Entradas etiquetadas como ‘cometas’

Cometas: el terror que vino del cielo

Por Montserrat Villar (CSIC)*

Concebidos como profetas de la muerte, los cometas han inspirado terror en muchas culturas a lo largo de más de veinte siglos. Aparecían de pronto y se mantenían en el cielo durante semanas o incluso meses, perturbando su armonía. Se consideraban portadores de grandes desventuras: lluvias de sangre, animales nacidos con dos cabezas, enfermedades mortales… Una larga lista de horrores fue atribuida a los cometas hasta el Renacimiento. El pavor que causaban impulsó su observación, registro y clasificación para tratar de descifrar su significado y prepararse para las fatalidades que anunciaban.

China, siglo II antes de nuestra era. El aristócrata y político Li Cang, su esposa Xin Zhui y su hijo renacen tras la muerte y emprenden el viaje hacia la inmortalidad. Más de 2000 años después, en la década de 1970, se descubren sus tumbas en el yacimiento arqueológico de Mawangdui. Entre los miles de objetos encontrados, se halla un delicado lienzo de seda manuscrito. Contiene los dibujos de alrededor de 30 cometas, cada uno acompañado por un texto breve que previene sobre el mal concreto que causará (hambruna, derrota en una batalla, epidemia…).

En 1587 se publicaba el manuscrito Libro sobre cometas, con hermosas ilustraciones. El texto, anónimo, describe la materia de los cometas, su conexión con los planetas y su significado según la forma, color y posición. Así, cuando el cometa Aurora aparece sobre oriente habrá sequía, incendios y guerra. En la ilustración, una ciudad es devastada por las llamas bajo su auspicio sangriento. El resplandor de la conflagración ilumina la escena, mientras el brillo de Aurora se refleja en las nubes. El artista, por tanto, identifica los cometas como fenómenos atmosféricos. Diez años antes de la edición de este libro, el Gran Cometa de 1577 apareció en los cielos de Europa asombrando a sus gentes durante semanas. Tras estudiar sus movimientos, el astrónomo danés Tycho Brahe confirmó que se trataba de un acontecimiento celeste situado mucho más allá de la luna, y no de un fenómeno atmosférico, como creían numerosos eruditos de la época.

A principios del siglo XIV un joven pintor florentino rompía con la tradición. Cumpliendo el encargo de decorar el interior de la capilla de los Scrovegni en Pádova (Italia), Giotto de Bondone cubrió sus paredes de maravillosos frescos referentes a la vida de Jesús y de la Virgen María. En La adoración de los Reyes Magos representa la estrella de Belén como un cometa. Es probable que el artista viera el cometa Halley en 1301 y se inspirara en su aspecto. En este caso el mensaje es de esperanza: Cristo ha venido a salvar el mundo. Seis siglos después, en 1985, la Agencia Espacial Europea (ESA) lanzó la misión Giotto, con cuyo nombre rendía tributo al artista. Se acercó a unos 600 kilómetros del cometa Halley, del que obtuvo imágenes espectaculares.

En octubre de 1858 el artista escocés William Dyce pasó unos días de descanso en Pegwell Bay, un popular lugar de vacaciones en la Inglaterra de la Reina Victoria. En su obra Pegwell Bay, Kent – Recuerdo del 5 de Octubre de 1858, el artista representa una escena entrañable en la que su familia pasea por la playa mientras recoge piedras y conchas. El esbozo apenas perceptible del cometa Donati descubierto ese año se aprecia en el cielo de la tarde. Es un elemento más del paisaje, ya no simboliza desgracias venideras: en el siglo XIX los cometas habían perdido su aura de terror. Desde el siglo XVII, las investigaciones de científicos como Edmund Halley habían ido desenmascarando la inocuidad de estos astros. Su significado en la obra de Dyce es aún más profundo: ese trazo sutil en el cielo sugiere que la existencia del ser humano es efímera, casi instantánea.

Obra de la artista rusa Ekaterina Smirnova

Obra de la artista rusa Ekaterina Smirnova

Comenzaba el año 2015 cuando la artista rusa Ekaterina Smirnova aprendía a producir agua pesada mediante electrólisis. Quería conseguir una composición similar a la hallada unos meses antes en forma de hielo en el cometa 67P/Churyumov–Gerasimenko por la misión Rosetta-Philae de la ESA. Con esta agua, Smirnova creó una serie de acuarelas de considerables dimensiones a partir de las imágenes del cometa obtenidas por la exitosa misión. Además, utilizó pigmentos oscuros mezclados a mano para recrear el bajo albedo (capacidad reflectora) de la superficie del cometa. Smirnova se sumerge en la ciencia para crear una obra bella e inspiradora, retrato de un astro distante y frío.

Decía Séneca en sus Cuestiones Naturales en el siglo I: “¡Tan natural es admirar lo nuevo más que lo grande! Lo mismo acontece con los cometas. Si se presenta alguno de estos cuerpos inflamados con forma rara y desacostumbrada, todos quieren saber lo que es; se olvida todo lo demás para ocuparse de él; ignórase si se debe admirar o temblar, porque no faltan gentes que difunden el terror, deduciendo de estos hechos espantosos presagios”. Dos mil años después, el mensaje cifrado de los cometas, esos ‘misteriosos’ cuerpos celestes compuestos por hielo, polvo y rocas que orbitan alrededor del Sol, nos habla de mundos primitivos y helados, del origen del Sistema Solar e incluso, quizás, de la propia vida.

 

* Montserrat Villar es investigadora del Centro de Astrobiología (CSIC-INTA). Coordina ‘Cultura con C de Cosmos’, un proyecto que surge del diálogo entre el estudio del universo y su reflejo en las diferentes manifestaciones artísticas a lo largo de la historia.

El origen de la vida: cuando la química se convirtió en biología

BRIONES79

Por Carlos Briones Llorente (CSIC)*

En nuestro planeta, cualquier entorno que analicemos (incluyendo aquellos con características físico-químicas más extremas) muestra gran cantidad y variedad de seres vivos. Ante tal biodiversidad surgen preguntas interesantes: ¿cómo se originó y evolucionó la vida?, ¿qué diferencia a los seres vivos de la materia inanimada?, ¿la vida apareció una sola vez o varias?, ¿pueden existir seres vivos fuera de la Tierra? A continuación mostraremos de forma muy resumida lo que la ciencia sabe, y lo mucho que aún ignora, acerca del origen de la vida.

En este mismo blog, Alberto Fernández Soto repasaba recientemente las evidencias que nos permiten aproximarnos al origen del Universo, hace 13.800 millones de años (Ma). Dentro de nuestra galaxia, el Sol se formó hace unos 5.000 Ma, y el sistema Tierra-Luna surgió hace aproximadamente 4.570 Ma. Durante sus primeros 170 Ma de existencia nuestro planeta estaba aún muy caliente, debido principalmente a los continuos impactos de cuerpos menores como meteoritos y cometas que abundaban en el Sistema Solar. Como consecuencia, la superficie de la Tierra estaba totalmente cubierta por un océano de magma de unos 1.000 km de profundidad.

Después la Tierra se fue enfriando, y hace unos 4.350 Ma el magma ya había cristalizado, dando lugar a una corteza terrestre sólida. En paralelo, las densas nubes de vapor de agua que hasta el momento habían cubierto la atmósfera terrestre produjeron lluvias torrenciales y muy duraderas que fueron originando un inmenso océano global de agua líquida. En ese medio se iban a producir a partir de entonces las reacciones químicas que acabarían posibilitando la aparición de la vida. En ellas participaron, probablemente, tanto las moléculas que se habían originado en la Tierra como otras que llegaron hasta aquí a bordo de meteoritos y núcleos de cometas.

Estromatolito datado en 3.496 Ma y hallado en la Formación Dresser (Pil¬bara, Australia). Se distinguen láminas mineralizadas de microorganismos que probablemente establecían relaciones ecológicas entre sí. Fotografía tomada por el autor en el Museo de Historia Natural de Washington, Estados Unidos.

Estromatolito datado en 3.496 Ma y hallado en la Formación Dresser (Pilbara, Australia) en el que se distinguen láminas mineralizadas de microorganismos. Fotografía tomada por el autor en el Museo de Historia Natural de Washington, EEUU.

Ciertas señales químicas en rocas de hasta 4.100 Ma de antigüedad parecen indicar que en una época tan temprana ya existían procesos biológicos de fijación de carbono y, por tanto, vida. No obstante, quizá cualquier intento de originar la vida hace más de 4.000 Ma fuera ‘borrado’ de nuestro planeta durante una nueva etapa de bombardeo masivo de meteoritos a la que fue sometida la Tierra desde hace 4.000 Ma hasta hace 3.850 Ma. A partir de entonces, las condiciones ya fueron más estables para el origen y el mantenimiento de la vida.

Así, las primeras evidencias fósiles de vida tienen una antigüedad de 3.500 Ma, y corresponden a estromatolitos, que en esencia son comunidades de microorganismos fosilizadas en láminas superpuestas. De esa misma época son los microfósiles más antiguos que muestran morfologías compatibles con células individuales o filamentos de ellas, aunque estos datos son más controvertidos pues estructuras con formas similares se pueden originar a partir de compuestos únicamente inorgánicos.

Por tanto, el periodo clave para el origen de la vida (o quizá para sus orígenes, pues no podemos saber cuántos experimentos exitosos se realizaron) fue probablemente el transcurrido entre hace 3.850 y 3.500 Ma. En él debieron originarse las moléculas sencillas que constituyen los polímeros biológicos (como los nucleótidos de los ácidos nucleicos y los aminoácidos de péptidos y proteínas), y estas participaron en procesos de autoensamblaje y polimerización. Ese es el campo de investigación de la denominada química prebiótica, que tuvo como inspirador a Charles R. Darwin a mediados del siglo XIX, y cuyos primeros modelos fueron elaborados por Alexander I. Oparin y John B.S. Haldane en la década de 1920. Comenzó a ser una ciencia experimental gracias al famoso experimento realizado por Stanley L. Miller en 1953, y a otros menos mediáticos pero igualmente relevantes llevados a cabo poco después por Joan Oró.

Figura 2: Recreación de una protocélula experimental con ARN como material genético, tal vez parecida a los primeros seres vivos con capacidad de evolucionar. Adaptada del libro “Orígenes. El universo, la vida, los humanos” (Ed. Crítica, 2015). © Eduardo Sáiz.

Recreación de una protocélula experimental con ARN como material genético, tal vez parecida a los primeros seres vivos con capacidad de evolucionar. Adaptada del libro Orígenes. El universo, la vida, los humanos (Ed. Crítica, 2015). / © Eduardo Sáiz.

Mediante procesos similares a los realizados en los laboratorios pudieron formarse, a medio camino entre el azar y la necesidad, sistemas químicos suficientemente complejos que combinaban las tres características básicas de la vida: un compartimento (probablemente una vesícula formada por lípidos) que permitiera una química en su interior diferente de la de su entorno; un metabolismo básico con el que el sistema compartimentado intercambiara materia y energía con dicho entorno; y una biomolécula utilizable como archivo de información genética (probablemente el ácido ribonucleico o ARN). Hoy se asume que el acoplamiento funcional en sistemas de este tipo pudo producir las primeras entidades identificables con seres vivos, según la definición operativa adoptada por el Instituto de Astrobiología de la NASA: “Un ser vivo es un sistema químico automantenido que evoluciona como con­secuencia de su interacción con el medio”.

A partir de esos sistemas protocelulares pudieron iniciarse distintas trayectorias evolutivas, algunas de las cuales fijaron el flujo de información genética en sentido ADN-ARN-Proteínas. Así se llegó a la especie de microorganismo que denominamos LUCA (acrónimo de último ancestro común universal en inglés). Tal antepasado de todos los seres vivos actuales ya había sido sugerido por Darwin, y su existencia fue demostrada a finales de la década de 1970 gracias a la comparación de genes de todas las especies conocidas. LUCA ocupa el punto más alto en el tronco común del árbol de la vida, y a partir de él se diversificaron sus tres grandes ramas o dominios filogenéticos: bacterias, arqueas y eucariotas. Algunas de tales bacterias o arqueas fueron las que nos dejaron sus primeros fósiles hace 3.500 Ma. Comenzaba así la fascinante historia de la evolución de la vida en la Tierra, un proceso en el que los virus y otros elementos genéticos móviles han sido fundamentales, hasta originar a la biodiversidad de la que formamos parte.

 

* Carlos Briones Llorente es investigador del CSIC en el Centro de Astrobiología (CSIC-INTA). Junto con Alberto Fernández Soto y José María Bermúdez de Castro, es autor del libro Orígenes: El universo, la vida, los humanos (Crítica).

2029, el año que el asteroide Apophis ‘rozará’ la Tierra

Por Mar Gulis

El 10 de enero de 2013, mientras dormíamos, Apophis se acercaba sigilosamente a la Tierra. Se acercaba es un decir: el asteroide, de unos 325 metros de diámetro, se situaba ese día a algo más de 14 millones de kilómetros de nuestro planeta. ¿Por qué, desde su descubrimiento en 2004, Apophis ha atraído la atención de científicos de todo el mundo? En los últimos años, astrónomos, físicos y matemáticos han seguido su trayectoria y han calculado una y otra vez la probabilidad de que, si no desvía el rumbo, llegue a colisionar con la Tierra.

magen tomada por la sonda Galileo del asteroide Gaspra. / Wikipedia

Imagen tomada por la sonda Galileo del asteroide Gaspra. / Wikipedia

Vamos a contar la historia desde el principio. El 23 de diciembre de 2004, el programa de la NASA dedicado a los asteroides peligrosos se puso alerta. Sus miembros anunciaron que ‘99942 Apophis’ –ese es su nombre completo– había alcanzado el nivel 2 de la Escala de Turín, un método que sirve para clasificar el peligro de impacto asociado a los denominados ‘objetos cercanos a la Tierra’ (Near Earth Obsjects, NEO). La escala usa valores de 0 a 10 ante una eventual colisión combinando la probabilidad estadística y la energía cinética. Si un objeto es clasificado con el número 0, su posibilidad de chocar es casi nula, mientras que el 10 indicaría un impacto seguro, con efectos a gran escala e incluso la destrucción total de la Tierra.

Posteriormente Apophis llegó a ser catalogado con el nivel 4, el valor más alto conseguido por un asteroide. Diferentes mediciones indicaron una probabilidad relativamente alta de colisión para el 13 de abril de 2029, día en que su trayectoria se aproximaría más a nosotros.

Afortunadamente, nuevas observaciones mejoraron el cálculo de su órbita. Al ser desviado por la atracción gravitacional de la Tierra, las posibilidades de colisión disminuirían drásticamente. El asteroide volvió a situarse en el nivel 1 de la escala y en 2006 recuperó el nivel 0. Pero la amenaza de Apophis sigue latente. Científicos de la Agencia Espacial Europea aseguraron en 2013 que el asteroide no chocará con la Tierra en 2029, pero pasará a unos 36.000 kilómetros de la superficie terrestre, más cerca incluso que la altura a la que orbitan los satélites geoestacionarios, que sí correrían peligro.

¿Y después? La siguiente aproximación del asteroide tendrá lugar en 2036, pero los cálculos son todavía imprecisos. La comunidad científica tendrá que seguir la pista a Apophis los próximos años. Si el peligro de colisión aumenta, el reto será desarrollar soluciones para desviar su trayectoria.

Para Manuel de León, director del Instituto de Ciencias Matemáticas –adscrito al CSIC–, la conclusión de esta historia es evidente. Desde que la vida se inició en la Tierra ha habido cinco o seis extinciones masivas. Alguna de ellas, como la que acabó con los dinosaurios hace 65 millones de años, fue muy probablemente causada por el impacto de un gran asteroide. Así que conocer las órbitas de los NEO es de gran relevancia. Si no queremos arriesgarnos a desaparecer en otra extinción masiva, tenemos que conocer las reglas que rigen los movimientos de los astros. Y para eso, como dice León en su libro La geometría del Universo (CSIC-Catarata), necesitamos muchas matemáticas.