Entradas etiquetadas como ‘sinapsis’

Computación neuromórfica: el salto de la inteligencia artificial a la inteligencia natural de las máquinas

Por Óscar Herreras (CSIC)*

Todos hemos oído hablar de la inteligencia artificial (IA) y de cómo poco a poco se expande a todos los sectores sociales, desde el control de calidad en cadenas de montaje o la regulación del tráfico en una gran ciudad, hasta el diagnóstico de patologías médicas o la producción de obras artístico-culturales, por muy estrafalarias que nos puedan parecer. No se nos escapa que el término “artificial” implica que las capacidades de una IA están construidas a partir de elementos manufacturados por el ser humano. Pero, ¿y el término “inteligencia”? Sin entrar en el inacabable (y divertido) debate de qué es o qué entendemos por inteligencia, es curiosa la sucesión de manifestaciones desde muchos ámbitos que niegan a las máquinas y dispositivos con IA, incluso futuras, una identidad equivalente a la de una persona. Conste que, como animal limitado que soy, comparto algunos de los temores y reservas detrás de esta actitud negacionista.

No obstante, ¿y si pudiéramos diseñar y construir dispositivos que ‘funcionen’ con una inteligencia inequívocamente natural? ¿Nos atreveríamos a decir entonces que estos dispositivos solo emulan las capacidades del intelecto humano? ¿Es posible replicar en un dispositivo artificial la intricada estructura de los circuitos cerebrales que hacen posible las capacidades cognitivas de los animales? Repasemos las claves que la neurociencia ha encontrado en las últimas décadas para explicar esto.

En primer lugar, al contrario que en un cerebro electrónico estándar, en el que la información se almacena en unidades independientes del procesador (discos, ‘la nube’, etc), los animales guardamos la información relevante obtenida en nuestra experiencia diaria alterando los circuitos cerebrales. A este proceso lo denominamos plasticidad neuronal, como detallábamos en esta otra entrada del blog. Así, las conexiones entre los miles de millones de neuronas que forman los circuitos corticales no son permanentes, pues se modifican cuando ocurren determinados patrones de actividad eléctrica generados por la experiencia sensorial o cognitiva. No tenemos unidades separadas de almacén y procesamiento, los circuitos en sí mismos son ambas cosas a la vez. Circuito diferente, persona diferente.

Esta es la teoría. Pero, ¿cómo la llevamos a la práctica en una máquina? Aquí viene otra clave fundamental. En los animales, la modificación de circuitos consiste en establecer nuevos contactos (nuevas sinapsis) o cambiar la fuerza de los ya existentes. Esto nos permite incorporar nuevos datos a, por ejemplo, asociaciones de objetos o conceptos (ideas) que ya tuviéramos, o establecer otras nuevas. La neurociencia ha confirmado estas propiedades repetidamente y ya se pueden replicar en el laboratorio. Muchos ya pensamos que estas claves son suficientes para explicar todas las capacidades cognitivas del cerebro de los mamíferos: la memoria, la imaginación, la lógica, la planificación, etc. Ahora bien, ¿están presentes estas características en los dispositivos actuales de IA?

A lo largo de la historia de la cibernética, los ingenieros sagazmente han puesto un ojo en los descubrimientos neurocientíficos, hasta el punto de que sus principales hitos han surgido tras replicar algún nuevo hallazgo sobre la estructura o el funcionamiento del sistema nervioso: no es mala idea tratar de emular la “máquina” pensante más compleja y potente. Lo cierto es que, al menos en el plano conceptual, existe un fuerte paralelismo entre la manera en la que un cerebro y un dispositivo IA aprenden: ambos cambian algunos de sus elementos para almacenar información o resolver un problema. La diferencia, como esbozaba antes, estriba en que en una IA los circuitos electrónicos impresos que unen sus partes no varían, la información no está en sus conexiones, se guardan en una lista (software) de una unidad separada. Vemos que la solución biológica es mucho más eficiente, la propia estructura cambiante de los circuitos nerviosos contiene tanto nuestra historia vital como nuestras capacidades.

Para emular esta extraordinaria solución biológica, en el programa Europeo de Investigación Human Brain Project (HBP), en el que participan decenas de grupos experimentales y teóricos de diferentes países, existen varios subproyectos que desarrollan lo que se denomina computación neuromórfica. En pocas palabras, están desarrollando ordenadores con una arquitectura de circuitos mutable. Los datos nuevos o las capacidades nuevas no se guardan en forma de unos y ceros en una unidad separada, sino en el propio mapa de conexiones. Estos ordenadores cambian la conectividad de sus circuitos a medida que aprenden a ejecutar eficientemente una tarea, y lo curioso es que el número de cambios puede ser tal que averiguar cuál es su mapa de conexiones después del aprendizaje plantea ya los mismos problemas a un investigador que un cerebro real. Esos cambios en el aprendizaje son tantos y tan complejos que mantener un listado de las nuevas conexiones sería ineficiente a medida que aumente el tamaño y las tareas de estos computadores neuromórficos.

Materiales con memoria

La capacidad de aprender que nos proporciona la plasticidad de las sinapsis no ha sido fácil de emular en los contactos eléctricos de un circuito impreso. Hemos tenido que esperar a la aparición en la década pasada de materiales con propiedades eléctricas extraordinarias para dar solución al último gran problema. Estos materiales, como el dióxido de titanio, pueden variar su resistencia eléctrica dependiendo de la corriente que ha pasado por ellos anteriormente. Se les denomina memristores (resistencias con memoria), y regulan la cantidad de corriente que dejan pasar dependiendo de su historia previa, esto es, de la corriente que ya circuló por ellos en el pasado, replicando fielmente el papel y funcionamiento de las sinapsis cambiantes entre neuronas. Ya no es necesario mantener los cambios (la experiencia) en una unidad separada. Recuerden, no se pierde la unidad de almacén de información, el circuito es la información.

La prueba de concepto ya ha sido publicada recientemente en la revista Scientific Reports En este artículo, el equipo investigador ha sido capaz de realizar conexiones entre una neurona electrónica y una neurona real utilizando dos de estas sinapsis de dióxido de titanio capaces de aprender. Ya no es necesario guardar los cambios en ninguna parte, todo es estructura cambiante, como en un cerebro real. En ordenadores neuromórficos con sinapsis variables todo es artificial menos, quizá, su funcionamiento. ¿Podemos decir que este tipo de ordenadores ha dado el salto de una IA a una inteligencia natural (IN)? Las diferencias entre la tecnología y la biología ciertamente se estrechan. A estas alturas, yo no sabría decir si el cerebro ‘piensa’ como una máquina o la máquina lo hace como un cerebro

* Óscar Herreras es investigador del Instituto Cajal del CSIC.

 

¿Por qué nos cuesta tanto cambiar? Inercia y plasticidad de los circuitos neuronales

Óscar Herreras (CSIC)*

Por qué soy del Atleti, por qué la tortilla de mi madre es la mejor del mundo o por qué me rodeo de cierto tipo de personas son pequeños fragmentos de esa gran pregunta: ¿por qué somos como somos? Gracias al estudio experimental del desarrollo de los circuitos neuronales y de su actividad eléctrica durante el último siglo, el psicoanálisis, la programación neurolingüística y la astrología ya nada tienen que decir para explicar nuestra personalidad. Hoy ya empezamos a responder con el lenguaje común de la física a preguntas triviales como las anteriores. Así pues, ¿cambiamos de personalidad? Y si lo hacemos, ¿cuánto podemos cambiar? En unos pocos párrafos resumiré lo que la ciencia puede decir hoy día sobre el cómo, y usted podrá avanzar el resto utilizando un poco de observación y lógica. Verá que no necesita visitar a ningún gurú o que le echen las cartas.

A muchos, la complejidad y variedad extrema de las personalidades individuales les parecerá un problema imposible de resolver teniendo como único recurso un puñado de células, más o menos peludas, más o menos eléctricas: las neuronas. Al fin y al cabo, solo son células, como las del hígado o las de la sangre, y las células no parece que sean capaces de resolver los misterios del universo. Sin embargo, las neuronas y los circuitos que forman tienen una peculiaridad: almacenan información acerca de cada parte de nuestro cuerpo y de las interacciones con el medio que nos rodea; es decir, acerca de nuestras experiencias.

Muestra Cajal

Muestra original de Ramón y Cajal en la que se observan detalles de las conexiones dentro de la corteza auditiva de un gato (tinción con método Golgi). /Legado Cajal. Juan De Carlos

Se preguntarán cómo es posible que un grupo de células almacene nuestra vida. Podemos intentar dar algunas claves: al contrario que otros tipos de células que tienen una estructura y función muy estables y se recambian por otras nuevas de vez en cuando, las neuronas perduran toda la vida y, además, cambian continuamente. El cambio más relevante consiste en que forman contactos nuevos con otras neuronas, que se denominan sinapsis.

Alguien podría replicar: “Bien, y qué, las neuronas pueden comunicarse con otras neuronas diferentes a lo largo de mi vida, ¿pero dónde se guarda la información de mis experiencias, la que me hace ser diferente a otra persona?”. Aquí viene la solución al gran misterio, y por motivos de espacio, he de ir directamente a la parte final: en los circuitos. Nuestras experiencias se graban en forma de circuitos, circuitos nuevos con cada nuevo contacto entre neuronas viejas, de forma que el mapa de las conexiones de mi cerebro es una imagen de mi historia vital y cambia con las nuevas experiencias. Esto se conoce en el mundo ingenieril como la topología de la red, y actualmente en términos más neurológicos lo conocemos como el conectoma.  Por tanto, no piense en los circuitos como simples cables que conducen información. Esta fue una interpretación simple pero errónea hasta no hace muchos años, incluso entre científicos avezados. Los circuitos son la información. Habrán oído que hacemos representaciones del mundo exterior en nuestro cerebro. Las mal llamadas imágenes mentales no son sino cambios en los circuitos formados por las neuronas. Circuito diferente, información diferente.

Aún no tenemos datos cuantitativos precisos, pero el número de sinapsis que se forma o desaparece cada día podría ser de millones (se estima que tenemos alrededor de 2.000 billones de sinapsis). ¿Se imagina cuántos circuitos diferentes se pueden hacer con esa cantidad de contactos neuronales? Personas con una educación y ambiente social similar han recibido datos similares en la escuela y viven experiencias diarias parecidas, por lo que sus circuitos corticales, moldeados con datos similares, reaccionan de forma parecida ante las mismas situaciones. Pero el equilibrio es delicado, y una experiencia fuerte puede producir grandes cambios en sus circuitos que le harán reaccionar de manera distinta en adelante.

Pongamos algún ejemplo. Si en un circuito eléctrico sustituimos una bombilla por un timbre, al activarlo obtendremos sonido en lugar de luz. Pero, ¿qué haría usted si le cambian los brazos por alas? Volar. No lo piense mucho. Eso sí, necesitará practicar bastante antes de dominar esa nueva extremidad, el aprendizaje es posible gracias a que sus circuitos pueden cambiar. Y no se pregunte si sería usted un pájaro, la respuesta es irrelevante. La sustitución o el intercambio de órganos están a la vuelta de la esquina. Sus circuitos están vivos, y cambian con las experiencias. Usted no es un producto acabado.

Células nerviosas

Células nerviosas en el periodo de formación de circuitos corticales. Método StarTrack./ Laura López-Mascaraque (Instituto Cajal-CSIC)

 

Volviendo al principio, ¿por qué nos cuesta tanto cambiar? Bien, no todos los circuitos neuronales tienen la misma capacidad de cambiar, porque se construyen sobre un diseño básico inicial específico de cada especie y definido por la información genética. Al nacer, buena parte de los circuitos neuronales  ya tienen una estructura estable y función plena; son los que controlan las funciones vitales, como comer, dormir o respirar. No obstante, en ese momento otras partes del cerebro apenas han empezado a formarse, como el córtex motor que controla el movimiento voluntario de nuestro cuerpo. E incluso otros circuitos se forman muchos años después, durante la adolescencia.

Entrenamiento y maduración de nuestros circuitos cerebrales

¿Recuerda cuánto tiempo necesitó su sistema nervioso para aprender a andar? Hay cosas que se aprenden en un día y otras que  requieren un arduo y constante entrenamiento durante muchos años, todo depende de cuán básicos sean los circuitos que usted quiera cambiar. Por tanto, no empezamos a usar la razón por inspiraciones divinas, ni se requieren rituales mágicos de iniciación para ser adultos. Esto ocurre simplemente porque diferentes circuitos cerebrales maduran en diferentes etapas de nuestra vida, y eso permite realizar funciones que antes no eran posibles.

Gracias a las modernas tecnologías de imagen cerebral, hoy ya conocemos el desarrollo de estos circuitos tardíos en el humano: cuáles son, cuándo se establecen y qué regiones cerebrales conectan. Y lo más interesante, también hemos podido observar cómo la actividad cotidiana hace que los circuitos de un taxista o de una violinista sean diferentes y cambien progresivamente. El entrenamiento los cambia. En el cerebro del taxista, el hipocampo, que gestiona la orientación espacial, es más grande, como lo es la zona cortical que regula los movimientos de la mano en el de la violinista.

Así pues, ¿podemos cambiar nuestros circuitos? ¡Y tanto! Es más, no lo podemos evitar, pues están cambiando continuamente por el mero hecho de vivir. Grabar en nuestro cerebro una escena cotidiana es realizar nuevas conexiones entre un grupo de neuronas, y recordar esa escena es activar eléctricamente los circuitos que contienen esas neuronas. ¿Cuánto nos hace cambiar la experiencia diaria nuestra personalidad? Tanto como cambien nuestros circuitos, pero piense que lo más importante es que usted puede dirigir esos cambios, tan solo decidiendo qué quiere vivir hoy.

* Óscar Herreras es investigador del Instituto Cajal del CSIC.

 

 

Cerebros de plastilina: ¿es posible conseguir una “supermemoria”?

Por Sandra Jurado Sánchez (CSIC)*

Ilustración de Silvia Jurado Sánchez

       Ilustración de Silvia Jurado Sánchez

En estas fechas de junio ya casi se pueden tocar las tan ansiadas vacaciones… Durante este mes, miles de estudiantes se han tenido que enfrentar a los exámenes de fin de curso, a la temida EBAU (antes Selectividad o PAU) o incluso a los exámenes de recuperación. En estas semanas el alumnado pone a prueba su templanza, pero sobre todo su memoria y conocimiento. Algunos demuestran una excelente capacidad de retención de manera innata (o, más probablemente, producto del trabajo continuado durante el curso), mientras que otros creen “conveniente” mejorar sus posibilidades con la ayuda de suplementos alimenticios. También hay quienes, dudando de su propia capacidad, se dedican al diseño de complejas formas de outsourcing intelectual o “chuletas” de última generación.

En estos momentos de incertidumbre, qué no daríamos por conocer los secretos de la memoria: ¿cómo aprendemos?, ¿cómo se forman nuestras memorias y recuerdos? Y sobre todo, ¿cómo podemos potenciar estas capacidades y generar una “supermemoria”? El cerebro guarda la clave de estos misterios, y la neurociencia, la ciencia encargada de estudiar el funcionamiento cerebral, trabaja sin descanso para entenderlos.

El desarrollo temprano durante la infancia es un momento crítico para el aprendizaje, pero las personas adultas seguimos aprendiendo y formando recuerdos sin que se produzcan cambios significativos en nuestro volumen cerebral. Una posible estrategia del cerebro adulto para codificar nueva información implicaría remodelar las conexiones neuronales ya existentes en función de su frecuencia de uso. Por ejemplo, consideremos el aprendizaje de un instrumento musical principalmente adquirido a través de constante repetición. Aquellos contactos neuronales o sinapsis que comienzan a emplearse con mayor frecuencia podrían verse potenciados, mientras que si abandonamos el entrenamiento, estos contactos o conexiones podrían comenzar a debilitarse, llegando incluso a desaparecer. Los puntos de contacto entre neuronas, o sinapsis, son regiones extremadamente flexibles que tienen la capacidad de responder a distintas necesidades según los estímulos que reciben, potenciándose o debilitándose en función de la frecuencia de uso durante un proceso conocido  como plasticidad sináptica.

El concepto del cerebro como una estructura plástica se introduce por primera vez en el siglo XIX por el psicólogo estadounidense William James, y posteriormente es asimilado por los padres de la neurociencia moderna, con su máximo exponente en la figura de Santiago Ramón y Cajal. Meticulosas observaciones de las redes neuronales en cerebros embrionarios convencieron a Cajal de que el tejido neuronal era lo suficientemente flexible como para permitir la formación y desaparición de conexiones dependiendo del momento del desarrollo, y que posiblemente esta flexibilidad se encontrara en la base de la formación de memorias y recuerdos en el cerebro adulto.

Dibujo de corteza cerebelosa realizado por Santiago Ramón y Cajal en 1904. / Ministerio de Ciencia, Innovación y Universidades

Dibujo de corteza cerebelosa realizado por Santiago Ramón y Cajal en 1904. / Ministerio de Ciencia, Innovación y Universidades

Aunque plausible e interesante, la plasticidad cerebral acabó siendo un concepto puramente teórico. Habría que esperar hasta principios de los años setenta para que los investigadores Timothy Bliss y Terje Lømo, de la Universidad de Oslo, detectaran por primera vez un fenómeno de plasticidad sináptica. Así, lograron demostrar que en respuesta a un aumento de la frecuencia de estimulación, la fuerza de las sinapsis en el hipocampo, una región cerebral importante para la memoria y afectada severamente en la enfermedad de Alzheimer, aumentaba muy rápidamente: ¡en cuestión de segundos podía aumentar hasta un 200%! Lo más importante era que estas conexiones permanecían potenciadas durante horas. Este aumento en la frecuencia de estimulación en el laboratorio mediante técnicas de electrofisiología in vivo pretendía mimetizar el aumento de la actividad de determinadas conexiones durante el proceso de aprendizaje. El resultado fue que estas conexiones eran capaces de adaptarse muy rápidamente y facilitarse tal y como se venía especulando desde el siglo XIX.

Este hallazgo revolucionó la neurociencia, ya que proporcionaba evidencias experimentales para el concepto de plasticidad cerebral, que hasta entonces era una mera hipótesis. En los años sucesivos, numerosos laboratorios profundizaron en el estudio de la plasticidad sináptica y, gracias al avance de las técnicas de biología molecular, electrofisiología y microscopía, se pudieron identificar diferentes moléculas claves para este fenómeno neuronal.

La identificación de estas moléculas abre la puerta al diseño de nuevas estrategias y fármacos destinados a potenciar los procesos cognitivos, principalmente en individuos afectados por patologías que afectan a la memoria, como las enfermedades neurodegenerativas. Aunque la tan ansiada “píldora de la memoria” aún está fuera de nuestro alcance, es intrigante pensar qué efectos podrían provocar estos fármacos en individuos sanos. Intuitivamente podríamos imaginar la aparición de una “supermemoria”. Sin embargo, es probable que llegar a obtenerla no sea tan sencillo. Consideremos que el efecto de estos fármacos, aún en vías de desarrollo, podría ser diferente en un cerebro sano y en un cerebro afectado por neurodegeneración, en donde el entorno neuronal se ve profundamente alterado con la aparición de agregados moleculares inexistentes en situaciones normales. En este escenario, es esperable que el uso de fármacos que modulan moléculas cuyo efecto es predominante en el cerebro enfermo no tendría por qué afectar positivamente a las capacidades de memoria de un cerebro saludable que carece de estas dianas.

Todas estas cuestiones han de ser analizadas meticulosamente, incluyendo la reflexión acerca de si es necesario desarrollar una “píldora para la memoria” en un mundo en donde gran parte de nuestros recuerdos se almacenan de manera digital. Tal vez mucha memoria no suponga ya una ventaja pues, como dijo Nietzsche, “la buena memoria es a veces un obstáculo al buen pensamiento”.

* Sandra Jurado Sánchez es investigadora en el Instituto de Neurociencias de Alicante, del CSIC y la Universidad Miguel Hernández. Más sobre su trabajo en: https://www.juradolab.com/