Entradas etiquetadas como ‘CSIC’

El viento, el elemento olvidado del cambio climático

Por César Azorín-Molina*

El viento es aire en movimiento. Esta definición implica que la expresión “hace aire” –tan común entre el público general y los medios de comunicación– es incorrecta: lo apropiado es decir “hace viento”. Este movimiento de aire se origina por las diferencias de presión atmosférica entre las superficies de la Tierra y los distintos niveles de la atmósfera; y ha sido utilizado por la humanidad desde el pasado hasta nuestros días como fuente de energía para la navegación a vela, el molido del grano o la extracción de agua de pozos subterráneos. La relevancia social, económica y ambiental del viento es múltiple, y tiene una doble vertiente, ya que el viento supone tanto un recurso como un riesgo climático.

El molino de viento convierte la energía eólica en energía rotacional con el fin principal de moler granos. Es un tipo particular de molino que opera por medio de paletas llamadas aspas.​

En un contexto como el actual, en el que nos enfrentamos a las consecuencias del cambio climático, el viento constituye la segunda fuente más importante en la generación de electricidad y la principal fuente de energía limpia. Su comportamiento altera la capacidad de producción de la industria eólica, pero es también clave en procesos muy dispares: la agricultura y la hidrología, pues incide sobre la evaporación y la disponibilidad de recursos hídricos; la calidad del aire, ya que dispersa la contaminación atmosférica; o las catástrofes naturales, por las pérdidas económicas y humanas que producen los temporales. Otros fenómenos afectados por el viento son la ordenación y el planeamiento urbano, las operaciones aeroportuarias, el tráfico por carretera, la propagación de incendios forestales, el turismo, los deportes de viento e incluso la dispersión de semillas, las rutas migratorias de las aves o la erosión del suelo.

Un aerogenerador es un dispositivo que convierte la energía cinética del viento en energía eléctrica.

¿El viento se detiene o se acelera?

La veleta para conocer la dirección del viento fue inventada en el año 48 a. C por el astrónomo Andronicus y el anemómetro que mide la velocidad a la que viaja el aire en movimiento, en 1846 por el astrónomo y físico irlandés John Thomas Romney Robinson. Sin embargo, el estudio de los cambios del viento en escalas temporales largas (periodos de más de 30 años) no despertó el interés de la comunidad científica hasta hace apenas un par de décadas.

La veleta es una pieza de metal, ordinariamente en forma de saeta, que se coloca en lo alto de un edificio, de modo que pueda girar alrededor de un eje vertical impulsada por el viento, y que sirve para señalar la dirección de este.

Fue en Australia, donde el profesor emérito de la Australian National University Michael Roderick, en su afán de cuantificar el efecto del viento en la evaporación, observó un debilitamiento de los vientos superficiales durante las últimas décadas. En 2007, para denominar este fenómeno, acuñó el término anglosajón de ‘stilling’. Pocos años más tarde, en 2012, el también australiano Tim McVicar, de la Commonwealth Scientific and Industrial Research Organisation, concluyó que este descenso de la velocidad de los vientos estaba ocurriendo sobre superficies continentales de latitudes medias, preferentemente del hemisferio norte, desde la década de 1980. En cambio, otras investigaciones detectaron un reforzamiento de los vientos sobre las superficies de los océanos y, en la última década, un cese del fenómeno ‘stilling’ y un nuevo ciclo de ascenso de la velocidad de los vientos o ‘reversal’.

Falta de evidencias

La causa principal que explica ambos fenómenos se ha atribuido a los cambios en la circulación atmosférica-oceánica. Estos cambios se producen tanto por la propia variabilidad natural del clima como por efecto de la acción humana sobre el clima: el calentamiento global consecuencia de las emisiones de gases de efecto invernadero y también los cambios en los usos del suelo, entre los que destaca la rugosidad del terreno provocada por la masa forestal y la urbanización. En cualquier caso, tampoco hay que descartar la posibilidad de errores instrumentales en la medición del viento por el desgaste de los anemómetros, entre otros.

En la actualidad, la ciencia del clima se afana por descifrar el comportamiento del viento y elaborar proyecciones para los próximos 100 años. En un escenario de aumento de emisiones de gases de efecto invernadero y de calentamiento global, es previsible que una nueva fase de ‘stilling’ domine el siglo XXI.

El último informe del Panel Intergubernamental del Cambio Climático (IPCC) concluyó que el viento es una de las partes olvidadas del sistema climático dadas las escasas evidencias sobre sus cambios pasados y futuros. Un nuevo ‘stilling’ obligaría a desarrollar nuevas estrategias a medio-largo plazo en el sector de la energía eólica, un motor clave en la descarbonización de la economía establecida en el Acuerdo de París y el Pacto Verde Europeo. El estudio del viento debe ser prioritario para impulsar las energías renovables en la transición hacia una economía global con bajas emisiones de gases de efecto invernadero.

* César Azorín-Molina es investigador del CSIC en el Centro de Investigaciones sobre Desertificación (CSIC-UV-GVA) y pertenece a la Red Leonardo de la Fundación BBVA

 

¡Ven al cine de verano del CSIC en Madrid!

Por Mar Gulis (CSIC)

Ya es verano, se acerca julio, hace calor. El asfalto a veces se transforma en una gran sartén y quienes no hemos podido salir aún de vacaciones buscamos pequeños oasis en la ciudad donde refugiarnos y pasar un buen rato del modo más refrescante posible.

Este año, ciencia y cultura confluyen en CSIC de Cine, un ciclo de cine de verano que tendrá lugar en el campus central del organismo en Madrid. Los exteriores de su mítico ‘edificio de las columnas’ han sido escenario de rodajes variopintos, como la película Marco Antonio y Cleopatra (1972), donde se convirtieron en el palacio de la reina de Egipto; o la exitosa serie La casa de papel, que los transformó en la Fábrica Nacional de Moneda y Timbre.

Fachada del edificio central del CSIC, en c/ Serrano 117 de Madrid (España), construido en 1943. / Wikimedia – Luis García

Ahora, este entorno tan especial albergará la proyección de tres estrenos recientes y una película infantil centradas en temas sobre los que la ciencia y la filosofía tienen mucho que decir: Don’t Look Up (1 de julio), Alcarràs (8 de julio), Atrapa la bandera (15 de julio) y El buen patrón (22 de julio).

Los pases serán los cuatro primeros viernes de julio, a las 21:00h, y cada proyección será introducida por especialistas del CSIC en diversos ámbitos. Todas las sesiones serán al aire libre y gratuitas: solo tienes que reservar tus entradas a través de este enlace y venir a disfrutar del séptimo arte en un entorno privilegiado, en el corazón del Barrio de las Ciencias.

La desastrosa gestión de un desastre

Leonardo DiCaprio y Jennifer Lawrence encarnan en la película Don’t look up, dirigida por Adam McKay, a dos científicos que tratan de advertir sobre una amenaza devastadora: la inminente colisión de un meteorito contra la Tierra. Pero el filme no se centra en el hecho astronómico en sí, sino en su más que cuestionable gestión política y mediática. ¿Te recuerda a algo? De ello hablarán Margarita del Val (Centro de Biología Molecular Severo Ochoa, CSIC-UAM), conocida por su labor de divulgación durante la pandemia de covid-19, y Fernando Valladares (Museo Nacional de Ciencias Naturales, CSIC), experto en cambio climático, en la introducción al pase de la película. Será en el estreno del ciclo: el 1 de julio de 2022 a las 21:00h en el campus central del CSIC.

 

Afrontar el estío con cine, ciencia y pensamiento

El ciclo continuará el siguiente viernes, 8 de julio, con la película Alcarràs, de Carla Simón, reciente ganadora del Oso de Oro del Festival de Berlín 2022 y que retrata a una familia de agricultores en su última cosecha, poco antes de que en su parcela se instalen placas solares. El físico y experto en energía Antonio Turiel (Instituto de Ciencias del Mar, CSIC) y la especialista en agricultura y alimentación Marta G. Rivera Ferre (INGENIO, CSIC-UPV) comentarán la película.

El 15 de julio será el turno del cine de animación con la proyección de Atrapa la bandera, de Enrique Gato, una aventura espacial para toda la familia que será introducida por el astrofísico Daniel Guirado (Instituto de Astrofísica de Andalucía, CSIC), que ofrecerá un espectáculo lúdico e interactivo dirigido a las y los más pequeños.

La película que cerrará el ciclo el 22 de julio será El buen patrón, de Fernando León de Aranoa. Protagonizada por Javier Bardem, que interpreta a un industrial de provincias en busca del éxito empresarial a toda costa, servirá a la filósofa Remedios Zafra (Centro de Ciencias Humanas y Sociales, CSIC) como punto de partida para hablar de precariedad laboral y desigualdad de género.

Las sesiones del ciclo CSIC de Cine serán los cuatro primeros viernes del mes de julio, a las 21:00h

Todas las películas, salvo la primera, tendrán subtitulado accesible para personas sordas y los encuentros, que podrán seguirse en directo a través del canal de CSIC Divulga, contarán con intérpretes en lengua de signos española.

Recuerda que las sesiones serán gratuitas, pero precisan de reserva previa. La apertura de puertas será a las 20:45 horas y el cierre a las 21:15 horas. Las plazas se ocuparán por orden de llegada. La entrada al campus central del CSIC está ubicado en la calle Serrano, 123 (Madrid), accesible en transporte público desde diversas líneas de Metro y autobús.

CSIC de Cine es un proyecto de divulgación del CSIC impulsado por el área de Cultura Científica y Ciencia Ciudadana del CSIC, con el apoyo de la Fundación Española para la Ciencia y la Tecnología (FECYT) – Ministerio de Ciencia e Innovación.

Ultraprocesados en la salud y la enfermedad

Por Javier Sánchez Perona* y Mar Gulis (CSIC)

Todos los días de nuestra vida. Están en medios de comunicación, en las redes sociales y, por supuesto, en las estanterías de los supermercados. A veces, incluso en detrimento de la fruta o las verduras y otros alimentos frescos. Parece que los alimentos ultraprocesados han llegado para quedarse.

Se conservan durante largos periodos de tiempo y no precisan de habilidades culinarias. / Pexels

En una época en la que parece no haber tiempo para nada, este tipo de productos nos ofrecen una alternativa sencilla y económica para llenar nuestro estómago que no requiere previsión. Además, los ultraprocesados se conservan durante largos periodos de tiempo y no precisan de habilidades culinarias. Sin embargo, pese a sus aparentes ventajas, no podemos olvidar que incluirlos en nuestra dieta de forma habitual puede pasarnos factura y provocar efectos perjudiciales en nuestra salud.

Pero, ¿qué es exactamente un alimento ultraprocesado? Si comparamos un alimento fresco, como carne, pescado o verdura, con un producto listo para consumir, como bollería o una pizza, tendríamos pocas dudas, pero no siempre resulta tan obvio distinguir los productos que pertenecen a esta categoría de los que no. El investigador brasileño Carlos Augusto Monteiro, el primero en introducir el término ‘ultraprocesado’, establece el sistema NOVA, una clasificación de alimentos según su grado de procesamiento:

  • Grupo 1: alimentos sin procesar o mínimamente procesados para su conservación, con el fin de hacerlos más seguros y aptos para su almacenamiento.
  • Grupo 2: ingredientes culinarios elaborados, como los aceites, la mantequilla, el azúcar o la sal.
  • Grupo 3: alimentos procesados, como pescado en conserva o frutas en almíbar, la versión modificada de los alimentos del grupo 1.
  • Grupo 4: alimentos ultraprocesados, entre los que incluye aceites hidrogenados, proteínas hidrolizadas o jarabe de maíz con alto contenido de fructosa, entre muchos otros. Los alimentos de este grupo se caracterizan por tener un elevado contenido en azúcares, grasas saturadas o sal, así como aditivos que pretenden imitar o mejorar las cualidades sensoriales de los alimentos o disfrazar aspectos desagradables.

Para identificar un producto como ultrapocesado tendríamos que verificar si la lista de ingredientes de la etiqueta contiene alguno de los alimentos mencionados en este último bloque. Sin embargo, es complicado asumir que todos los alimentos del grupo 4 son igualmente perjudiciales para la salud. Es un grupo muy heterogéneo en el que caben tanto galletas de chocolate como un producto lácteo con base de soja.

Los ultraprocesados son formulaciones elaboradas a partir de sustancias derivadas de alimentos y aditivos. / Pexels

En realidad, esta clasificación sirve más a la comunidad científica que a las personas no expertas. Para esta amplia mayoría, quizá pueda servir como guía saber que los alimentos ultraprocesados son formulaciones elaboradas a partir de sustancias derivadas de alimentos y aditivos, en los que no se pueden identificar otros alimentos en su forma original y que son ricos en grasas, sal o azúcar, además de tener poca fibra dietética, proteínas, vitaminas y minerales. La presencia en los ingredientes de aditivos como glutamato u otros compuestos como espesantes, aglutinantes, aromas o colorantes, que no suelen estar en las cocinas de nuestras casas, es otro indicativo de que estamos ante un alimento ultraprocesado.

Obesidad, diabetes o enfermedades cardiovasculares

Más allá de las etiquetas, lo importante es saber cómo los ultraprocesados afectan a nuestra salud. Aquí tienes algunas claves.

Obesidad. Según la Organización Mundial de la Salud, la obesidad se produce por una acumulación anormal o excesiva de grasa en el cuerpo. Diferentes estudios han demostrado que el consumo de dulces, carnes procesadas, patatas fritas y bebidas azucaradas está estrechamente relacionado con el aumento de peso en adultos estadounidenses. Sin embargo, hasta muy recientemente no se había evaluado la relación entre el grado de procesamiento de los alimentos y el sobrepeso. Los resultados de las investigaciones apuntan a que las probabilidades de sufrir sobrepeso aumentan en torno a un 37-39% entre las personas que los consumen.

A pesar de lo contundente que puede parecer esta cifra, no hay suficiente evidencia científica para establecer relaciones de causalidad, ya que existe un número importante de estudios observacionales pero muy pocos ensayos clínicos. Estos últimos son mucho más complejos de realizar y diseñar con alimentos que con fármacos. Es relativamente fácil comparar un medicamento con un placebo porque para quien lo consume resulta imposible distinguir uno de otro, pero eso no ocurre con los alimentos. Por ejemplo, en un estudio en el que quisiéramos comparar el efecto en la salud del aceite de oliva virgen extra y el aceite de pescado, el olor descubriría cuál de ellos está recibiendo cada grupo experimental. Siempre se pueden emplear cápsulas para enmascarar las características sensoriales de los alimentos empleados, pero eso tiene poco que ver con la alimentación. Además, tampoco podemos olvidar los condicionantes éticos. Si la hipótesis del estudio considera que un alimento o dieta puede perjudicar a uno de los grupos del ensayo, probablemente el comité de ética no aprobará la investigación.

Más allá de las etiquetas, lo importante es saber cómo los ultraprocesados afectan a nuestra salud. / Pixabay

Síndrome metabólico. Este trastorno del metabolismo no se manifiesta en síntomas aparentes, pero puede aparecer en un chequeo habitual. En España, casi una tercera parte de la población lo tiene, y conlleva el doble de riesgo de sufrir una enfermedad cardiovascular. Según un estudio observación realizado en Estados Unidos, las personas que consumen ultraprocesados tienen una tasa de síndrome metabólico un 28% mayor que quienes lo hacen en menor medida.

Diabetes tipo 2. Un estudio realizado por el propio Monteiro concluyó que las personas con mayor consumo de ultraprocesados tenían un 44% más de riesgo de padecer esta enfermedad asociada a desequilibrios nutricionales.

Enfermedades cardiovasculares. La mortalidad causada por estas patologías –las que más fallecimientos provocan en el mundo– está asociada tanto a un alto consumo de grasas saturadas y azúcar en la dieta como a una baja ingesta de cereales integrales y fruta . De hecho, se registran más muertes debido a una alimentación deficiente que al tabaco. Según un estudio estadounidense realizado en 2019, por cada aumento del 5% en las calorías procedentes de alimentos ultraprocesados que consumía una persona, había una disminución equivalente en la salud cardiovascular. Las personas que obtenían el 70% de las calorías consumidas de alimentos ultraprocesados tenían la mitad de probabilidades de tener buena salud que las personas que obtenían el 40% o menos.

Enfermedades neurodegenerativas. Una alimentación deficiente también aumenta el riesgo de desarrollar una demencia. Las grasas saturadas o el azúcar se han asociado con la probabilidad de padecer Alzhéimer, aunque no se haya estudiado la relación directa. Sin embargo, sí se ha evaluado la relación indirecta a través de la microbiota intestinal: los desequilibrios en la producción de ácidos grasos de cadena corta en la microbiota intestinal son posibles factores de riesgo en el desarrollo de estas enfermedades; y el consumo de alimentos ricos en azucares y grasas saturadas afecta a la composición de la microbiota.

Todavía es mucho lo que tenemos que investigar y clarificar acerca de la relación de los ultraprocesados con la salud. En cualquier caso, como decíamos al comienzo, no parece descabellado recomendar un consumo moderado de este tipo de alimentos y, aún más importante, no dejar de incluir en nuestra dieta frutas, verduras y otros productos frescos.

 

* Javier Sánchez Perona es investigador del CSIC en el Instituto de la Grasa y autor de libro Los alimentos ultraprocesados (CSIC-Catarata). Su blog es www.malnutridos.com y se le puede encontrar en redes sociales como @malnutridos.

‘Quorum sensing’, el Twitter de las bacterias

Por Julián Guercetti (CSIC)*

Hoy nos resulta imposible pensar en un mundo sin redes sociales. Aunque es cierto que estas plataformas digitales nos rodean desde hace poco tiempo, han cambiado la forma en la que interactuamos y nos comunicamos de una manera radical. ¿Y qué dirían si les aseguro que llegamos tarde a tener la autoría sobre tamaño descubrimiento? Aunque sea difícil de creer, los seres humanos no fuimos los primeros en utilizar redes sociales sobre la Tierra. La realidad es que en la naturaleza existen organismos unicelulares que nos llevan miles de años de ventaja desarrollando sus propias redes de formas muy diversas… y además sin necesidad de wifi.

Las bacterias pertenecen al grupo de organismos más primitivos que lograron habitar la Tierra desde tiempos inmemorables y utilizan una red social denominada quorum sensing (QS) a través de la cual pueden comunicarse. Curiosamente, esta se asemeja mucho a Twitter. ¡Sí, acaban de leer que las bacterias tienen algo parecido a Twitter! Si no lo tomamos de manera literal, podemos decir que las dos herramientas comparten ciertas similitudes que vamos a discutir a continuación.

El descubrimiento de este sistema de comunicación se remonta a 1970, cuando un grupo de investigación que trabajaba con bacterias marinas logró demostrar que estos microorganismos –hasta ese momento se creía que no interactuaban entre sí– realmente podían comunicarse. La clave de esta historia es la bioluminiscencia, un fenómeno que también se observa en las luciérnagas y muchos otros organismos que, a través de una serie de reacciones químicas, son capaces de emitir luz.

Lo que llamó poderosamente la atención al equipo científico fue que, al acumularse muchas bacterias en un cultivo, aumentaba la bioluminiscencia. Mientras que, si la cantidad de bacterias era baja, la luz permanecía apagada. Fue así como este grupo se comenzó a plantear que de alguna manera las bacterias debían comunicarse para ponerse de acuerdo y decidir cuándo podían emitir luz. Ese comportamiento parecía estar asociado a la cantidad de bacterias que había en el lugar, es decir, que dependía de la densidad poblacional.

Dejando atrás la parte histórica, para cualquier usuaria o usuario de Twitter esta red social no tendría sentido sin los mensajes, los tuits de máximo 280 caracteres. En cambio, las bacterias crearon sus propios mensajeros químicos a los que llamamos autoinductores. Este tipo de ‘tuits’ son básicamente moléculas que generan las bacterias y que pueden ser detectadas por otras que se encuentren próximas, lo que les permite recibir el mensaje.

¿Cómo funciona la red social bacteriana?

Como dijimos, el QS es una red social bacteriana, pero, ¿cómo funciona? Para hacernos una idea debemos pensar que las bacterias son como influencers que se pasan el día generando autoinductores. Por lo tanto, cuando la cantidad de bacterias en un sitio aumenta de manera significativa, y cada una de ellas genera su autoinductor, estas moléculas comienzan a acumularse hasta alcanzar una concentración crítica, que enciende la alerta de que ya no queda mucho espacio en ese lugar y deben cambiar su comportamiento. Es decir, que después de tanto escribir y retuitear el mensaje, este se vuelve tendencia y ahora todas las bacterias saben que allí no cabe ni una más.

En microbiología las bacterias se pueden clasificar en dos grandes grupos basándose en una tinción diferencial conocida como tinción de Gram, en honor a su creador Christian Gram. Esta técnica permite obtener una primera aproximación acerca de la estructura de cada bacteria al diferenciarlas entre Gram+ y Gram-. Con los grandes avances en esta área, hoy sabemos que, dependiendo del tipo de bacteria, el mecanismo de quorum sensing puede ser diferente. Por ejemplo, en el caso de las bacterias Gram+ sus mensajes o autoinductores consisten en un tipo de moléculas denominadas péptidos, mientras que los mensajes de las bacterias Gram- son moléculas orgánicas pequeñas, muy diferentes a nivel estructural a las de las bacterias Gram+.

A partir del trabajo de muchos grupos de investigación, pudimos entender que cada tipo de bacteria es capaz de utilizar un mecanismo de quorum sensing para comunicarse con las de su misma naturaleza, por lo que se trata de una red social específica. Pero, al mismo tiempo hay sistemas que permiten la comunicación entre distintos tipos de bacterias e incluso con otros microorganismos, a las que podríamos denominar redes sociales universales. Por tanto, es evidente la complejidad que pueden presentar los distintos mecanismos de comunicación entre organismos tan diminutos que carecen de bocas y manos, pero que pueden organizarse mejor que nosotros.

Resistencia a antibióticos

Actualmente sabemos que las bacterias utilizan el QS como estrategia para regular cientos de comportamientos grupales como la bioluminiscencia, así como otros un tanto nocivos para la salud humana. Son los casos de la resistencia a antibióticos, la virulencia e incluso la formación de biopelículas. Este último fenómeno supone un gran problema dado que consiste en un consorcio bacteriano que logra asentarse de forma permanente en una superficie (órganos del cuerpo, instrumental quirúrgico, implantes, etc.) y son muy difíciles de remover e incluso generan mayor resistencia a los antibióticos. Un claro ejemplo del famoso refrán que dice “la unión hace la fuerza”.

En muchos laboratorios se trabaja para intentar descifrar el contenido de esos mensajes y poder interrumpir la comunicación entre las bacterias para evitar que se pongan de acuerdo y ataquen al organismo. El uso de los antibióticos es cada vez más limitado debido a la gran capacidad de resistencia que generan y por eso resultan necesarias nuevas estrategias de tratamiento para infecciones bacterianas que no se basen en este principio. En nuestro grupo de investigación del CSIC intentamos determinar si la presencia de estos autoinducotres y otras moléculas del quorum sensing podrían ser útiles como biomarcadores de una infección bacteriana y así adelantarnos a su tratamiento y evitar futuras complicaciones.

 

*Julián Guercetti es investigador en el grupo Nanobiotecnología para el Diagnóstico, del Instituto de Química Avanzada de Cataluña del CSIC. Ha sido finalista de FameLab España 2021.

“¿Qué me pasa, doctor?” La visita médica a finales de la Edad Media y principios de la Moderna

Por Raúl Villagrasa-Elías (CSIC)

Marie Curie y el radio, Wilhelm C. Röntgen y los rayos X y Alexander Fleming y la penicilina son algunos de los descubrimientos que vertebran la historia de la ciencia y la medicina. Nos fascina imaginar que la historia es una acumulación de esfuerzos individuales (la mayoría de varones ilustres) cuya suma fundamenta el progreso. Suelen ser inventos trascendentales que marcan un antes y un después. Ocurre lo mismo cuando miramos hacia atrás en el tiempo y analizamos episodios como la caída del Imperio romano, la peste negra, la imprenta, la conquista de América, las guerras mundiales…

¿Y si algunos de los fenómenos más trascendentales de nuestra sociedad fueron progresivos y comunitarios? La democratización, la industrialización y la alfabetización de un país no se consiguen en un día. La conformación del sistema sanitario tampoco y precisamente en eso vamos a fijarnos en este viaje en el tiempo, en una escena que seguramente todo el mundo (salvando la distancia temporal) habrá experimentado en sus propias carnes y, si no, en las de algún familiar o amigo. Así era una visita médica hospitalaria a finales de la Edad Media.

El hospital, un “invento” medieval para las personas pobres

Documentamos los primeros hospitales de la península ibérica en los siglos XI y XII y, sin exagerar, podemos afirmar que ya en los siglos XIV, XV y XVI hubo varios cientos de ellos. A diferencia de lo que hoy imaginamos por hospital (instituciones sanitarias enormes con centenares de pacientes y profesionales), estos centros medievales solían ser edificios más pequeños (algunos tenían dos camas; los más grandes, varias decenas) y servían para atender a los enfermos pobres, por lo que reyes, obispos, nobles, ediles y grandes mercaderes rara vez aparecían por allí.

Puerta del Hospital de Santa Cruz en Toledo, fundado en 1496. Litografía de la Biblioteca Nacional de España (1842).

Pero, ¿quiénes eran las personas consideradas pobres? En aquellos siglos ser pobre era algo mucho más genérico de lo que entendemos ahora. Pobre era la anciana que quedaba viuda y sin hijos que la cuidaran; lo era el niño huérfano abandonado fruto de una relación extramatrimonial; el soldado que después de una guerra quedaba incapacitado; la trabajadora de la construcción que se caía de un andamio, o el campesino que contraía la lepra y necesitaba cuidados especiales. En definitiva, pobre era cualquier persona que, aun teniendo algo de dinero, no contaba con lazos sociales como la familia o los vecinos ante los vaivenes de la vida.

Ayer y hoy, más similitudes que diferencias

A finales de la Edad Media, las ciudades crecieron y con ellas el número de personas pobres también aumentó. Para hacer frente a esta emergencia social los gobiernos urbanos promovieron hospitales de mayores dimensiones y dotados con completos equipos profesionales: médicos (conocidos como físicos en la época), cirujanos, barberos, boticarios, enfermeros y enfermeras, nodrizas, capellanes para la cura del espíritu y todo un sinfín de criados y esclavos que se encargaban de las tareas más pesadas.

Consecuencia de lo anterior, a finales de la Edad Media y en el tránsito hacia la Moderna, se institucionalizaron los sistemas sanitarios y, por extensión, la visita médica hospitalaria. Y, en realidad, si eliminamos los aparatos electrónicos que hoy encontramos en una planta de cualquier hospital, el funcionamiento ya era el mismo. Las mujeres enfermas estaban separadas de los hombres (hoy difícilmente encontraremos habitaciones mixtas), las camas estaban numeradas para reconocerlas rápidamente y en el hospital zaragozano de Santa María de Gracia en 1508 ya se colocaban tablillas al lado de cada una para identificar a los pacientes y sus medicamentos.

Una plantilla completa, coordinada y jerarquizada

Los físicos o médicos eran el personal con mayor responsabilidad, salario y formación. El hospital de la villa aragonesa de Híjar ya contaba en 1312 con un “físico cristiano o judío que sabía de medicina”. Estos profesionales valoraban, sobre todo, las enfermedades internas del cuerpo como fiebres o dolores estomacales. Interrogaban al enfermo sobre su estado, auscultaban sus pulsos, comprobaban las orinas y revisaban los tratamientos prescritos el día anterior.

Cirujano colocando un brazo dislocado, 1450. Autor desconocido. Francia.

Por otra parte, los cirujanos (a veces conocidos como barberos-cirujanos) practicaban su arte sobre tejidos, articulaciones y huesos: muelas, heridas, amputaciones, luxaciones, fracturas, etc. Una sanadora musulmana fue contratada en Valencia en 1396 para curar el brazo de un niño pequeño, ya que el médico del hospital no había podido hacerlo. Ambos, médicos y cirujanos, debían “ordenar las mediçinas y emplastos” y “dar las reçetas d’ello al rector del dicho hospital para que lo faga façer”, según las ordenanzas del hospital de Tordesillas (Valladolid) de 1467.

Inmediatamente después encontrábamos en el escalafón sanitario a la persona encargada de supervisar la enfermería, que era el enfermero mayor y tenía a su cargo a las enfermeras y enfermeros menores, quienes velaban día y noche al doliente, le ayudaban en la ingesta de alimentos, limpiaban las sábanas y aplicaban los tratamientos prescritos por médicos y cirujanos con productos farmacéuticos elaborados por los boticarios. En algunos hospitales conocemos incluso las ratios teóricas entre enfermeros y pacientes: en Ávila en 1507 lo ideal era una relación de 1 a 6, mientras que en Toledo en 1499 ascendía a 8. Desde luego, son cifras más asequibles que las actuales, con un profesional de enfermería por 15-20 pacientes en hospitales o 150-200 en residencias de mayores.

Así pues, la imagen que tendría el enfermo no sería muy diferente a la actual: postrado en el lecho observaría cómo dos, tres o cuatro personas le rodeaban e inspeccionaban, en definitiva, un equipo sanitario que curaba y cuidaba.

Raúl Villagrasa-Elías es investigador en el Departamento de Estudios Medievales del Instituto de Historia del Centro de Ciencias Humanas y Sociales del CSIC. Actualmente trabaja en el proyecto Scripta manent: De registros privados a textos públicos. Un archivo medieval en la Red” (PID2020-116104RB-I00).

¿Por qué no todo el mundo tiene la piel negra?

Por Lluis Montoliu (CSIC)*

Solamente hace falta sentarse unos minutos en un banco de una estación de metro concurrida de una gran ciudad y dedicarse a contemplar a las personas que pasan por allí para darse cuenta de la enorme diversidad que tenemos de colores de piel, pelo y ojos. ¿Cómo es posible que haya gente con la piel, cabellos y ojos tan claros y, a la vez, también existan otras personas con la piel, el pelo y los ojos muy oscuros, casi negros? ¿Por qué no todo el mundo tiene la piel clara? ¿Por qué no toda la gente tiene la piel oscura? Toda esta maravillosa diversidad de aspectos de los seres humanos es producto del funcionamiento de un grupo de genes que determinan nuestra pigmentación, los llamados genes de colores.

Una chica pelirroja en un ascensor suscita el interés de quienes están a su alrededor. / Ilustración de Jesús Romero

Pequeñas variaciones en algunos de ellos pueden causar grandes diferencias en nuestra apariencia externa, pero no debemos olvidar que en lo fundamental todos los seres humanos somos mucho más parecidos de lo que habitualmente algunas personas están dispuestas a asumir. Todos los seres humanos compartimos el 99,9% de nuestro genoma y las diferencias genéticas (0,1%) son fundamentalmente individuales. En otras palabras, por más que algunos se empeñen en seguir refiriéndose a este término, no existen las razas en la especie humana. Más allá de unas variaciones genéticas en algunos genes de colores que determinan el color de la piel, pelo y ojos, dos personas de origen africano pueden ser tan distintas entre sí como dos personas de origen europeo.

El color de piel de los primeros seres humanos

Nuestros antepasados homínidos tenían el cuerpo blanquecino, cubierto de pelo, como los chimpancés actuales. Posteriormente, cuando aquellas poblaciones ancestrales emigraron desde la selva a la sabana, tuvieron que adaptarse a temperaturas más elevadas y mayor radiación solar. Perdieron el pelo para así poder empezar a sudar y regular mejor la temperatura corporal, pero sin pelo tuvieron que desarrollar otro tipo de protección frente al sol. La aparición de mutaciones en algunos genes de colores que ennegrecían la piel fue providencial y así aquellos primeros seres humanos sin pelo con piel oscura pudieron sobrevivir bajo el sol. Esta adaptación les permitió proteger determinadas vitaminas necesarias para la vida y la reproducción que se degradan por el sol, como el ácido fólico, y reducir el riesgo de desarrollar cáncer de piel, que habría acabado con sus vidas.

Posteriormente, cuando los seres humanos emigraron desde África hacia el norte de Europa, llegaron a tierras con mucha menor radiación solar en las que el exceso de pigmentación era un problema, pues no les permitía aprovechar los pocos rayos de sol que tenían al día para poder sintetizar la cantidad mínima necesaria de vitamina D que producimos en nuestra piel por acción de la radiación ultravioleta del sol. De nuevo, la aparición de una mutación en otro gen que palidecía la piel fue providencial y permitió a esos humanos adaptarse a las duras y oscuras condiciones.

El origen de las personas pelirrojas

Esa mutación alteró la composición de la melanina que fabricábamos, tanto que algunas personas pasaron de acumular una mezcla de pigmentos formados por una melanina oscura, que llamamos eumelanina, y otra más clara, naranja-rojiza, que llamamos feomelanina, cuya mezcla es responsable de la gran diversidad de colores de piel que tenemos, a fabricar solamente feomelanina. Habían surgido las personas pelirrojas, cuya piel blanca les permitió adaptarse mejor a aquellas latitudes, además de proporcionarles esos fascinantes colores de pelo y ojos que el resto envidiamos. Y así es como, alterando la función de unos pocos genes de colores, podemos pasar de pieles blancas a más oscuras para luego regresar a pieles nuevamente pálidas.

En Europa es donde se concentra una mayor diversidad de patrones de pigmentación de las personas, y donde coexisten personas rubias, castañas, morenas, pelirrojas y negras formando casi un continuo de aspectos y colores. Erróneamente, tendemos a pensar que África es un continente mucho más uniforme. Sin embargo, existe igualmente una enorme variabilidad genética en personas de origen africano, que difícilmente puedan agruparse como una sola población. Por ejemplo, en cuanto a la pigmentación hay grandes diferencias entre las pieles más oscuras de personas nacidas en la región de Etiopía, Somalia y Sudán y las tonalidades mucho más claras de personas de los extremos del continente, el Magreb y Sudáfrica. Esto nos dice que no hay ‘un’ color de piel oscura, negra, sino muchos. De la misma manera que no hay un color de piel clara, blanca, sino muchos.

Misma cantidad de melanina, distinta capacidad de transportarla

Intuitivamente pensaríamos que una persona de piel negra debería tener más células pigmentarias, más melanocitos en la piel, que una persona de piel blanca. Y no es así. Esta es la típica pregunta de programa de televisión de cultura general que fallaría casi todo el mundo. La realidad es que dos personas, una de piel negra y otra de piel blanca, tienen aproximadamente el mismo número de melanocitos.

¿Cómo puede ser que la primera tenga la piel mucho más oscura que la segunda? La diferencia no está en el número de células pigmentarias, sino en la capacidad que tienen estas de trasladar el pigmento que fabrican, la melanina, a los queratinocitos de nuestra piel. Estas células son las que nos dan nuestra pigmentación, no los melanocitos, que se encuentran situados en capas más profundas de la piel, en el límite entre la epidermis y la dermis. Simplemente alterando la función de otros genes de colores, responsables del transporte de melanina entre melanocitos y queratinocitos, somos capaces de oscurecer significativamente el color de nuestra piel.

Estructura simplificada de las células de la piel, con los melanocitos en la base de la epidermis transfiriendo sus melanosomas repletos de melanina a los queratinocitos. / Ilustración de Jesús Romero

De todo ello se deduce lo absurdo e inútil que es intentar buscar diferencias entre dos personas simplemente porque presenten colores distintos de piel. Con muy pocas diferencias en algunos de los genes de colores somos capaces de cambiar el aspecto externo de una persona, pero en lo fundamental todas las personas, tengamos la piel blanca o negra, somos semejantes. Nunca estuvo justificado ningún tipo de racismo, tampoco desde la genética. Aceptemos y gocemos con la enorme variedad de aspectos que podemos tener los seres humanos sin que por ello haya personas que sean discriminadas o sufran rechazo, persecución o ataques por motivo del color de su piel.

 

* Lluis Montoliu es genetista e investigador del CSIC en el Centro Nacional de Biotecnología (CNB). Este y otros temas relacionados con la genética de la pigmentación forman parte de su nuevo libro de divulgación Genes de colores, con ilustraciones de Jesús Romero y publicado por NextDoor Publishers.

¿Cuál será la primera planta en colonizar el volcán de La Palma? Tenemos una candidata: la lechuga de mar

Por Alberto J. Coello (CSIC)*

Las erupciones volcánicas son uno de los eventos de la naturaleza más increíbles y peligrosos que pueden producirse. Hace poco fuimos testigos de la última, ocurrida en la isla canaria de La Palma y que ha dejado patente el efecto destructivo de estos fenómenos. Durante 85 días, el volcán de Cumbre Vieja expulsó inmensas coladas de lava a más de mil grados de temperatura que alcanzaron la costa, cubriendo más de 1200 hectáreas y arrasando edificaciones, campos de cultivo y ecosistemas. Esta erupción recuerda, en muchos aspectos, a otra que ocurrió hace cinco décadas, la del volcán Teneguía, en el sur de la misma isla y que hoy es un espacio natural protegido.

Volcán de Cumbre Vieja en erupción. / César Hernández

Aquella erupción de 1971 duró varias semanas y dejó coladas de lava que alcanzaron también el océano y ampliaron la superficie isleña. Cabía esperar que la destrucción en la naturaleza producida por el volcán dejase daños irreparables por el efecto de la lava, pero la realidad fue diferente. Las coladas de lava depositaron sobre la superficie de la tierra material capaz de albergar vida al cesar las erupciones.

La llegada de organismos vivos a zonas recientemente bañadas de lava es un proceso lento. De hecho, tras 50 años desde la erupción del Teneguía, la diversidad que podemos observar en esa zona es todavía baja. Muchas especies necesitan la acción de otras con las que establecer estrechas relaciones para poder sobrevivir. Por ello, los primeros organismos que llegan a esos nuevos territorios, conocidos como pioneros, son fundamentales para la explosión de biodiversidad que sucederá más tarde en esas zonas.

Las coladas de lava de la erupción del Teneguía en 1971 cercanas a la costa, en la Punta de Fuencaliente, donde se aprecian individuos de la lechuga de mar (los verdes más brillantes con toques amarillos). / Alberto J. Coello

Pioneras tras la lava

Una de esas especies pioneras que podemos encontrar en abundancia creciendo sobre los depósitos de las coladas de lava del Teneguía es la lechuga de mar o servilletero (Astydamia latifolia). Esta especie de la familia Apiaceae vive en las costas de todas las islas del archipiélago canario y llega a alcanzar incluso la costa de Marruecos. Es una planta de hojas suculentas de un color verde muy brillante y con unas flores amarillas muy vistosas, que forma unos reconocibles paisajes de hasta kilómetros de extensión.

A pesar de que la Punta de Fuencaliente, al extremo más al sur de La Palma, no cuenta con un gran número de especies, la lechuga de mar es la más abundante, lo que deja patente su capacidad colonizadora en estos ambientes. De hecho, los análisis genéticos de esta especie han revelado que se ha movido múltiples veces entre las islas de todo el archipiélago. Esta gran capacidad colonizadora parece guardar relación con las estructuras de sus frutos.

La lechuga de mar (Astydamia latifolia) en El Cotillo, Fuerteventura. / Alberto J. Coello

Por un lado, presentan un ala que les permite moverse fácilmente por el aire, lejos de la planta en que se formaron. Por otro, cuentan con tejido corchoso, de tal manera que, una vez caen en el agua del océano, pueden mantenerse a flote y conservar la viabilidad de las semillas tras ser expuestas a la salinidad del agua. La capacidad que tiene la lechuga de mar de sobrevivir al agua marina es fundamental para especies que, como ella, viven en zonas de litoral. Esto le permite moverse entre islas con bastante más facilidad que otras plantas que no cuentan con este tipo de estructuras.

Con todo ello queda claro que la lechuga de mar posee una capacidad de supervivencia y colonización enormes, lo que la convierte en una importante especie pionera de nuevos ambientes como el que podemos encontrar tras las erupciones volcánicas en Canarias, y parece una gran candidata a ser de las primeras plantas en crecer sobre la lava de Cumbre Vieja. Solo el tiempo desvelará si estamos en lo cierto, pero los antecedentes permiten apostar por ella. De lo que no hay duda es que habrá vida después del volcán.

 

*Alberto J. Coello es investigador del Real Jardín Botánico (RJB) del CSIC. Este texto es un extracto del artículo ‘Habrá vida después del volcán’ publicado en El Diario del Jardín Botánico.

El cambio climático y la guerra en Ucrania están en nuestro plato

Por Daniel López García (CSIC) *

¿Cómo va a impactar la guerra de Ucrania en nuestra alimentación? La respuesta dependerá de las medidas que tomemos. Y también de si estas tienen en cuenta los efectos que el cambio climático está teniendo sobre el sistema alimentario y la relación entre cambio climático y sistema productivo. Trataré de explicarlo en las siguientes líneas.

Gurra contra la naturaleza

Traspasar las tensiones sociales a la naturaleza

Durante las últimas décadas, las desigualdades sociales se han tratado de aliviar facilitando el acceso a bienes de consumo baratos a toda la población. Esto ha supuesto un incremento creciente de la producción intensiva y el consumo desmesurado, que se ha asentado en una mayor presión sobre los recursos naturales. Por ello podemos decir que las desigualdades se han aliviado en buena medida gracias a traspasar la tensión social hacia la naturaleza… y eso a pesar de que esas desigualdades no han dejado de crecer.

El problema es que la naturaleza está mostrando un elevado nivel de agotamiento: cuanta más presión introducimos, más se desequilibra, lo que a su vez genera nuevas tensiones sociales. La guerra en Ucrania es una buena muestra de ello: un conflicto relacionado con el control de los recursos naturales –el gas ruso atraviesa Ucrania, un territorio rico en minerales y productos agrícolas– provoca un alza de precios y desabastecimiento que dan lugar a tensiones sociales en todo el planeta, como las recientes movilizaciones del sector agrícola y del transporte que hemos vivido en España. Algo similar ocurre con el cambio climático y la pandemia de COVID19, dos fenómenos que tienen su origen en la creciente presión humana sobre los recursos naturales y que han producido ya tensiones sociales a escala global: desempleo, empeoramiento de la calidad de vida, estancamiento de la actividad económica, migraciones, etc.

Un modelo agrícola en crisis

En estos bucles de insostenibilidad social e insostenibilidad ecológica nuestra alimentación juega un papel relevante. Por un lado, la producción de alimentos a gran escala se encuentra en crisis por su elevada dependencia de materias primas que han alcanzado o se encuentran cerca de su pico de extracción: el petróleo que mueve la maquinaria o el gas, los nitratos y los fosfatos que se utilizan en la producción de fertilizantes y pesticidas. Por otro lado, los rendimientos agrícolas generan y a su vez se ven afectados por algunos de los procesos ecológicos y geológicos en los que los límites planetarios están desbordados en mayor grado, como el cambio climático, la pérdida de biodiversidad, el agotamiento de los ciclos geoquímicos de nitrógeno y fósforo o el cambio en los usos del suelo. Y, por último, los flujos globales de alimentos baratos entre unas partes del mundo y otras han quedado en entredicho después de que la pandemia dificultara los transportes internacionales y el alza de precios del petróleo los haya encarecido sobremanera. Todo ello amenaza nuestra seguridad alimentaria, algo que se deja ver en parte en el alza de los precios de los alimentos.

En este contexto, ¿cómo deberíamos gestionar los impactos de la guerra en Ucrania sobre nuestra alimentación? Para intentar que el sector alimentario europeo no colapse, algunas voces están proponiendo rebajar los estándares ambientales en la producción de alimentos. Se plantea, por ejemplo, importar piensos transgénicos y alimentos cultivados con pesticidas prohibidos en la UE; o incrementar las superficies de cultivo en detrimento de los barbechos.

Esto supone un auténtico paso atrás con respecto a la estrategia “De la granja a la mesa”, aprobada en 2020 por la Comisión Europea tras un arduo debate, y que entre otras cosas establece reducciones en los usos de antibióticos en ganadería y de fertilizantes y pesticidas químicos en agricultura, así como el objetivo de que un 25% de la superficie cultivada europea en 2030 sea de producción ecológica. No nos podemos permitir retrasar los cambios a los que ya estamos llegando tarde, como evidencia el último informe del Panel Intergubernamental de Cambio Climático (IPCC), que asigna un tercio de las emisiones de efecto invernadero al sistema alimentario, o las elevadas cifras de enfermedades no transmisibles (y el gasto sanitario asociado), relacionadas con pesticidas y con dietas insostenibles y poco saludables.

La hora de actuar

El cambio climático será (y en buena medida ya lo está siendo) mucho más destructivo que una guerra, y sus impactos durarán mucho más que la guerra más larga. El último informe del IPCC, presentado el 28 de febrero, hace hincapié en la necesidad urgente de adoptar medidas inmediatas y más ambiciosas para hacer frente a los riesgos climáticos. “Ya no es posible continuar con medias tintas”, asegura su presidente.

La gravedad del cambio climático y los últimos informes del IPCC han alentado a parte de la comunidad científica a movilizarse para demandar cambios urgentes. Durante la segunda semana de abril de 2022, científicos y científicas de todo el mundo llevarán a cabo acciones de desobediencia civil aliados con diversas organizaciones ambientalistas, como Extinction Rebellion.

La comparación entre cambio climático y guerra es muy clarificadora. A lo largo de los últimos siglos, y especialmente desde el siglo XX, nuestras sociedades han entendido la relación con la naturaleza a través de la dominación, como una guerra contra la naturaleza que ahora parece que vamos perdiendo. Pero ni la naturaleza está en guerra contra la humanidad ni esa guerra es posible, porque somos parte de la naturaleza y esta vive en cada uno de nosotros y nosotras. De hecho, para poder superar ambos problemas –la guerra en Ucrania y el cambio climático– será necesario salir del escenario bélico entre sociedad y naturaleza, plagado de ‘daños colaterales’, como la idea de que para enfrentar los impactos de la guerra podemos presionar más sobre los recursos naturales. Esta idea de guerra sociedad-naturaleza solo generará nuevas crisis que se solaparán con las actuales.

El caso es que hay un consenso elevado acerca de qué camino tomar respecto a la alimentación entre los estados nacionales y las instituciones globales, como la UE, el IPCC o las agencias de Naciones Unidas para la Agricultura y la Alimentación (FAO), el Medio Ambiente (UNEP) o la Salud (OMS). Recientes informes y acuerdos globales coinciden en que es urgente, posible y necesario alimentar al mundo a través de sistemas alimentarios agroecológicos; basar nuestra alimentación en alimentos locales, frescos, sostenibles (ecológicos) y de temporada; y modificar la dieta para reducir la ingesta de carnes (y limitarla a aquellas procedentes de la ganadería extensiva) y de alimentos procesados. La combinación de crisis sociales y ecológicas que hoy nos asola debe servir para iniciar ya los cambios necesarios, y no para seguir echando leña al fuego.

* Daniel López García es investigador del CSIC en el Instituto de Economía, Geografía y Demografía (IEGD-CSIC).

Illustraciencia IX presenta las mejores ilustraciones científicas del año

Por Mar Gulis (CSIC)

El certamen internacional Illustraciencia, organizado por la Asociación Catalana de Comunicación Científica y el Museo Nacional de Ciencias Naturales (MNCN) del CSIC, ha dado a conocer las ilustraciones premiadas en su novena edición: ocho imágenes sobre  la vida animal y vegetal que puebla nuestro planeta. ¡No te las pierdas!

Camaleón

La pantera de Madagascar, de David Rojas Márquez (Argentina)
Premio Ilustración científica y Premio especial del público

Esta imagen digital representa tres adaptaciones anatómicas que hacen excepcionales a los camaleones: ojos que pueden moverse independientemente el uno del otro, lo que da a estos animales una amplitud visual de alrededor de 350º (1.b); una lengua que se dispara con una aceleración de 1000 m/s2 –gracias al denominado proceso entogloso (2.a) y al músculo acelerador (2.b)–; y la capacidad de cambiar el color de su piel a través de arreglos celulares bajo su epidermis (3.a) llamados cromatóforos (3.b).

Zorzales

Estudio comparativo de zorzales, de Ignacio Sevilla Hidalgo (España)
Premio Ilustración naturalista 

El motivo central de esta acuarela son los zorzales en su medio, donde son difíciles de observar y suelen pasar desapercibidos. Se trata del zorzal real (Turdus pilaris), el zorzal común (Turdus philomelos), el zorzal alirrojo (Turdus iliacus) y el zorzal charlo (Turdus viscivorus). La lámina muestra también los principales rasgos identificativos de cada especie: las diferencias de color que presentan en la parte inferior de las alas (arriba) y en la distribución de las marcas oscuras del pecho (derecha).

Plagas

Plagas de la harina, de Albert Blanco Roviralta (España)
Mención especial Ilustración científica

¿Hay insectos en la harina de la despensa? Lo más probable entonces es que se trate de larvas de alguna de estas tres especies: la polilla Plodia interpunctella (1), el gorgojo Stegobium paniceum (2) o el escarabajo Tribolium castaneum (3). Se trata de los principales causantes de la contaminación biológica de los almacenes de alimentos (sobre todo de harina y cereales) en hogares e industrias. Las larvas son las que se alimentan de harina, pero tanto ellas como los ejemplares adultos confieren a los alimentos un olor desagradable y un color grisáceo. Estos son debidos a la presencia de excrementos, metabolitos y restos de cadáveres.

escolopendra

Morfología de una escolopendra, José Saúl Martín Fuentes (Colombia)
Mención especial Ilustración científica

Las escolopendras son una familia (Scolopendridae) de ciempiés de gran tamaño y de mordedura muy dolorosa que se encuentra distribuida prácticamente por todo el mundo. Esta imagen digital muestra en detalle los caracteres distintivos de la especie Cormocephalus impressus: placa cefálica (a), cabeza (b), orificio respiratorio (c) y vista dorsal (d) y ventral (e) de las patas terminales.

Pinus pinaster

Сluster pine (Pinus pinaster), de Dina Rogatnykh (Bulgaria)
Mención especial Ilustración científica

El pino resinero es una especie autóctona del Mediterráneo que alcanza hasta 35 metros de altura. Es fácilmente reconocible por su tronco recto (G) y su corteza roja anaranjada con surcos profundos (H); así como por sus largas acículas que miden hasta 25 centímetros (B) y crecen en parejas en los extremos de las ramas (A). Los conos inmaduros (A) son verdes y brillantes; los femeninos (E), rosas y con escamas abiertas cuando son jóvenes; y los masculinos (F), marrones anaranjados y con forma de huevo. Las semillas son de color marrón grisáceo y tienen un ala (D) que facilita su dispersión por el viento.

Tortuga de pantano

Bog Turtle, de Patterson (Estados Unidos)
Mención especial Ilustración naturalista 

La tortuga de pantano (Glyptemys muhlenbergii) es una de las especies de tortugas más pequeñas de Norteamérica y una de las más amenazadas. Este acrílico representa un ejemplar tal y como su autor los observó en la naturaleza: rodeado de plantas carnívoras y arbustos venenosos y junto a la quijada de un venado.

Gonzalito

Gonzalito (Icterus nigrogularis), de Sebastián Chavez (Venezuela)
Mención especial Ilustración naturalista

El gonzalito es un ave cantora que se distribuye en el norte de Sudamérica y parte del Caribe. Es común verla en áreas abiertas y jardines en busca de alimentos como frutas, néctar y pequeños insectos que consigue en la copa de los árboles. En su época de apareamiento se agrupa en gran número y construye sus característicos nidos colgantes, que miden aproximadamente 40 centímetros de largo. Sus huevos son de color blanco azulado y suelen tener dos o tres en cada gestación.

Escarabajo de agua

Ciclo de vida del escarabajo buceador gigante, de Araceli Gómez de Lara (México)
Mención especial Ilustración naturalista

Dytiscus marginalis es un escarabajo que vive en el agua dulce. La hembra deposita los huevos en la vegetación acuática y de ellos nacen las larvas, conocidas como tigres de agua por su apetito voraz. Delgadas y con mandíbulas en forma de hoz, cuelgan suspendidas de la película superficial del agua hasta alcanzar los siete centímetros de largo. Para la metamorfosis, cavan un agujero en la tierra y su cuerpo se vuelve amarillo pálido. Los adultos tienen forma ovalada, miden hasta tres centímetros de largo y cuentan con adaptaciones en sus patas que les facilitan el nado. Comen peces pequeños, renacuajos o larvas y viven unos cinco años.

Cultura con C de Cosmos: Vida

Por Montserrat Villar, Eva Villaver, Natalia Ruiz, Ester Lázaro, José Antonio Caballero, Carlos Briones y David Barrado (CSIC)*

Vivimos en una sociedad hiper-especializada: profesionales de diferentes áreas del saber son excelentes en temas cada vez más específicos. Como consecuencia, el estudio, la investigación y la propia cultura se compartimentan en múltiples casillas que a menudo nunca se tocan. Alejarnos de nuestra especialización para sumergirnos en otras áreas del conocimiento es enormemente enriquecedor: nos permite reconstruir la historia, nos estimula a imaginar soluciones creativas a problemas complejos y, muy importante, nos hace dudar. Solo desde la duda puede progresar el conocimiento.

De estas reflexiones nació Cultura con C de Cosmos (C3), un proyecto surgido en el Centro de Astrobiología (CAB, CSIC-INTA) cuyo objetivo es hacer divulgación científica promoviendo el encuentro y la comunicación entre áreas del saber generalmente percibidas como disociadas (ciencia vs. humanidades). En sus dos primeras ediciones (octubre de 2018 a marzo de 2019 y noviembre de 2019) nuestro objetivo fue divulgar la astronomía y la astrobiología a través del arte, la poesía y la música.

C de Cosmos

Cultura con C de Cosmos ha regresado en marzo de 2022 con una nueva iniciativa, C3: Vida, que aborda como tema central la posible existencia de vida fuera de la Tierra. Hasta la fecha la única evidencia de vida la tenemos en nuestro planeta. Sin embargo, desde épocas remotas la posibilidad de que exista en otros lugares del universo ha hecho volar la imaginación del ser humano y ha motivado una profunda reflexión sobre nuestro lugar en el cosmos. Esto ha quedado plasmado en numerosas manifestaciones de nuestra cultura, incluyendo las religiones, la filosofía o el arte. Así, durante milenios, artistas plásticos, escritores, músicos y filósofos han imaginado e incluso recreado otros mundos habitados.

La ciencia no podía ser ajena a esa inquietud y, desde que la tecnología lo ha permitido, tiene como uno de sus objetivos prioritarios investigar si los procesos que han conducido a la aparición de la vida en la Tierra podrían haber ocurrido en otros lugares del universo. Vivimos una época que quizá nos depare grandes hallazgos. Gracias a los avances en la investigación astrobiológica y astrofísica, podemos buscar vida fuera de la Tierra con estrategias muy sofisticadas basadas en el conocimiento científico. Por primera vez puede que estemos en condiciones de hallar indicios de esa posible vida extraterrestre. ¿Estamos preparados para un descubrimiento de esta magnitud?

 Vídeos, diálogos y directos de Youtube

De todo ello hablaremos en C3: Vida. Entre marzo y junio invitaremos a la sociedad a reflexionar acerca de este tema tan provocador. Personalidades del mundo de la cultura nos mostrarán en vídeos breves cuál es su visión acerca de la posible existencia de vida en otros lugares del cosmos. Rosa Menéndez, presidenta del Consejo Superior de Investigaciones Científicas, Miguel Falomir, director del Museo del Prado, Michel Mayor, premio Nobel de Física 2019, el guionista y director de cine Mateo Gil, la periodista y escritora Marta Fernández, el poeta y juglar Daniel Orviz, entre otros, nos acompañarán y compartirán sus reflexiones y sensaciones acerca de este tema trascendental.

Celebraremos, además, actividades de divulgación científica online y presenciales. Entre ellas destacamos el ciclo de diálogos en el mítico Café Gijón de Madrid, que se inaugura el jueves 17 de marzo con la conversación Pensar el arte, sentir la ciencia entre el bioquímico del CSIC Carlos Briones (CAB) y el artista multidisciplinar Antonio Calleja. Seguirán cinco diálogos, uno cada jueves hasta el 28 de abril, excepto Jueves Santo. Profesionales de la ciencia, el arte, la filosofía, el periodismo y la historia conversarán sobre temas diversos (incluyendo la vida extraterrestre) para estimular una reflexión interdisciplinar y mostrar cómo la aproximación a una misma idea desde caminos diferentes produce a menudo inspiradoras alianzas de gran riqueza intelectual.

A partir de mayo celebraremos directos de youtube. En un contexto permeado por la divulgación científica, el público tendrá oportunidad de preguntar a personas expertas lo que siempre quiso saber acerca de la posible existencia de vida extraterrestre. El diálogo permitirá compartir las dudas, ideas y sensaciones que inspira la reflexión acerca de una de las cuestiones más intrigantes y evocadoras para la humanidad desde hace milenios: ¿estamos solos en el universo?

* Montserrat Villar (directora de C3:Vida), Eva Villaver, Ester Lázaro, José Antonio Caballero, Carlos Briones y David Barrado son investigadores del CAB.  Natalia Ruiz es comunicadora en el CAB.  Forman el equipo de C3: Vida.