Entradas etiquetadas como ‘IAA’

De Granada a la Luna: cuatro décadas de astrofísica en Andalucía

Por Manuel González (CSIC)*

El 20 de julio de 1969 una persona pisó por primera vez la superficie de nuestro satélite. “Un pequeño salto para el hombre, un gran paso para la humanidad”, como afirmó Neil Armstrong, el artífice de una hazaña -o por lo menos su cara más visible-, de la que ahora se cumplen 50 años. Tras años de estudios, pruebas, misiones de exploración y algún que otro fracaso, por fin se conseguía hacer llegar la nave Apolo XI a la Luna. Aunque aquella vez no fue la única (entre 1969 y 1972 otras cinco misiones cumplieron el objetivo de transportar astronautas a nuestro satélite) sí fue la más icónica. Habíamos logrado abandonar nuestro planeta, posarnos en el cuerpo más cercano del Sistema Solar y volver. Algo impensable a principios del siglo XX.

El astronauta Buzz Aldrin durante el primer aterrizaje lunar, el 20 de julio de 1969./ NASA/ Neil A. Armstrong

Quizás una de las consecuencias que tuvo esa misión, y en particular la foto de la bandera americana ondeando sobre nuestro satélite, es que cada vez que se habla de la exploración espacial se tiende a pensar únicamente en Estados Unidos. Algunas personas también pensarán en la antigua Unión Soviética y China. Sin embargo, son varios los países que han participado desde hace años en misiones espaciales cuyo objetivo es desentrañar los misterios de los cuerpos del sistema solar. Sí, España también forma parte de la carrera espacial.

De cohetes estratosféricos a la superficie de Venus

En esta carrera, el Instituto de Astrofísica de Andalucía (IAA) del CSIC ha jugado un importante papel desde su fundación en 1975. El 20 de julio de 1969 el IAA todavía no existía. Seis años después, en julio de 1975, este centro se inauguró en el palacio de la Madraza, un edificio histórico junto a la catedral de Granada, con un puñado de científicos y científicas dispuestos a hacer ciencia de la mejor calidad. En poco más de 40 años, el Instituto de Astrofísica de Andalucía ha participado activamente en la exploración de los cuerpos más importantes del Sistema Solar: la atmósfera de nuestra Tierra, el Sol, la mayoría de los planetas, algunas lunas, e incluso en un cometa. También fuera de nuestro Sistema Solar, ya que ha conseguido detectar planetas que orbitan alrededor de otras estrellas.

Uno de los primeros proyectos consistió en estudiar la luminiscencia nocturna en 1976. Se trataba de efectuar una exploración de la alta atmósfera terrestre con cohetes de sondeo. Se lanzaron varios desde el Arenosillo, Huelva, que ascendían unos kilómetros y que medían y caracterizaban la atmósfera terrestre según caían al mar. Este proyecto pionero daba el pistoletazo de salida al IAA en su aventura espacial.

Años después, tras estudiar la atmósfera de nuestro planeta, se saltó a la de Marte. La sonda Mars 96, lanzada en 1996, tenía como uno de sus objetivos el estudio de ciertas moléculas en la atmósfera marciana. Esta misión nunca llegó a Marte porque no consiguió abandonar la órbita terrestre, pero sentó las bases para construir un satélite que sí lograría su objetivo, Mars Express. Esta segunda misión, que comenzó en 2003 fue todo un éxito. Lanzó un orbitador que ha estado realizando investigaciones científicas desde entonces. La mayor parte de la instrumentación de este satélite es europea, con importante participación del IAA.

Entre Mars 96 y Mars Express el instituto participó en Cassini-Huygens, un proyecto para estudiar el planeta Saturno y sus lunas que data de 1997. La nave contaba con una sonda denominada Cassini que orbitaba alrededor del planeta, y de un módulo de descenso, Huygens, para estudiar la atmósfera de Titán. Huygens fue el primer objeto que aterrizó en una luna que no fuera la terrestre, y cumplió con éxito la mayoría de sus objetivos científicos.

Tras este hito, la misión Rosetta, lanzada en 2004 hacia el cometa 67P/Churiumov-Gerasimenko, fue el siguiente proyecto en el que se embarcó el instituto granadino. El desafío era mayúsculo. Por primera vez en la historia, la humanidad colocó un artefacto en un cometa: el módulo de aterrizaje Philae se posó sobre 67P en 2014. Pese a que el aterrizaje de Philae fue accidentado, porque rebotó y terminó posándose en una zona más escarpada de lo previsto, consiguió obtener muchas imágenes durante el aterrizaje y tomar datos sobre la superficie del cometa.

La misión Venus Express, lanzada en 2005, permitió estudiar la atmósfera y la superficie de Venus. Por su parte, CoRoT iniciada en 2006, estaba dedicada a la búsqueda de planetas extrasolares. Ambas también contaron con la participación tecnológica y científica del IAA.

 

La sonda Venus Express, sobre una imagen real de las ondas atmosféricas de Venus. / IAA

 Júpiter y exoplanetas: los retos del futuro

La Unidad de Desarrollo Instrumental y Tecnológico (UDIT) del IAA, un equipo dedicado especialmente al desarrollo de instrumentación, ha crecido considerablemente a lo largo de las últimas décadas. En su agenda se suman proyectos como Exomars o BepiColombo, lanzadas en 2016. La primera es una misión espacial a Marte que intentará averiguar si hubo vida en el planeta rojo en un pasado (o si la hay ahora). La segunda tiene como objetivo el estudio de Mercurio, uno de los planetas menos explorados hasta el momento.

¿Qué nos deparará el futuro? El año que bien comenzará el vuelo de Solar Orbiter, el primer satélite que observará los polos del Sol. Parte de su instrumentación ya fue probada con éxito en otro proyecto del centro, Sunrise, un globo que estudió en dos ocasiones (en 2009 y 2013) nuestra estrella desde la Tierra. Además, el IAA está fuertemente implicado científica y tecnológicamente en JUICE, prevista para 2022, que explorará tanto Júpiter como sus satélites Ganímedes, Europa y Calisto. Y en PLATO, que comenzará en 2026 y buscará y caracterizará planetas extrasolares rocosos alrededor de estrellas similares al Sol.

Esta exitosa actividad espacial ha contribuido a que el IAA sea reconocido como centro de excelencia Severo Ochoa, el único de Andalucía con esta distinción a día de hoy. Todo esto no habría sido posible sin el empeño y esfuerzo de unos científicos y científicas que, desde su despacho de la Madraza, quizás inspirados por los pasos de Neil Armstrong sobre la Luna, soñaron un día con conquistar el cielo.

* Manuel González trabaja en la Unidad de Cultura Científica del Instituto de Astrofísica de Andalucía del CSIC y es responsable, entre otros proyectos de divulgación, del videoblog El astrónomo indignado.

Baade y Zwicky: la extraña pareja que descubrió las estrellas supernovas

autorPor Miguel A. Pérez Torres (CSIC)*

Si el director de cine Gene Saks hubiera decidido hacer una versión de la excelente comedia La extraña pareja (1968) protagonizada por científicos, sin duda habría escogido a Walter Baade en el papel de Félix (Jack Lemmon) y a Fritz Zwicky para el de Óscar (Walter Matthau).

Fritz Zwicky (Bulgaria 1898 – EE.UU. 1974), físico especialista en materia condensada, llegó al Instituto de Tecnología de California (el famoso CalTech) en los años veinte del siglo pasado, procedente de Suiza, donde se crió y cursó estudios universitarios. Era brillante y polifacético, pero su corrosiva y neurótica personalidad, así como su arrogancia sin límites, lo convirtieron en poco más que un bufón para muchos de sus colegas.

Pareja

Walter Baade (arriba) y Fritz Zwicky (abajo).

En una ocasión, en el colmo de la arrogancia, Zwicky llegó a afirmar que él y Galileo eran las dos únicas personas que sabían utilizar correctamente un telescopio. Un ejemplo de su bufonería neurótica estaba relacionado con el fanatismo que profesaba por el deporte. No era raro encontrarlo en el suelo del recibidor del comedor de CalTech haciendo flexiones con un solo brazo, demostrando así su virilidad ante cualquiera que, en su opinión, la hubiera puesto en duda.

Asimismo, era tan agresivo y sus modales tan intimidatorios que incluso su colaborador más cercano, Walter Baade (Alemania 1893 – 1960), el otro protagonista de este artículo, y que tenía una personalidad tranquila, llegó a negarse a que lo dejaran solo con Zwicky entre las cuatro paredes de un despacho. En un más que probable acceso de paranoia, Zwicky llegó a acusar a Baade de ser nazi, lo cual era completamente falso. Y, al menos en una ocasión, Zwicky amenazó con matar a Baade, que trabajaba en el observatorio de Mount Wilson, colina arriba de Caltech, si alguna vez lo veía en el campus de su instituto.

En fin, Zwicky era un científico que la mayoría no querría tener como compañero de despacho, pero cuya brillantez y colaboración con Baade iban a resultar fundamentales para explicar la aparición de unas estrellas extremadamente brillantes, y que habían traído de cabeza a los astrónomos durante décadas.

En marzo de 1934, Baade y Zwicky enviaron dos comunicaciones a la Academia de Ciencias de los Estados Unidos que marcarían un antes y un después en la astrofísica.

En la primera de esas comunicaciones, titulada ‘On Super-novae’, los autores proponían la existencia de un nuevo tipo de estrellas ‘nova’, las ‘super-novas’. Las novas, estrellas que aumentan su brillo enormemente durante periodos típicos de días o semanas, eran conocidas al menos desde el siglo anterior, y quizá por ello habían dejado de llamar la atención de los astrónomos. La aparición de una nova excepcionalmente brillante en la nebulosa de Andrómeda, en 1885, renovó el interés de los científicos por este tipo de astros. Sin embargo, nadie había logrado explicar satisfactoriamente este fenómeno.

En su trabajo, Baade y Zwicky proponían que las supernovas eran un fenómeno general en las nebulosas (en aquella época, el término ‘galaxias’ no estaba todavía asentado). Además, estas supernovas ocurrirían con mucha menor frecuencia que las novas, de ahí que se hubieran descubierto tan pocas.

Baade y Zwicky utilizaron como supernova-patrón el objeto descubierto en 1885 en la galaxia de Andrómeda, y calcularon que su luminosidad máxima debió de ser unas 70 millones de veces la de nuestro sol, compitiendo así con la luminosidad total de una galaxia. Posiblemente, esta colosal luminosidad fue decisiva para que propusieran el nombre de ‘super-novas’.

Supernova 1994D (punto brillante en la parte inferior derecha) captada por el teloscopio Hubble. / NASA-ESA-

Supernova 1994D (punto brillante en la parte inferior derecha) captada por el teloscopio Hubble. / NASA-ESA-

La pareja también estimó que la estrella tuvo que haber perdido una fracción significativa de su masa inicial, incluso varias veces la masa del sol. La conclusión principal del trabajo era que las supernovas representaban la transición de una estrella ordinaria a un objeto con una masa mucho menor. Aunque expresada con ciertas reservas, ya que la presencia de objetos como la supernova de 1885 en Andrómeda era todavía muy escasa, la hipótesis de Baade y Zwicky se vio plenamente confirmada por observaciones y estudios posteriores.

En la segunda comunicación, titulada explícitamente ‘Cosmic Rays From Super-Novae’, Baade y Zwicky sugerían que los rayos cósmicos se producían en las supernovas (¡cuya existencia habían propuesto en la página anterior!) y explicaban satisfactoriamente las observaciones de rayos cósmicos existentes en la época.

Estos resultados habrían bastado, por sí solos, para ganarse una reputación de por vida, como así fue por otra parte. Pero la pareja fue más allá en su segundo trabajo y, “con todas las reservas”, avanzó la hipótesis de que las supernovas representaban la transición de una estrella ordinaria a una estrella de neutrones.

Hay que tener en cuenta que James Chadwick había descubierto el neutrón apenas año y medio antes, en 1932. Baade y Zwicky entendieron que ese nuevo estado de la materia en las estrellas las haría estables, pero quisieron ser especialmente cautos. Solo así también se entiende que separaran sus resultados sobre las supernovas en dos comunicaciones, en lugar de publicarlas como un único artículo.

Son muy pocos los trabajos en astrofísica que, como estos de Baade y Zwicky, presentan tantos conceptos nuevos, incluso revolucionarios, al tiempo que dan con la solución a problemas que habían permanecido largo tiempo sin respuesta satisfactoria alguna. La presentación de estos resultados en dos breves, concisos y muy claros artículos, propició su rápida difusión, no sólo entre los astrofísicos, sino también entre el público en general.

Hoy día, todos los estudiantes de astrofísica aprenden en los libros de texto que la muerte de una estrella masiva da como resultado una supernova, que a su vez deja como remanente una estrella de neutrones (o quizá un agujero negro, como hoy sabemos). También aprenden que las supernovas representan la principal fuente de rayos cósmicos en el universo. Todo esto se lo debemos a los estudios pioneros realizados por Baade y Zwicky en los años 1930. Insisto, a “Baade y Zwicky”, ya que es muy habitual citar solamente a Zwicky como la persona que realizó estas gestas científicas, algo que posiblemente se deba a su peculiar personalidad, que contrastaba con la del tranquilo y caballeroso Baade.

 

* Miguel A. Pérez Torres es investigador del CSIC en el Instituto de Astrofísica de Andalucía.

A la ‘caza’ de exoplanetas por la sierra almeriense de Los Filabres

cara2Por J.M. Valderrama (CSIC)*

Más allá de los estereotipos que identifican Almería con las playas y el calor, nos encontramos ante una de las provincias geográficamente más heterogéneas de España. En efecto, el conjunto de relieves que la jalonan da lugar a una orografía que históricamente ha complicado las comunicaciones pero que, a la vez, contribuye a enriquecer la variedad paisajística. Una de estas cadenas montañosas es la sierra de Los Filabres, un muro de más de 2.000 metros en el que se encuentra el Centro Astronómico Hispano-Alemán, también conocido como el Observatorio de Calar Alto, financiado conjuntamente por el Instituto Max Planck y el CSIC.

Aquí, en lo alto de la montaña, a salvo de la contaminación lumínica, reina la calma y el frío. Una niebla envuelve a estos telescopios, los más relevantes de la Europa continental. Cuando uno los visita, de la mano del personal del Instituto de Astrofísica de Andalucía del CSIC, una de las primeras cosas que llaman la atención es la transformación que ha sufrido la observación del firmamento desde los tiempos de Galileo. Así, los primeros telescopios refractores (que utilizaban lentes) han sido reemplazados por los reflectores (que utilizan espejos); en Calar Alto los dos más grandes tienen 2,2 y 3,5 metros de diámetro. La razón es la siguiente: para llegar más lejos hacen falta lentes o espejos cada vez más grandes (el espejo de 3,5 metros tiene 60 centímetros de grosor y pesa 12 toneladas) y es más asequible la segunda opción, pues hacer una lente perfecta y gigante resulta técnica y económicamente inasequible.

Calar Alto nevado

Paisaje nevado en la sierra de Filabres, donde se encuentra el Observatorio Astronómico de Calar Alto / Santos Pedraz, IAA (CSIC).

El segundo cambio afecta al observador. No hay un ojo al otro lado de las estrellas, sino detectores que recogen las briznas de luz que nos llegan desde millones de kilómetros. Así, ahora los telescopios captan la radiación emitida por los cuerpos celestes y forman la imagen de los objetos observados. Hay dos tipos de instrumentos: las cámaras, que captan imágenes en distintas longitudes de onda, y los espectrógrafos, que descomponen la luz de los objetos en sus diferentes longitudes de onda, de modo que permiten conocer datos como la gravedad de un planeta, su composición química o la distancia al objeto observado.

Además de resultar más cómodo, hay un motivo esencial para justificar la observación remota: la temperatura en el interior de la cúpula, donde están el telescopio y los instrumentos, debe ser lo más parecida posible a la del exterior, con el fin de evitar cualquier mínima turbulencia y así mejorar la calidad de las observaciones. Esto implica varias cosas, como por ejemplo construir observatorios de color blanco con el fin de reducir la absorción de calor por el día, o eliminar cualquier fuente calorífica (personas, estufas, ordenadores) en el interior de la cúpula. Hay soluciones más radicales, y por eso algunos observatorios cuentan con cúpulas que se abren completamente. El hándicap es el viento y una exposición a los elementos que pueden deteriorar el delicado instrumental.

Todos los detalles se tienen en cuenta para que la estación sea operativa el mayor número de noches posible. Solo ante eventualidades extremas, poco frecuentes, se detienen los telescopios. En Calar Alto se han llegado a registrar temperaturas inferiores a los quince grados bajo cero, por lo que, para hacer frente a las duras condiciones, las instalaciones están conectadas mediante túneles para ir de un lado a otro cuando el espesor de nieve es excesivo (y seguimos en Almería).

Telescopio

Telescopio de 3,5 metros de diámetro de Calar Alto / Santos Pedraz, IAA (CSIC).

La observación astronómica tiene como fin conocer el universo. La búsqueda de exoplanetas (planetas fuera del Sistema Solar) es uno de los proyectos que se llevan a cabo en Calar Alto y alcanzará un impulso importante cuando en 2016 empiece a funcionar el espectrógrafo de alta resolución CARMENES, en cuyo diseño participa el Instituto de Astrofísica de Andalucía. Colateralmente, la tecnología desarrollada en la observación astronómica (potentes mecanismos para mover cúpulas o instrumentos diseñados para captar fotones a miles de años luz) enriquece y facilita nuestra vida cotidiana: ¿quién no tiene un CCD ─un sensor con diminutas células fotoeléctricas que registran la imagen─ en la cámara de su móvil? Pues ese cacharro se concibió inicialmente para capturar la luz de las estrellas.

La niebla va abriendo, dejando un paisaje asombroso y una noche que volverá a ser espectacular aquí arriba.

*J. M. Valderrama trabaja en la Estación Experimental Zonas Áridas del CSIC y escribe en el blog Dando bandazos, en el que entremezcla literatura, ciencia y viajes. Agradecimientos a Héctor Magán y Jorge Iglesias, del Instituto de Astrofísica de Andalucía del CSIC.