Entradas etiquetadas como ‘ojos’

¿Por qué no todo el mundo tiene la piel negra?

Por Lluis Montoliu (CSIC)*

Solamente hace falta sentarse unos minutos en un banco de una estación de metro concurrida de una gran ciudad y dedicarse a contemplar a las personas que pasan por allí para darse cuenta de la enorme diversidad que tenemos de colores de piel, pelo y ojos. ¿Cómo es posible que haya gente con la piel, cabellos y ojos tan claros y, a la vez, también existan otras personas con la piel, el pelo y los ojos muy oscuros, casi negros? ¿Por qué no todo el mundo tiene la piel clara? ¿Por qué no toda la gente tiene la piel oscura? Toda esta maravillosa diversidad de aspectos de los seres humanos es producto del funcionamiento de un grupo de genes que determinan nuestra pigmentación, los llamados genes de colores.

Una chica pelirroja en un ascensor suscita el interés de quienes están a su alrededor. / Ilustración de Jesús Romero

Pequeñas variaciones en algunos de ellos pueden causar grandes diferencias en nuestra apariencia externa, pero no debemos olvidar que en lo fundamental todos los seres humanos somos mucho más parecidos de lo que habitualmente algunas personas están dispuestas a asumir. Todos los seres humanos compartimos el 99,9% de nuestro genoma y las diferencias genéticas (0,1%) son fundamentalmente individuales. En otras palabras, por más que algunos se empeñen en seguir refiriéndose a este término, no existen las razas en la especie humana. Más allá de unas variaciones genéticas en algunos genes de colores que determinan el color de la piel, pelo y ojos, dos personas de origen africano pueden ser tan distintas entre sí como dos personas de origen europeo.

El color de piel de los primeros seres humanos

Nuestros antepasados homínidos tenían el cuerpo blanquecino, cubierto de pelo, como los chimpancés actuales. Posteriormente, cuando aquellas poblaciones ancestrales emigraron desde la selva a la sabana, tuvieron que adaptarse a temperaturas más elevadas y mayor radiación solar. Perdieron el pelo para así poder empezar a sudar y regular mejor la temperatura corporal, pero sin pelo tuvieron que desarrollar otro tipo de protección frente al sol. La aparición de mutaciones en algunos genes de colores que ennegrecían la piel fue providencial y así aquellos primeros seres humanos sin pelo con piel oscura pudieron sobrevivir bajo el sol. Esta adaptación les permitió proteger determinadas vitaminas necesarias para la vida y la reproducción que se degradan por el sol, como el ácido fólico, y reducir el riesgo de desarrollar cáncer de piel, que habría acabado con sus vidas.

Posteriormente, cuando los seres humanos emigraron desde África hacia el norte de Europa, llegaron a tierras con mucha menor radiación solar en las que el exceso de pigmentación era un problema, pues no les permitía aprovechar los pocos rayos de sol que tenían al día para poder sintetizar la cantidad mínima necesaria de vitamina D que producimos en nuestra piel por acción de la radiación ultravioleta del sol. De nuevo, la aparición de una mutación en otro gen que palidecía la piel fue providencial y permitió a esos humanos adaptarse a las duras y oscuras condiciones.

El origen de las personas pelirrojas

Esa mutación alteró la composición de la melanina que fabricábamos, tanto que algunas personas pasaron de acumular una mezcla de pigmentos formados por una melanina oscura, que llamamos eumelanina, y otra más clara, naranja-rojiza, que llamamos feomelanina, cuya mezcla es responsable de la gran diversidad de colores de piel que tenemos, a fabricar solamente feomelanina. Habían surgido las personas pelirrojas, cuya piel blanca les permitió adaptarse mejor a aquellas latitudes, además de proporcionarles esos fascinantes colores de pelo y ojos que el resto envidiamos. Y así es como, alterando la función de unos pocos genes de colores, podemos pasar de pieles blancas a más oscuras para luego regresar a pieles nuevamente pálidas.

En Europa es donde se concentra una mayor diversidad de patrones de pigmentación de las personas, y donde coexisten personas rubias, castañas, morenas, pelirrojas y negras formando casi un continuo de aspectos y colores. Erróneamente, tendemos a pensar que África es un continente mucho más uniforme. Sin embargo, existe igualmente una enorme variabilidad genética en personas de origen africano, que difícilmente puedan agruparse como una sola población. Por ejemplo, en cuanto a la pigmentación hay grandes diferencias entre las pieles más oscuras de personas nacidas en la región de Etiopía, Somalia y Sudán y las tonalidades mucho más claras de personas de los extremos del continente, el Magreb y Sudáfrica. Esto nos dice que no hay ‘un’ color de piel oscura, negra, sino muchos. De la misma manera que no hay un color de piel clara, blanca, sino muchos.

Misma cantidad de melanina, distinta capacidad de transportarla

Intuitivamente pensaríamos que una persona de piel negra debería tener más células pigmentarias, más melanocitos en la piel, que una persona de piel blanca. Y no es así. Esta es la típica pregunta de programa de televisión de cultura general que fallaría casi todo el mundo. La realidad es que dos personas, una de piel negra y otra de piel blanca, tienen aproximadamente el mismo número de melanocitos.

¿Cómo puede ser que la primera tenga la piel mucho más oscura que la segunda? La diferencia no está en el número de células pigmentarias, sino en la capacidad que tienen estas de trasladar el pigmento que fabrican, la melanina, a los queratinocitos de nuestra piel. Estas células son las que nos dan nuestra pigmentación, no los melanocitos, que se encuentran situados en capas más profundas de la piel, en el límite entre la epidermis y la dermis. Simplemente alterando la función de otros genes de colores, responsables del transporte de melanina entre melanocitos y queratinocitos, somos capaces de oscurecer significativamente el color de nuestra piel.

Estructura simplificada de las células de la piel, con los melanocitos en la base de la epidermis transfiriendo sus melanosomas repletos de melanina a los queratinocitos. / Ilustración de Jesús Romero

De todo ello se deduce lo absurdo e inútil que es intentar buscar diferencias entre dos personas simplemente porque presenten colores distintos de piel. Con muy pocas diferencias en algunos de los genes de colores somos capaces de cambiar el aspecto externo de una persona, pero en lo fundamental todas las personas, tengamos la piel blanca o negra, somos semejantes. Nunca estuvo justificado ningún tipo de racismo, tampoco desde la genética. Aceptemos y gocemos con la enorme variedad de aspectos que podemos tener los seres humanos sin que por ello haya personas que sean discriminadas o sufran rechazo, persecución o ataques por motivo del color de su piel.

 

* Lluis Montoliu es genetista e investigador del CSIC en el Centro Nacional de Biotecnología (CNB). Este y otros temas relacionados con la genética de la pigmentación forman parte de su nuevo libro de divulgación Genes de colores, con ilustraciones de Jesús Romero y publicado por NextDoor Publishers.

¿Cómo verías si fueras un perro o un periquito?

Por Elisa Pérez Badás (CSIC)*

El conocido fenómeno del arco iris se produce cuando la luz solar atraviesa las gotas de agua contenidas en la atmósfera y esta es descompuesta en la parte del espectro electromagnético que conocemos como espectro visible. Para el ojo humano, este gradiente de longitudes de onda se traduce en los siete colores fundamentales (rojo, naranja, amarillo, verde, cian, azul y violeta), comprendidos entre los 400 y 700 nanómetros del espectro. Sin embargo, otros animales son capaces de percibir luz emitida a diferentes longitudes de onda, fuera de lo que nosotros conocemos como ‘luz visible’.

Arco iris

/Alexis Dworsky.

Pero, ¿cómo funciona la visión en color en los humanos y primates más cercanos? En pocas palabras, cuando la luz solar llega a la retina, se activan unas células especializadas llamadas conos, que actúan como receptores de distintas regiones del espectro. En el caso de los humanos, existen tres tipos de conos que se activan con la llegada de luz visible, responsables de que identifiquemos los colores como rojos, azules o verdes. Nuestro sistema visual es, por tanto, tricromático. Un momento… todos sabemos que la gama de colores que podemos identificar es mucho más extensa, ¿y todo ello con solo tres receptores? La clave está en que la información recogida en las células de la retina se transmite, por medio del nervio óptico, al cerebro, donde es interpretada. ¿Qué ocurre, por ejemplo, cuando vemos un objeto azul? Cuando un objeto es azul, significa que refleja luz a longitudes de onda corta, y por tanto excita las células de la retina sensibles al ‘azul’. Sin embargo, si las células activadas son de dos o más tipos, el color que se interpreta en el cerebro dependerá, precisamente, de la proporción de receptores activados de un tipo u otro. Esto es lo que ocurre cuando nosotros percibimos un color verde-azulado, mientras que nuestro vecino asegura que es más bien azul-verdoso.

Visión comparada

Recreación de la visión de un perro (arriba-dcha), un gato (abajo-izda) y una abeja (abajo-dcha), comparado con lo que vería un humano. /Alleyesonparis.com

Otros mamíferos, como es el caso del perro, lo tienen peor para distinguir los verde-azulados. Tampoco podrán admirar todos los colores del arco iris, ya que su visión es dicromática, es decir, solo tienen dos tipos de receptores, sensibles a longitudes de onda cercanas al amarillo y al azulado-ultravioleta. Eso sí, por muchos colores que podamos distinguir, nuestro sistema visual también tiene sus limitaciones: no todo es tan ‘de color de rosa’. De hecho, los rangos de longitudes de onda a los que se activan los conos se superponen, haciendo que la capacidad visual y el poder de discriminación de la visión humana no sean tan precisos como podríamos pensar.

Las aves, por el contrario, tienen un sistema visual bastante más preciso. Poseen visión tetracromática, y por tanto incorporan un cuarto tipo de cono, que es capaz de percibir luz en el rango del ultravioleta (entre 300 y 400 nanómetros). También poseen otro tipos de conos de los que los mamíferos carecemos: los conos dobles, que otorgan otra vía de información sobre la luminosidad de los objetos totalmente desconocida para el ojo humano. Además disponen de una sustancia oleosa especializada que posiblemente confiera mayor agudeza visual. Gracias a estas particularidades de la visión en aves se ha descubierto que especies tan comunes, como el periquito o el herrerillo común, muestran en realidad colores invisibles al ojo humano, útiles para la selección de pareja.

Otros grupos animales disponen de un sistema visual completamente distinto, como el de los insectos, que agrupan varios miles de unidades receptivas en cada ojo. Es lo que se conoce como ojo compuesto. Pongamos como ejemplo las libélulas, que poseen 35.000 omatidios o unidades visuales en cada ojo, hasta 11 pigmentos receptores sensibles a la luz, y además son capaces de detectar luz polarizada.

Langosta mantis. / Charlene Mcbride via Pixbay

Pero el rey de la percepción visual es sin duda alguna la langosta mantis. Con unos 16 tipos de receptores, ojos compuestos formados por numerosas unidades visuales y la capacidad de detectar luz polarizada, los colores deben jugar un papel importante para estos crustáceos,  ya que su complejo sistema visual les permite reconocer distintos tipos de corales, presas, depredadores o competidores. No obstante, estudios recientes han mostrado que este sistema es solo temporalmente eficiente, ya que una mayor discriminación de colores requeriría un procesado neuronal demasiado complejo.

Sin duda, muchas especies poseen ojos más complejos y eficientes que los del ser humano, pero no poseen la complejidad cerebral que se requiere para integrar la información visual. Quizá estos animales tengan receptores suficientes para ver un arco iris mucho más colorido, pero desde luego, no ‘disfrutarán’ de él como lo hacemos nosotros.

*Elisa Pérez Badás es investigadora en el Museo Nacional de Ciencias Naturales del CSIC (@liss_ael).