Entradas etiquetadas como ‘petróleo’

El cambio climático y la guerra en Ucrania están en nuestro plato

Por Daniel López García (CSIC) *

¿Cómo va a impactar la guerra de Ucrania en nuestra alimentación? La respuesta dependerá de las medidas que tomemos. Y también de si estas tienen en cuenta los efectos que el cambio climático está teniendo sobre el sistema alimentario y la relación entre cambio climático y sistema productivo. Trataré de explicarlo en las siguientes líneas.

Gurra contra la naturaleza

Traspasar las tensiones sociales a la naturaleza

Durante las últimas décadas, las desigualdades sociales se han tratado de aliviar facilitando el acceso a bienes de consumo baratos a toda la población. Esto ha supuesto un incremento creciente de la producción intensiva y el consumo desmesurado, que se ha asentado en una mayor presión sobre los recursos naturales. Por ello podemos decir que las desigualdades se han aliviado en buena medida gracias a traspasar la tensión social hacia la naturaleza… y eso a pesar de que esas desigualdades no han dejado de crecer.

El problema es que la naturaleza está mostrando un elevado nivel de agotamiento: cuanta más presión introducimos, más se desequilibra, lo que a su vez genera nuevas tensiones sociales. La guerra en Ucrania es una buena muestra de ello: un conflicto relacionado con el control de los recursos naturales –el gas ruso atraviesa Ucrania, un territorio rico en minerales y productos agrícolas– provoca un alza de precios y desabastecimiento que dan lugar a tensiones sociales en todo el planeta, como las recientes movilizaciones del sector agrícola y del transporte que hemos vivido en España. Algo similar ocurre con el cambio climático y la pandemia de COVID19, dos fenómenos que tienen su origen en la creciente presión humana sobre los recursos naturales y que han producido ya tensiones sociales a escala global: desempleo, empeoramiento de la calidad de vida, estancamiento de la actividad económica, migraciones, etc.

Un modelo agrícola en crisis

En estos bucles de insostenibilidad social e insostenibilidad ecológica nuestra alimentación juega un papel relevante. Por un lado, la producción de alimentos a gran escala se encuentra en crisis por su elevada dependencia de materias primas que han alcanzado o se encuentran cerca de su pico de extracción: el petróleo que mueve la maquinaria o el gas, los nitratos y los fosfatos que se utilizan en la producción de fertilizantes y pesticidas. Por otro lado, los rendimientos agrícolas generan y a su vez se ven afectados por algunos de los procesos ecológicos y geológicos en los que los límites planetarios están desbordados en mayor grado, como el cambio climático, la pérdida de biodiversidad, el agotamiento de los ciclos geoquímicos de nitrógeno y fósforo o el cambio en los usos del suelo. Y, por último, los flujos globales de alimentos baratos entre unas partes del mundo y otras han quedado en entredicho después de que la pandemia dificultara los transportes internacionales y el alza de precios del petróleo los haya encarecido sobremanera. Todo ello amenaza nuestra seguridad alimentaria, algo que se deja ver en parte en el alza de los precios de los alimentos.

En este contexto, ¿cómo deberíamos gestionar los impactos de la guerra en Ucrania sobre nuestra alimentación? Para intentar que el sector alimentario europeo no colapse, algunas voces están proponiendo rebajar los estándares ambientales en la producción de alimentos. Se plantea, por ejemplo, importar piensos transgénicos y alimentos cultivados con pesticidas prohibidos en la UE; o incrementar las superficies de cultivo en detrimento de los barbechos.

Esto supone un auténtico paso atrás con respecto a la estrategia “De la granja a la mesa”, aprobada en 2020 por la Comisión Europea tras un arduo debate, y que entre otras cosas establece reducciones en los usos de antibióticos en ganadería y de fertilizantes y pesticidas químicos en agricultura, así como el objetivo de que un 25% de la superficie cultivada europea en 2030 sea de producción ecológica. No nos podemos permitir retrasar los cambios a los que ya estamos llegando tarde, como evidencia el último informe del Panel Intergubernamental de Cambio Climático (IPCC), que asigna un tercio de las emisiones de efecto invernadero al sistema alimentario, o las elevadas cifras de enfermedades no transmisibles (y el gasto sanitario asociado), relacionadas con pesticidas y con dietas insostenibles y poco saludables.

La hora de actuar

El cambio climático será (y en buena medida ya lo está siendo) mucho más destructivo que una guerra, y sus impactos durarán mucho más que la guerra más larga. El último informe del IPCC, presentado el 28 de febrero, hace hincapié en la necesidad urgente de adoptar medidas inmediatas y más ambiciosas para hacer frente a los riesgos climáticos. “Ya no es posible continuar con medias tintas”, asegura su presidente.

La gravedad del cambio climático y los últimos informes del IPCC han alentado a parte de la comunidad científica a movilizarse para demandar cambios urgentes. Durante la segunda semana de abril de 2022, científicos y científicas de todo el mundo llevarán a cabo acciones de desobediencia civil aliados con diversas organizaciones ambientalistas, como Extinction Rebellion.

La comparación entre cambio climático y guerra es muy clarificadora. A lo largo de los últimos siglos, y especialmente desde el siglo XX, nuestras sociedades han entendido la relación con la naturaleza a través de la dominación, como una guerra contra la naturaleza que ahora parece que vamos perdiendo. Pero ni la naturaleza está en guerra contra la humanidad ni esa guerra es posible, porque somos parte de la naturaleza y esta vive en cada uno de nosotros y nosotras. De hecho, para poder superar ambos problemas –la guerra en Ucrania y el cambio climático– será necesario salir del escenario bélico entre sociedad y naturaleza, plagado de ‘daños colaterales’, como la idea de que para enfrentar los impactos de la guerra podemos presionar más sobre los recursos naturales. Esta idea de guerra sociedad-naturaleza solo generará nuevas crisis que se solaparán con las actuales.

El caso es que hay un consenso elevado acerca de qué camino tomar respecto a la alimentación entre los estados nacionales y las instituciones globales, como la UE, el IPCC o las agencias de Naciones Unidas para la Agricultura y la Alimentación (FAO), el Medio Ambiente (UNEP) o la Salud (OMS). Recientes informes y acuerdos globales coinciden en que es urgente, posible y necesario alimentar al mundo a través de sistemas alimentarios agroecológicos; basar nuestra alimentación en alimentos locales, frescos, sostenibles (ecológicos) y de temporada; y modificar la dieta para reducir la ingesta de carnes (y limitarla a aquellas procedentes de la ganadería extensiva) y de alimentos procesados. La combinación de crisis sociales y ecológicas que hoy nos asola debe servir para iniciar ya los cambios necesarios, y no para seguir echando leña al fuego.

* Daniel López García es investigador del CSIC en el Instituto de Economía, Geografía y Demografía (IEGD-CSIC).

Los biocombustibles pueden ser más nocivos que el petróleo

Por Joaquín Pérez Pariente (CSIC)*

Bajo las etiquetas ‘combustible ecológico’ y ‘diésel verde’ circulan por las ciudades del mundo occidental vehículos que utilizan como combustible sustancias obtenidas a partir de productos agrícolas. Son los denominados biocombustibles, en los que el prefijo ‘bio’ pretende resaltar sus bondades medioambientales. Sin embargo, la realidad es que los biocombustibles pueden llegar a ser incluso más nocivos que el petróleo por su emisión de gases de efecto invernadero, responsables del cambio climático que está experimentando nuestro planeta. La causa de ese daño medioambiental estriba en la forma en la que se obtienen.

Si somos rigurosos, recibe el nombre de biocombustible todo combustible de origen biológico. El más común es la madera, pero también son biocombustibles las grasas animales y los aceites vegetales que han servido para iluminar durante siglos nuestros hogares. Pero los que nos interesan son los que se utilizan hoy en día en vehículos de transporte, que son de dos tipos. Uno es el alcohol denominado etanol, el mismo que se encuentra en el vino o la cerveza, que se obtiene mediante fermentación de azúcares como los de la caña de azúcar, o los de los cereales, entre los cuales destaca el maíz. El segundo es el biodiesel, que se produce mediante una reacción química entre el alcohol denominado metanol y aceites vegetales. Aunque se pueden utilizar diferentes aceites como materia prima para fabricar el biodiesel, en la práctica en todo el mundo se elabora a partir de aceites de soja y palma y, en mucha menor medida, de colza, sobre todo en Europa.

Los defensores del empleo de biocombustibles líquidos como sustitutos de la gasolina y gasoil derivados del petróleo argumentan sus efectos beneficiosos de la siguiente manera. Las plantas de las que se extraen las materias primas necesarias para su elaboración absorben dióxido de carbono, el principal gas de efecto invernadero, durante su crecimiento. Cuando los biocombustibles se queman en un vehículo, se emite dióxido de carbono a la atmósfera. Pero eso no supone un problema, porque las plantas volverán a asimilarlo cuando crezcan de nuevo. Tendríamos así un ciclo cerrado de captura-emisión de ese gas, que por lo tanto no produciría ningún aumento de su concentración en la atmósfera.

 

Producción mundial de bioetanol y biodiesel en miles de barriles por día. En el caso del etanol, 100.000 barriles por día equivalen a 3 millones de toneladas de petróleo anuales, mientras que para el biodiesel equivalen a 4,9 millones. La cantidad total de biocombustibles producidos en 2016 equivalió a 86 millones de toneladas de petróleo.

Sin embargo, esa explicación tan simple oculta un conejo en la chistera, que salta fuera de ella en cuanto nos asomamos a su interior. Esas plantas productoras de biocombustibles no crecen precisamente en el desierto, sino que se cultivan en terrenos fértiles que previamente estaban cubiertos por selvas y sabanas. Esos grandes bosques tropicales y subtropicales se destruyen simplemente quemándolos, para sustituirlos por los cultivos destinados a la producción masiva de biocombustibles, como la soja y la palma. Esos gigantescos incendios, visibles desde los satélites que orbitan el planeta y en ocasiones objeto por ello de atención televisiva, liberan a la atmósfera enormes cantidades de dióxido de carbono: entre 200 y 300 toneladas por hectárea, entre 20.000 y 30.000 toneladas por cada kilómetro cuadrado. Así se deforestan cada año decenas de miles de kilómetros cuadrados, hasta tal punto que provocan unas emisiones de gases de efecto invernadero casi iguales a las provenientes de los vehículos que utilizan combustibles derivados del petróleo. Aunque los biocombustibles contribuyen todavía relativamente poco a esa deforestación global, su amenaza es tan grave que el Parlamento Europeo aprobó en el mes de abril de este año una resolución para eliminar el aceite de palma como fuente de biocombustibles para el año 2020.

Por si fuera poco, los agrocombustibles, como en realidad deberían denominarse los biocombustibles, compiten con la producción de alimentos porque, al igual que estos, necesitan terrenos fértiles donde cultivarse. Y se trata de una competencia desleal, porque si se quisiera sustituir con ellos solo una parte de los que provienen del petróleo, habría que producirlos en tal cantidad que toda la superficie de nuestro planeta no bastaría para ello. Ahí radica el verdadero problema, en que los terrenos cultivables ya escasean y no podemos permitirnos el lujo de malgastarlos en un mundo que no es capaz de alimentar decentemente a toda su población.

No hay ninguna duda de que es necesario buscar alternativas al uso del petróleo, pero los biocombustibles no son la respuesta.

 

Joaquín Pérez Pariente es investigador del Instituto de Catálisis y Petroleoquímica del CSIC y es autor del libro Biocombustibles. Sus implicaciones energéticas, ambientales y sociales, editado por Fondo de Cultura Económica. La obra se presentará el día 19 en la librería Juan Rulfo (Madrid) a las 19:00 horas.

Biopolímeros: los plásticos del futuro

imagen Amparo Lopez RubioPor Amparo López Rubio (CSIC)*

Los polímeros son compuestos químicos que se forman por la unión repetida de moléculas, esas partículas formadas por átomos de las que se compone la naturaleza. De un modo muy gráfico, podríamos imaginar un polímero como un plato de espaguetis. Cada espagueti sería una cadena individual del polímero formada por repeticiones de la unidad estructural mínima que se repite en los mismos, y que se llama monómero. Hay muchos tipos de polímeros, unos naturales como la seda o el caucho, y otros sintéticos, como el nailon. Ahora fijémonos en un tipo concreto: los plásticos, que son polímeros sintéticos con aditivos, o utilizando el símil anterior, los espaguetis con su salsa. Y del mismo modo que existen muchos tipos de salsas y muchos tipos de pastas, también contamos con una gran variedad de monómeros y aditivos que dotan a estos materiales de una extraordinaria versatilidad, lo que permite adaptarlos a diferentes aplicaciones, modulando sus propiedades en función del producto que queramos desarrollar. Esta gran versatilidad, unida a la posibilidad de modificarlos, o incluso combinarlos con otros materiales, ha convertido a los polímeros, y por extensión a los plásticos, en los materiales más utilizados en la actualidad en sectores tan dispares como la alimentación, la industria textil o la aeronáutica.

Sin embargo, los plásticos cuentan con dos grandes inconvenientes. El primer problema es que provienen del petróleo, un recurso no renovable, limitado y cuyas reservas se encuentran en manos de unos pocos que controlan la economía mundial. Las subidas en los precios del petróleo tienen como consecuencia plásticos más caros y, por tanto, un mayor coste para nuestros bolsillos.

El segundo gran problema está en los residuos que generan, ya que una pequeña parte de los plásticos se recicla, pero la mayoría se lleva a vertederos donde pueden tardar 400 años en descomponerse. Además, muchos de esos plásticos van a parar a los océanos, donde existen grandes acumulaciones en toda la superficie oceánica, como se demostró en la Expedición Malaspina. Esto tiene graves consecuencias, ya que estos residuos tóxicos acaban pasando a la cadena alimenticia al ser ingeridos por los peces.

Mapa-Malaspina-plasticos

Mapa de la concentración de residuos plásticos elaborado a partir de la Expedición Malaspina, que demostró que existen cinco grandes acumulaciones de residuos plásticos en el océano abierto coincidentes con los cinco grandes giros de circulación de agua superficial oceánica.

Para contrarrestar estos inconvenientes, en los últimos años se ha puesto un especial énfasis en el desarrollo de lo que se conoce como biopolímeros o bioplásticos, que son polímeros derivados de recursos naturales renovables o bien polímeros biodegradables, para sustituir, al menos de forma parcial o en determinadas aplicaciones, a los tradicionales plásticos sintéticos.

Los biopolímeros suelen agruparse en tres grandes grupos según su fuente de obtención:

  • Biopolímeros directamente extraídos de biomasa, como el almidón de las patatas, el maíz o el trigo; la celulosa; alginatos o carragenatos procedentes de algas; o el quitosano que se extrae de la cáscara de crustáceos. También se han conseguido biopolímeros a partir de proteínas de fuente animal como la gelatina y de origen vegetal (proteína de soja o gluten). Algunos de estos biopolímeros pueden procesarse utilizando tecnologías convencionales de procesado plástico. Un ejemplo es el almidón para bolsas de plástico biodegradable.
  • Los microorganismos también pueden ser de utilidad en esta búsqueda de alternativas. La celulosa bacteriana, un polímero obtenido por fermentación con microorganismos, o los polihidroxialcanoatos (PHAs), biopolímeros que algunos microorganismos acumulan como reserva de carbono y energía cuando hay limitaciones nutricionales en el medio donde viven, tienen aplicaciones como envases de larga y corta duración, implantes utilizados en medicina y productos de higiene.
  • Biopolímeros obtenidos a partir de monómeros derivados de biomasa. Es el caso del ácido poliláctico (PLA), obtenido generalmente a partir de almidón de maíz, y otros biopoliésteres. Se utilizan para diversas aplicaciones de envasado y en agricultura para fabricar mulch films o mantillos con los que cubrir los cultivos y preservarlos de los efectos del clima.

En general los biopolímeros tienen propiedades térmicas, mecánicas y de barrera a gases, aromas o vapor de agua inferiores a los polímeros sintéticos, lo cual limita o impide su uso para determinadas aplicaciones. Pero estos impedimentos pueden ser salvados y, de hecho, se está trabajando con nanotecnologías para desarrollar materiales que superen estas deficiencias.

Amparo López Rubio es investigadora del Instituto de Agroquímica y Tecnología de Alimentos (CSIC).