Entradas etiquetadas como ‘estrellas’

Kepler o cómo detectar una mosca posada en el Empire State a 30 km

Por Mar Gulis (CSIC)

afsdfasdf

Momento del lanzamiento de Kepler en 2009 / NASA / S. Joseph / K. O’connell

A las 10:49 del 6 de marzo de 2009 la NASA lanzó al espacio, desde Cabo Cañaveral (Florida), el telescopio Kepler. Situado a unos 120 millones de kilómetros de la Tierra, este sofisticado instrumento se diseñó para identificar planetas similares al nuestro orbitando alrededor de estrellas parecidas al Sol y en torno a la zona de habitabilidad de las mismas. En un principio, Kepler apuntó “única y exclusivamente a una pequeña región del firmamento, tomando imágenes cada 30 minutos de alrededor de 150.000 estrellas”, tal y como explicaron David Barrado y Jorge Lillo, del Centro de Astrobiología (CSIC-INTA).  Pero después de varios fallos y de no poder apuntar con precisión a esa área, se entró en la denominada fase K2. Así, “Kepler realiza ahora campañas de tres meses en las que apunta a una región determinada, pero siempre en lo que se denomina la eclíptica, el plano de la órbita de la Tierra”, puntualiza Barrado.

Según estos investigadores, “la precisión del telescopio Kepler es tal que puede detectar disminuciones en el brillo de una estrella del orden de 10 partes por millón”. Para que cualquiera pueda entender estas cifras, ponen el siguiente ejemplo: la sonda sería capaz de detectar, “a una distancia de 30 kilómetros, una mosca posada en una de las ventanas del emblemático edificio Empire State”. Y es esa asombrosa precisión la que permite a Kepler obtener datos que sirven para constatar la existencia de cientos o incluso miles de planetas con tamaños y características semejantes a los de la Tierra.

Estos complejos cálculos se llevan a cabo de la siguiente manera: al medir con exactitud “las variaciones en el brillo de cada astro, se pueden detectar objetos que, al pasar por delante del mismo (como ocurre en los eclipses de Sol), lo oculten parcialmente y produzcan estos descensos de luminosidad. Este es el llamado método de los tránsitos”, afirman Barrado y Lillo. Eso mismo sucede en nuestro sistema solar cuando Mercurio o Venus se proyectan sobre el sol. Como su tamaño es mucho menor que el de nuestro astro, obviamente seguirá siendo de día, pero si se efectúan mediciones con la instrumentación adecuada, se apreciará una disminución del brillo estelar. Con los exoplanetas –aquellos planetas que están fuera de nuestro sistema solar– se procede de la misma manera y, en función de lo grande que sea esa disminución y de cuánto dure, “podemos obtener parámetros del planeta como su radio, el periodo de su órbita o la distancia a la que está de su estrella”, añaden. En general, cuando más pequeño sea el planeta (su masa), más difícil será detectarlo y confirmar su existencia.

Pese a la complejidad de estas mediciones, el pasado mayo los responsables del telescopio Kepler anunciaron el descubrimiento de 1.284 nuevos exoplanetas, el doble de los conocidos hasta la fecha. El hallazgo fue el resultado de un segundo análisis de los datos captados por Kepler en julio de 2015, que señalaban ya unos 4.302 candidatos a planetas. Los científicos emplearon un método estadístico que calcula la probabilidad de que cada planeta detectado exista realmente, es decir, que las señales captadas por el telescopio sean de naturaleza planetaria, y no causadas por estrellas u otros cuerpos celestes. Según los datos obtenidos, que fueron publicados en The Astrophysical Journal, hay más de un 99% de posibilidades de que esos 1.284 planetas sean reales, mientras que los restantes son solo candidatos probables o bien señales que habrían producido otros fenómenos astrofísicos, según la propia NASA.

afdasf

Ilustración de la NASA del telescopio Kepler / NASA

Aunque Kepler finalizará su misión en 2018, se prevé que para entonces el equipo de investigadores que trabaja con él habrá elaborado una especie de censo o catálogo de planetas en nuestra galaxia, la Vía Láctea. Kepler ha supuesto un punto de inflexión porque antes de su lanzamiento no se sabía si los exoplanetas eran algo frecuente o una rareza galáctica. “Ahora sabemos que podría haber más planetas que estrellas”, afirmó en mayo Paul Hertz, otro científico de la NASA.

No solo eso. Ya hay evidencias de que de los 1.284 planetas detectados, unas cuantas decenas podrían ser rocosos y de un tamaño similar al de la Tierra. De ellos, la comunidad científica subraya que nueve orbitan en la denominada zona habitable, es decir, la distancia adecuada respecto a su estrella para permitir que tengan agua líquida en la superficie. Así, desde el lanzamiento de Kepler en 2009, se ha constatado la existencia de 21 planetas con esas características. Son los exoplanetas más parecidos a la Tierra y con más posibilidades a albergar algún tipo de vida.

Si se extrapola el número de planetas detectados hasta la fecha a la población de estrellas conocidas, las cifras resultantes apabullan: podrían existir decenas de miles de millones de planetas ‘habitables’ en toda la Vía Láctea.

Como señalan Barrado y Lillo, “si hace solo 10 años era difícil afirmar si seríamos capaces de detectar planetas similares a la Tierra, ¿cuáles serán los siguientes logros de la ciencia en el campo exoplanetario?”. Dado que los planetas del sistema solar no están solos en el universo, tal vez, dicen, “el hallazgo de un gemelo de la Tierra, en cuanto a condiciones y habitabilidad, no esté tan lejos”.

Baade y Zwicky: la extraña pareja que descubrió las estrellas supernovas

autorPor Miguel A. Pérez Torres (CSIC)*

Si el director de cine Gene Saks hubiera decidido hacer una versión de la excelente comedia La extraña pareja (1968) protagonizada por científicos, sin duda habría escogido a Walter Baade en el papel de Félix (Jack Lemmon) y a Fritz Zwicky para el de Óscar (Walter Matthau).

Fritz Zwicky (Bulgaria 1898 – EE.UU. 1974), físico especialista en materia condensada, llegó al Instituto de Tecnología de California (el famoso CalTech) en los años veinte del siglo pasado, procedente de Suiza, donde se crió y cursó estudios universitarios. Era brillante y polifacético, pero su corrosiva y neurótica personalidad, así como su arrogancia sin límites, lo convirtieron en poco más que un bufón para muchos de sus colegas.

Pareja

Walter Baade (arriba) y Fritz Zwicky (abajo).

En una ocasión, en el colmo de la arrogancia, Zwicky llegó a afirmar que él y Galileo eran las dos únicas personas que sabían utilizar correctamente un telescopio. Un ejemplo de su bufonería neurótica estaba relacionado con el fanatismo que profesaba por el deporte. No era raro encontrarlo en el suelo del recibidor del comedor de CalTech haciendo flexiones con un solo brazo, demostrando así su virilidad ante cualquiera que, en su opinión, la hubiera puesto en duda.

Asimismo, era tan agresivo y sus modales tan intimidatorios que incluso su colaborador más cercano, Walter Baade (Alemania 1893 – 1960), el otro protagonista de este artículo, y que tenía una personalidad tranquila, llegó a negarse a que lo dejaran solo con Zwicky entre las cuatro paredes de un despacho. En un más que probable acceso de paranoia, Zwicky llegó a acusar a Baade de ser nazi, lo cual era completamente falso. Y, al menos en una ocasión, Zwicky amenazó con matar a Baade, que trabajaba en el observatorio de Mount Wilson, colina arriba de Caltech, si alguna vez lo veía en el campus de su instituto.

En fin, Zwicky era un científico que la mayoría no querría tener como compañero de despacho, pero cuya brillantez y colaboración con Baade iban a resultar fundamentales para explicar la aparición de unas estrellas extremadamente brillantes, y que habían traído de cabeza a los astrónomos durante décadas.

En marzo de 1934, Baade y Zwicky enviaron dos comunicaciones a la Academia de Ciencias de los Estados Unidos que marcarían un antes y un después en la astrofísica.

En la primera de esas comunicaciones, titulada ‘On Super-novae’, los autores proponían la existencia de un nuevo tipo de estrellas ‘nova’, las ‘super-novas’. Las novas, estrellas que aumentan su brillo enormemente durante periodos típicos de días o semanas, eran conocidas al menos desde el siglo anterior, y quizá por ello habían dejado de llamar la atención de los astrónomos. La aparición de una nova excepcionalmente brillante en la nebulosa de Andrómeda, en 1885, renovó el interés de los científicos por este tipo de astros. Sin embargo, nadie había logrado explicar satisfactoriamente este fenómeno.

En su trabajo, Baade y Zwicky proponían que las supernovas eran un fenómeno general en las nebulosas (en aquella época, el término ‘galaxias’ no estaba todavía asentado). Además, estas supernovas ocurrirían con mucha menor frecuencia que las novas, de ahí que se hubieran descubierto tan pocas.

Baade y Zwicky utilizaron como supernova-patrón el objeto descubierto en 1885 en la galaxia de Andrómeda, y calcularon que su luminosidad máxima debió de ser unas 70 millones de veces la de nuestro sol, compitiendo así con la luminosidad total de una galaxia. Posiblemente, esta colosal luminosidad fue decisiva para que propusieran el nombre de ‘super-novas’.

Supernova 1994D (punto brillante en la parte inferior derecha) captada por el teloscopio Hubble. / NASA-ESA-

Supernova 1994D (punto brillante en la parte inferior derecha) captada por el teloscopio Hubble. / NASA-ESA-

La pareja también estimó que la estrella tuvo que haber perdido una fracción significativa de su masa inicial, incluso varias veces la masa del sol. La conclusión principal del trabajo era que las supernovas representaban la transición de una estrella ordinaria a un objeto con una masa mucho menor. Aunque expresada con ciertas reservas, ya que la presencia de objetos como la supernova de 1885 en Andrómeda era todavía muy escasa, la hipótesis de Baade y Zwicky se vio plenamente confirmada por observaciones y estudios posteriores.

En la segunda comunicación, titulada explícitamente ‘Cosmic Rays From Super-Novae’, Baade y Zwicky sugerían que los rayos cósmicos se producían en las supernovas (¡cuya existencia habían propuesto en la página anterior!) y explicaban satisfactoriamente las observaciones de rayos cósmicos existentes en la época.

Estos resultados habrían bastado, por sí solos, para ganarse una reputación de por vida, como así fue por otra parte. Pero la pareja fue más allá en su segundo trabajo y, “con todas las reservas”, avanzó la hipótesis de que las supernovas representaban la transición de una estrella ordinaria a una estrella de neutrones.

Hay que tener en cuenta que James Chadwick había descubierto el neutrón apenas año y medio antes, en 1932. Baade y Zwicky entendieron que ese nuevo estado de la materia en las estrellas las haría estables, pero quisieron ser especialmente cautos. Solo así también se entiende que separaran sus resultados sobre las supernovas en dos comunicaciones, en lugar de publicarlas como un único artículo.

Son muy pocos los trabajos en astrofísica que, como estos de Baade y Zwicky, presentan tantos conceptos nuevos, incluso revolucionarios, al tiempo que dan con la solución a problemas que habían permanecido largo tiempo sin respuesta satisfactoria alguna. La presentación de estos resultados en dos breves, concisos y muy claros artículos, propició su rápida difusión, no sólo entre los astrofísicos, sino también entre el público en general.

Hoy día, todos los estudiantes de astrofísica aprenden en los libros de texto que la muerte de una estrella masiva da como resultado una supernova, que a su vez deja como remanente una estrella de neutrones (o quizá un agujero negro, como hoy sabemos). También aprenden que las supernovas representan la principal fuente de rayos cósmicos en el universo. Todo esto se lo debemos a los estudios pioneros realizados por Baade y Zwicky en los años 1930. Insisto, a “Baade y Zwicky”, ya que es muy habitual citar solamente a Zwicky como la persona que realizó estas gestas científicas, algo que posiblemente se deba a su peculiar personalidad, que contrastaba con la del tranquilo y caballeroso Baade.

 

* Miguel A. Pérez Torres es investigador del CSIC en el Instituto de Astrofísica de Andalucía.

Eclipses de Sol inscritos en caparazones de tortuga

Por Montserrat Villar (CSIC)*M. Villar

Los huesos del oráculo o ‘huesos oraculares’ son reliquias con más de 3.000 años de antigüedad. Se remontan a la segunda mitad de la era de la dinastía Shang que reinó en China central entre aproximadamente el 1550 y el 1050 aC. Se trata de pedazos de huesos de animal y de caparazones de tortuga inscritos con una forma primitiva de escritura china. Los adivinos de la corte los utilizaban para hacer profecías consultando a los espíritus ancestrales, pues se les atribuía el poder de influir en los vivos. Para ello, se preparaban las superficies puliendo los huesos de animal o la parte inferior de los caparazones de tortuga, y los adivinos preguntaban a los ancestros e interpretaban las respuestas a partir de las grietas que aparecían al aplicar calor con un metal incandescente. La pregunta y la respuesta se inscribían en el hueso, de ahí el nombre de huesos del oráculo.

No fue hasta 1899 cuando el académico Wang Yirong (1845-1900) descubrió los huesos oraculares y se dio cuenta de su importancia. Ocurrió en una botica. Se vendían como ‘huesos de dragón’ a los que, reducidos a polvo, se les atribuían propiedades curativas. Wang Yirong notó que algunos de ellos tenían inscripciones que identificó con escritura china antigua.

Desde entonces se han desenterrado más de 150.000 fragmentos cerca de la actual ciudad de Anyang, donde estuvo la capital de la dinastía Shang entre aproximadamente 1360 y 1050 aC. Los contenidos de las inscripciones (no todos las tienen) son variados: ritos y sacrificios religiosos, guerra, caza, viajes reales, etc. Los hay que contienen registros sobre fenómenos astronómicos, como cometas, eclipses, ¡e incluso manchas solares! En uno de estos huesos la inscripción menciona que “tres llamas se comieron el Sol y se vieron grandes estrellas”. Se trata de una alusión a un eclipse de Sol. Las llamas se refieren probablemente a la corona solar, que puede observarse a simple vista solo durante la fase de totalidad de un eclipse solar. El ver estrellas simultáneamente al Sol tampoco puede explicarse en otras circunstancias.

Huesos oraculares de la dinastía Shang. Se atribuía a los espíritus ancestrales el poder de influir en los vivos. Para realizar profecías, se preparaban las superficies puliendo huesos de animal o la parte inferior de caparazones de tortuga. Los adivinos preguntaban a los ancestros e interpretaban las respuestas a partir de las grietas que aparecían al aplicar calor con un metal incandescente. La pregunta y la respuesta se inscribían en el hueso. Crédito: Museo del Instituto de Historia y Filología (Taipei, Taiwan)

Huesos oraculares de la dinastía Shang. / Museo del Instituto de Historia y Filología (Taipei, Taiwan)

 

 

 

 

 

 

 

 

Datar este eclipse conllevó un trabajo detectivesco por parte de un equipo internacional de astrónomos e historiadores en la década de 1980. Las fechas que aparecen en los huesos son en general incompletas (el año, por ejemplo, no aparece). Mediante cómputos de ordenador de las posiciones relativas entre el Sol, la Luna y la Tierra en épocas pasadas, los investigadores calcularon las fechas de los eclipses solares totales observables en la zona de Anyang entre 1360 y 1050 aC. Combinando estos datos con información cronológica, también inexacta, sobre el adivino responsable (cuyo nombre sí aparece) y el rey para el que trabajaba, llegaron a la conclusión de que el eclipse mencionado sólo podía ser el ocurrido el 5 de junio del año 1302 aC.

Se han identificado con certeza 13 menciones a eclipses en huesos oraculares (siete lunares y seis solares), datados entre los siglos XIV y XII aC. Están entre los registros de eclipses más antiguos que han llegado hasta nosotros. Otros huesos contienen referencias (también entre las más antiguas de cualquier civilización) a entidades astronómicas como constelaciones, cometas y el planeta Júpiter.

Sea por la fascinación que los astros ejercen en el ser humano, por la creencia de que nuestro destino está escrito en las estrellas o por la necesidad de comprender fenómenos que se creían presagios de catástrofes (como los eclipses), el ser humano ha registrado los fenómenos astronómicos desde tiempos inmemoriales. En papel, en piedras o en caparazones de tortuga.

 

* Montserrat Villar es investigadora en el Centro de Astrobiología (INTA/CSIC) en el grupo de Astrofísica extragaláctica.

Agujeros negros o estrellas salvajes, ¿de dónde vienen las misteriosas ondas de Arecibo?

Por Mar Gulis

El 2 de noviembre de 2012 el radiotelescopio de Arecibo (Puerto Rico), el más grande del planeta, detectó por primera vez unas intensas ráfagas de ondas de radio que duraron una fracción de segundo y no volvieron a repetirse. La noticia, que fue difundida el pasado jueves, ha dejado muchas preguntas en el aire.

¿Qué son estas ráfagas? ¿Cuál es su origen? ¿Por qué una parte de la comunidad científica trata de explicar este fenómeno? Hemos preguntado a investigadores del CSIC para que nos den algunas pistas.

Estas ráfagas rápidas de radio (Fast Radio Burst, por sus siglas en inglés) fueron detectadas por primera vez en 2007 por el observatorio de Parkes, en Australia. Después solo se registraron en otras seis ocasiones en ese mismo lugar, generando un intenso debate sobre cuál sería su procedencia. ¿Tenían un origen cósmico o se trataba de un fenómeno terrestre, relacionado con el entorno de Parkes o incluso debido a fallos del telescopio? “El hecho de que solo se detectasen en ese punto del planeta parecía apuntar a la segunda opción, es decir, que el propio observatorio las crease de forma artificial por error o que fuesen emitidas por alguna antena o radar próximos”, explica Emilio García, del Instituto de Astrofísica de Andalucía.

El Observatorio de Arecibo, en Puerto Rico, fue construido en 1960.

El Observatorio de Arecibo, en Puerto Rico, fue construido en 1960. / Wikipedia

Pero lo sucedido en 2012 en Arecibo cuestiona la teoría del origen terrestre y hace cobrar fuerza a la idea de que estamos ante un evento astronómico real, y no generado artificialmente por el observatorio o por emisiones de la Tierra.

De ser así, tendría todo el sentido preguntarse qué son esas ráfagas y de dónde proceden. El observatorio de Arecibo recoge habitualmente este tipo de ondas para su posterior análisis. Sin embargo, a diferencia de las explosiones de radio emitidas por algunos púlsares -estrellas de neutrones con una masa tres veces superior a la del Sol-, la ráfaga captada en 2012 no volvió a ocurrir. Se encendió brevemente y luego desapareció. “Los púlsares se comportan como un faro y son repetitivos, así que esta opción quedaría descartada”, señala Antxón Alberdi, astrofísico del mismo instituto.

Por ahora, solo pueden plantearse hipótesis porque, como señala este investigador, “el problema es que no se conoce la posición precisa de donde vienen las señales y además no se descubrieron inmediatamente sino tiempo después”. Alberdi cita al científico Scott Ramson, del National Radio Astronomy Observatory (NRAO), que afirma que el reto es “detectarlas en tiempo real. Así podría identificarse la galaxia que albergaría el punto del que ha salido la señal”.

Ahora bien, con los datos existentes Alberdi explica que “por la corta duración y su gran intensidad”, el origen de las ráfagas “tiene que ser un objeto muy compacto y en rotación”. Las opciones son varias. “Podrían proceder de dos estrellas de neutrones que hubiesen colisionado dando lugar a las ráfagas. O bien de un agujero negro que se hubiese comido una estrella o una nube de gas expulsando una especie de fogonazo”. Y una última opción: “Estrellas de neutrones muy magnetizadas que producen erupciones brutales y que no necesariamente se repiten”.

El también astrofísico José A. Caballero, del Centro de Astrobiología, piensa que “no hay nada ‘del otro mundo’: solo que una estrella de neutrones muy magnetizada o un agujero negro de otra galaxia ha eructado (le habrá sentado mal tragarse tanto gas de golpe). O que dos estrellas de neutrones estaban bailando salvajemente y han formado una melé. Como no hay muchas estrellas de neutrones y agujeros negros ‘heavys’ como estos (la mayoría de ellos son muy educados y se portan como en un concierto de música clásica), no les hemos oído alborotar muchas veces”.

Para explicar el fenómeno, tanto Alberdi como García recurren a otro análogo que sí es habitual en astrofísica: las explosiones de rayos gamma. “Son también episodios esporádicos y rápidos, pero mucho más energéticos, que han sido detectados por satélites que orbitan alrededor de la Tierra desde los años 70”, señala García. “Esto podría ser algo similar pero en radio, que es una frecuencia mucho menos energética”.

Los rayos gamma se asocian a la explosión de una estrella muy masiva, que llega al fin de sus días y, al colapsar, “vomita una radiación muy colimada, como un rayo, en una energía muy alta”, explica García. Ese material, al interaccionar con el medio interestelar a grandísima velocidad, produce el estallido de rayos gamma, pero este se ve durante más tiempo y no solo unas fracciones de segundo. “Por eso lo registrado por Arecibo no se trata de rayos gamma”, añade Alberdi.

¿Y cómo de largo ha sido el viaje realizado por esas ondas? El científico Duncan Lorimer, que investigó la primera ráfaga detectada en Australia, está convencido de que su origen es extra galáctico, de más allá de la Vía Láctea. “Estaríamos hablando de distancias cosmológicas, que superan los millones de años luz, de cuando el universo era muy joven”, añade García. Si se confirman todas estas hipótesis se trataría efectivamente de un fenómeno astronómico nuevo y habría que estudiar a qué principios físicos está asociado.

 

A vueltas con la vida extraterrestre

Noticias como la de Arecibo dan pie a especulaciones sobre la posibilidad de que las señales hubiesen sido emitidas por algún tipo de vida procedente de otros planetas. Hasta el momento, el Instituto para la Búsqueda de Inteligencia Extraterrestre (SETI) no ha captado ningún mensaje atribuible a moradores de otras galaxias. Solo la conocida como señal Wow!, una captación de radio de 70 segundos realizada por el radiotelescopio Big Ear (perteneciente a SETI) en 1977, generó dudas en este sentido y aún se estudia su origen.

Las ondas detectadas en Arecibo suscitan este tipo de conjeturas porque “si existiese otra civilización en el cosmos y se quisiera poner en contacto con nosotros, probablemente utilizaría frecuencias de radio, ya que son capaces de recorrer más distancia que otras sin llegar a extinguirse”, afirman los dos científicos del CSIC.

“Quien quiera pensar que lo sucedido en Arecibo indica la existencia de vida en otros planetas, que lo piense, pero lo más seguro es que se trate de un evento natural, puntual, que ocurre en un momento determinado y no vuelve a suceder nunca más o bien sucede otra vez dentro de millones de años”, remata García.