juego ¿Qué hacen los científicos y científicas?, unKahoot’ sobre plantas, animales, océanos y el mismo planeta Tierra. Mientras, el Centro de Investigación y Desarrollo Pascual Vila ofrece dos talleres especialmente dirigidos a niñas de 6 a 12 años en el marco de la actividad Las chicas son de ciencias (CSIC4Girls): uno sobre contaminación atmosférica y otro en el que las participantes tendrán que valerse de la química para fabricar camisetas. Otra actividad online para escolares será el concurso de dibujo de la Misión Biológica de Galicia ¿Pueden enfermar las plantas?, abierto a alumnado de primaria de toda España.

Para ESO y Bachillerato también hay planeadas actividades en la red, como una charla sobre el papel de los pingüinos en el funcionamiento ecológico de la Antártida, que podrá verse en el canal de Youtube del Instituto de Ciencias Marinas de Andalucía, o la jornada Acercando los Objetivos de Desarrollo Sostenible a las aulas, en la que científicos y científicas del Instituto de Productos Naturales y Agrobiología presentarán sus investigaciones. Lo harán desde la perspectiva de los retos planteados en la Agenda 2030 de la ONU y tratarán temas como las especies invasoras en Canarias, las vacunas, el cambio climático o la seguridad alimentaria.

Las propuestas virtuales no acaban aquí. El canal de Youtube del Instituto de Física Teórica, que cuenta con más de medio millón de suscripciones, emitirá dos directos: uno sobre lo ‘infinitamente’ pequeño, como la física cuántica o el bosón de Higgs, y otro sobre lo ‘infinitamente’ grande, como el origen y el futuro del universo, la energía oscura o las ondas gravitacionales. También habrá charlas para todos los públicos, como las organizadas por el Instituto de Ciencia y Tecnología del Carbono sobre nanotecnología y energías renovables, o las tituladas Matemáticas y robótica, del Instituto de Ciencias Matemáticas, ¿Qué hay de cierto en que se puedan cultivar patatas en Marte?, del Centro de Investigaciones Biológicas Margarita Salas, o Verdades y mentiras de la física cuántica, del Instituto de Física Fundamental. Además, será posible visitar virtualmente varios centros de investigación, como el Instituto de Recursos Naturales y Agrobiología de Salamanca. En este caso las ideas que la célebre bióloga Rachel Carson transmitió a través de su libro Primavera silenciosa servirán de hilo conductor para hablar de los proyectos que se llevan a cabo en el centro.

Eventos presenciales en tu comunidad autónoma

Visitas a laboratorios, rutas científicas, conferencias danzadas: la Semana de la Ciencia del CSIC sigue contando con un gran número de actividades presenciales. Todas ellas se llevarán a cabo de forma segura, para lo cual se han reducido los aforos habituales y se han establecido medidas de higiene y desinfección especiales. Además, será imprescindible la inscripción previa, lo que permitirá comunicar al público asistente cualquier cambio en la programación motivado por la situación sanitaria. Si esta Semana de la Ciencia te apetece salir de casa, aquí tienes algunos de los eventos que se desarrollarán en tu comunidad autónoma.

SCT 2019 en el Instituto de Ciencia y Tecnología de Alimentos y Nutrición

Taller del Instituto de Ciencia y Tecnología de Alimentos y Nutrición en la anterior edición de la Semana de la Ciencia. / CSIC

En Andalucía, el Museo Casa de la Ciencia de Sevilla te invita a asistir a varias de sus actividades. Una de ellas es el taller Buscando vida en el universo, en el que personal del Centro de Astrobiología explicará, a través de vistosas demostraciones, cómo se extrae el ADN, cómo se han formado los cráteres lunares y por qué no hay agua líquida en Marte. Y si vives en Aragón, la Estación Experimental Aula Dei, el Instituto Pirenaico de Ecología y el Instituto de Carboquímica te animan a acudir a sus jornadas de puertas abiertas.

Los eventos virtuales predominan en Cataluña. Sin embargo, en esta comunidad no faltarán los cursos de formación para el profesorado, como el que ofrece el Instituto de Biología Evolutiva, ni los talleres presenciales para escolares. Es el caso de LabEnClass: La energía del futuro, en el que el Instituto de Ciencia de Materiales de Barcelona presentará sus investigaciones relacionadas con la energía a través de varios experimentos.

En la Comunidad Valenciana la Casa de la Ciencia de Valencia organizará charlas y debates con personal investigador, y en Galicia la Delegación del CSIC presentará Ciencia que alimenta, una obra de teatro sin comunicación verbal que busca despertar el interés por la ciencia en el público de todas las edades. Además, las niñas y los niños de esta comunidad podrán diseñar su propio escudo familiar en un taller del Instituto de Estudios Gallegos Padre Sarmiento para acercarse de forma divertida y amena al mundo de la heráldica.

Ya en Madrid, será posible asistir a una conferencia bailada sobre danza contemporánea en el Instituto de Historia y a un gran número de talleres presenciales, en los que el público de todas las edades tendrá la oportunidad de descubrir si las moscas tienen olfato (Instituto Cajal), si se puede congelar agua a temperatura ambiente (Instituto Cajal) o cuánta vida hay en un ecosistema urbano (Real Jardín Botánico). Además, quien quiera estar al aire libre podrá sumarse a alguna de nuestras rutas científicas, como la que propone el Centro de Ciencias Humanas y Sociales por la historia de la Plaza Mayor, la Puerta del Sol o el Madrid de la Guerra Civil.

Por último, en el País Vasco podrás explorar las escalas macro, micro y nanoscópica por medio de lupas y de un microscopio fabricado con tus propias manos en el taller familiar Escala tu mundo, organizado por el Centro de Física de Materiales (San Sebastián).

Como ves, no faltan opciones, pero no te preocupes si ahora mismo no sabes cuál elegir. En la web de la Semana de la Ciencia del CSIC  puedes encontrar la actividad que más te interese buscando por diferentes criterios, como la comunidad autónoma en la que vives, el formato del evento o el tipo de público al que va dirigido (general o alumnado educación, infantil, primaria, secundaria o universidad). Eso sí, cuando lo tengas claro date prisa para inscribirte, porque otros años el aforo se ha cubierto rápido y en esta edición la pandemia ha hecho necesario reducirlo más. ¡Te esperamos!

Petrel gigante, el vigía antártico de la contaminación química

Por Jose L. Roscales (CSIC)*

Nuestro estila de vida deja una rastro químico que llega hasta la Antartida. Ilustración cortesía de Olga de Dios.

Nuestro estila de vida deja una rastro químico que llega hasta la Antártida / Ilustración cortesía de Olga de Dios

¿Te has paseado alguna vez por la Antártida? Es más que probable que tu respuesta sea ‘no.’ Sin embargo, a pesar de ser la región del planeta más remota y ajena a nuestras frenéticas vidas, la Antártida también refleja la ‘huella química’ que dejamos. Es más, justamente por sus características, el continente helado es como un ‘lienzo en blanco’ para el estudio de la acumulación de los contaminantes químicos capaces de llegar hasta allí.

Con todo tipo de aplicaciones que sustentan nuestro estilo de vida (industriales, agrícolas, alimentarias, farmacéuticas, etc.), la variedad y el volumen de productos químicos utilizados por el ser humano no ha parado de crecer en las últimas décadas. A pesar de su gran utilidad, lamentablemente se ha subestimado el gran potencial de algunos de ellos para convertirse en peligrosos contaminantes.

Ejemplo de ellos son los Contaminantes Orgánicos Persistentes (COP), compuestos caracterizados por una gran persistencia en el medio, una alta toxicidad y por la capacidad de bio-acumularse en los organismos a lo largo de su vida. Además, pueden viajar por el aire y el agua y pasar de un medio al otro. De este modo, los mecanismos de circulación global atmosférico y oceánico los dispersan por todo el planeta.

La mayoría de los COP son sustancias que fueron sintetizadas para ser utilizadas en la agricultura, como el pesticida DDT, o por sus aplicaciones industriales o en productos de consumo. Este es el caso de algunos retardantes de llama como los PBDEs (por sus siglas en inglés), usados para prevenir que ardan, por ejemplo, elementos comunes de mobiliario y electrodomésticos o dispositivos electrónicos como los teléfonos móviles.

Afortunadamente disponemos de un convenio internacional efectivo para proteger el medio ambiente y al ser humano de estos contaminantes. El Convenio de Estocolmo, ratificado por España en 2004 –potencias como EEUU e Italia están aún pendientes de su ratificación–, se encarga de la regulación de las sustancias que identifica como COP. Se puede considerar, por ejemplo, que la utilización de la mayoría de los PBDEs cesó a escala global a partir de 2009, tras su inclusión en el Convenio. Además, la investigación sobre la contaminación química permite identificar nuevos contaminantes susceptibles de ser regulados, dotando al Convenio de una constante vitalidad.

En esta dirección, investigadores del laboratorio de Química Ambiental del Instituto de Química Orgánica del CSIC, en colaboración con la Universidad de Barcelona y el Instituto Percy FitzPatrick de Sudáfrica, han realizado un estudio que desvela nuevas claves sobre el gran potencial de la fauna antártica para mostrarnos el alcance de nuestra huella química.

Liam Quinn

Petrel sobrevolando el Atlántico / Liam Quinn

Para el puesto de bio-indicador o ‘vigilante antártico’ los investigadores seleccionaron al petrel gigante, ya que se trata de un imponente depredador que se alimenta de una alta proporción de carroña, básicamente pingüinos y focas, y de otras presas que captura en mar abierto. Estas aves presentan una amplia distribución en el hemisferio Sur y cubren distancias que pueden superar los 1.000 km para conseguir comida. Situados en lo alto de la cadena trófica, los petreles gigantes integran los COP presentes en las cadenas tróficas antárticas y de una amplísima área del hemisferio Sur.

Así, tras determinar los niveles de distintos COP presentes en la sangre de unos 50 petreles gigantes de diversas colonias situadas entre los 62º y los 40º sur, los investigadores han comprobado que alejarse de la Antártida es sinónimo de estar más expuesto a estos contaminantes.

En general, los niveles de COP en petreles son más bajos que los encontrados en el hemisferio Norte. Los resultados sugieren que la Antártida sigue estando entre las regiones más prístinas del planeta. Sin embargo, algunos COP muestran síntomas de estar acumulándose en la región polar, lo que se explica por el fenómeno de ‘la condensación fría’, un proceso por el cual debido a las bajas temperaturas los contaminantes quedan atrapados en los polos.

También se han encontrado evidencias de que retardantes de llama aún no regulados, como algunos PBDEs todavía en uso o el Declorano Plus, pueden igualmente presentar una distribución global y son por tanto posibles candidatos a COP.

Este estudio refuerza la teoría de que el transporte a larga distancia de los COP desde sus principales fuentes de producción y uso, las zonas más industrializadas del planeta, es la principal vía de entrada de estos contaminantes en la Antártida. Ahora que sabemos lo lejos que puede llegar nuestra huella química, tenemos la responsabilidad de tratar de frenarla en la medida de nuestras posibilidades.

Un consumo responsable puede contribuir a minimizar la presencia de contaminantes químicos en el medio. Esto implica alejarse del consumismo descontrolado, centrarse en explotar el total de la vida útil de los productos antes de reemplazarlos, realizar una gestión adecuada de nuestros residuos, e incrementar en la medida de lo posible el consumo de productos ecológicos, con menor contenido de sustancias químicas y más sostenibles.

Vriaciones en la presencia de Contaminantes Orgánicos Persistentes en plasma de petreles gigantes de distintas colonias de la región Antártica. Ilustración cortesía de Olga de Dios.

Variaciones en la presencia de Contaminantes Orgánicos Persistentes en plasma de petreles gigantes de distintas colonias de la región Antártica / Ilustración cortesía de Olga de Dios.

 

* José Luis Roscales es investigador del Instituto de Química Orgánica del CSIC.

¿Una Europa congelada? El paradójico desenlace del calentamiento global

The day after tomorrow

Imagen promocional de la película The day after tomorrow

Por Mar Gulis (CSIC)

La hipótesis de que el calentamiento global, paradójicamente, podría conducir a un enfriamiento más o menos abrupto de las zonas más habitadas del planeta no es nueva para la ciencia. Tampoco para el público general, puesto que a mediados de la década pasada la idea alcanzó cierta notoriedad en los medios de comunicación. La película The day after tomorrow fue, sin duda, el producto de Hollywood que más contribuyó a difundirla.

¿Cuál es la base científica de esta hipótesis? Para responder a esta pregunta, primero es necesario comprender la dinámica global de las corrientes marinas y su importante papel en la regulación climática de la Tierra.

Impulsadas principalmente por el viento, las corrientes superficiales calientan unas zonas del planeta y enfrían otras. Los flujos calientes transportan calor desde los trópicos y los subtrópicos hacia los polos; como la Corriente del Golfo y su brazo que se alarga hasta el Atlántico Norte, que dan a Europa un clima más cálido del que tendría si no existieran. Como los vientos del oeste llevan esta corriente hacia tierra, los países del este del océano Atlántico tienen un clima más templado que los del oeste, aunque se encuentren a la misma latitud. Por eso el invierno en Reikiavik, la capital de Islandia, puede llegar a ser más suave que el de Nueva York, aunque la primera esté bastante más al norte que la segunda.

Por su parte, las corrientes frías hacen que se encuentren ciertas especies en lugares donde no se esperaría verlas. Por ejemplo, aunque la mayoría de los pingüinos viven en climas polares, existe una especie que vive en las Islas Galápagos (situadas frente a la costa de Ecuador), que tienen clima tropical. Esto es debido a la existencia de la Corriente de Perú, que transporta agua fría procedente de la Antártida a lo largo de la costa oeste sudamericana.

Sin embargo, las corrientes superficiales son solo la parte ‘visible’ de la circulación oceánica global, conocida también como circulación termohalina. Este gran cinturón, que conecta aguas de todos lo océanos, está impulsado por dos puntos de formación de aguas profundas: uno cerca de Groenlandia y otro en el mar de Weddell, en la Antártida. El agua se hunde en estos lugares por su mayor densidad, una propiedad que aumenta cuando lo hace la salinidad y/o cuando desciende la temperatura. Durante el proceso de formación de hielo que tiene lugar en los mares polares, la sal es expulsada al agua circundante. Esto hace que se cree un agua más densa, muy fría y con más contenido en sal, que se hunde para dejar que su lugar en la superficie lo ocupen masas de agua menos densas.

Las aguas que se han hundido en el Ártico se dirigen por el fondo del mar hacia la Antártida, donde se bifurcan hasta que vuelven a aflorar en el océano Índico y en el océano Pacífico. Por otra parte, los vientos provocan corrientes superficiales que transportan el agua menos densa y más cálida hacia el Atlántico Norte, donde se hundirá de nuevo al enfriarse y ganar salinidad. Este patrón de circulación a escala global tarda unos mil años en completarse.

Circulación global

Pero, ¿por qué razón la consecuencia del calentamiento global sería un enfriamiento de amplias zonas del planeta? Si el calentamiento fundiera el hielo ártico, tal y como está ocurriendo, se incrementaría el agua dulce de las zonas boreales. Esta agua, menos densa, probablemente ya no se hundiría, lo que podría provocar que la denominada cinta transportadora del Atlántico –el sistema de corrientes que mantiene cálida Europa– interrumpiera o cambiara su patrón de circulación. Si esto ocurriese, la temperatura atmosférica media de Europa caería en picado…

 

Si quieres más ciencia para llevar sobre corrientes marinas consulta la web del proyecto de divulgación del CSIC y la Obra Social “la Caixa” El mar a fondo.

¿De dónde viene la sal del mar?

Por Mar Gulis

Si observamos la etiqueta de una botella de agua mineral, comprobaremos que contiene una pequeña cantidad de sales. Estos componentes no han sido añadidos artificialmente sino que provienen de la disolución de las rocas por las que ha pasado el agua (un proceso que recibe el nombre de lixiviación).

Boyas SMOS

Boyas usadas durante la Expedición Malaspina 2010 para medir la salinidad superficial del océano con el satélite SMOS de la Agencia Espacial Europea (ESA). / Joan Costa-CSIC

Durante millones de años el agua procedente de ríos y manantiales, como la de la botella, ha ido a parar al mar. Junto con ella, el polvo que el viento transporta desde tierra, las cenizas volcánicas y las fuentes hidrotermales de los fondos marinos también han ido depositando sales en mares y océanos. En ocasiones de forma nada desdeñable, como ocurre habitualmente con las tormentas de arena procedentes del Sahara o como sucedió en 2010 con la erupción del volcán islandés Eyjafjallajokull.

Puesto que en el proceso de evaporación del mar el agua se va pero las sales se quedan, la concentración de sales ha ido aumentando, año tras año, hasta alcanzar la salinidad actual, que es aproximadamente de unos 35 gramos de sal por litro de agua de mar. Sin embargo, hay que tener en cuenta que la salinidad puede variar bastante entre diferentes mares. Por ejemplo, en el Mar Muerto, que está bastante aislado y en el cual hay mucha evaporación, la salinidad puede ser muy elevada –entre cinco y diez veces mayor que la del Mediterráneo–. En cambio, en la Antártida encontramos habitualmente salinidades de 33 o 34 psu (aproximadamente 33 o 34 gramos de sal por litro de agua). Esto es debido a la disolución de los icebergs y las masas de hielo continental.

Sin sales, los océanos y la Tierra no serían lo que son. Estos compuestos hacen que el agua de mar sea más densa que las aguas continentales y que tenga un punto de congelación menor, unos -2º C. Las pequeñas diferencias de salinidad y temperatura hacen que algunas masas de agua sean más densas que otras (a más salinidad y menos temperatura, más densidad). El agua más densa se hunde y deja lugar en la superficie a aguas menos densas, lo cual es clave para la circulación de las corrientes marinas que distribuyen el calor por el planeta y regulan su climatología.

Además, las sales son de vital importancia para los organismos marinos. Por ejemplo, el esqueleto de ciertos corales y las conchas de almejas, ostras y algunos caracoles están construidos con carbonato cálcico.

5 años de variaciones en la salinidad superficial del mar captadas por el satélite SMOS / ESA

 

Si quieres más ciencia para llevar sobre las sales del mar consulta las web El mar a fondo e ICM Divulga, así como la exposición Un mar de datos.