Entradas etiquetadas como ‘plasticidad sináptica’

Astrocitos: estrellas que hablan en nuestro cerebro

Por Irene Serra Hueto (CSIC)*

Seguro que has oído alguna vez que nuestro cerebro es el ordenador más potente del mundo. Ahora bien, ¿en qué piensas cuando te preguntan de qué está formado? Lo más probable es que lo primero que te venga a la cabeza sean las neuronas. No está mal, pero para que esta máquina tan singular funcione con todo su potencial necesita del trabajo de otras células igual de importantes. Entre ellas se encuentran los astrocitos, que reciben su nombre de las estrellas.

Empecemos por el principio. El cerebro funciona gracias a que las neuronas transmiten información a través de corrientes eléctricas. Los puntos de conexión entre una neurona y otra se conocen como sinapsis. En ellas se liberan sustancias llamadas neurotransmisores que permiten que el impulso eléctrico continúe de una neurona a otra. En este punto de conexión, en este diálogo entre las neuronas, el astrocito juega un papel fundamental, modulando y regulando la comunicación entre ellas.

Nuestro cerebro habla bajo sus propias reglas. Esquema de una sinapsis cerebral donde se intercambia la información entre las células, como en una conversación de WhatsApp. / Irene Serra. Células creadas con Biorender.com.

¿Qué ventajas puede tener una conversación a tres? Este sistema, más complejo que una conversación a dos, permite más variedad de mensajes y añade un elemento mediador que asegura que la información se transmite correctamente, el astrocito. La cuestión es que no tenemos un solo astrocito por cada sinapsis. En ratones, una sola de estas células es capaz de modular, mediar y participar en más de 100.000 sinapsis simultáneamente. Es como si un único astrocito estuviese presente y hablando en 100.000 grupos de WhatsApp al mismo tiempo. En humanos, un solo astrocito interviene en 2 millones de sinapsis. Es decir, que nuestros astrocitos tienen 20 veces más capacidad de procesar información… Y, además, tenemos millones de ellos. ¿Y si la explicación (o, al menos, parte de ella) a nuestra inteligencia residiera en el gran refinamiento que los astrocitos aportan a nuestro cerebro?

Para poder contestar esta pregunta necesitamos saber más. Precisamente, mi investigación en el Instituto Cajal (IC) del CSIC se centra en estudiar los circuitos astrocito-neurona; en concreto, los que se establecen en el núcleo Accumbens, la zona del cerebro que se activa cuando algo nos gusta. Esta zona recibe información de otras regiones del cerebro relacionadas con la memoria (hipocampo), las emociones (amígdala) y la toma de decisiones (corteza prefrontal), y es muy importante porque se ve afectada, entre otros casos, en trastornos de adicción.

Ejemplo de cómo es la información que pasa por el núcleo Accumbens vista desde una conversación de WhatsApp./ Irene Serra

Sabemos que los astrocitos son parte fundamental de la regulación de este núcleo y, desde hace poco, también que el cerebro tiene distintos tipos de astrocitos, del mismo modo que tiene distintos tipos de neuronas. Sin embargo, todavía no hemos comprendido en profundidad para qué son los astrocitos diferentes entre ellos ni cómo son de diferentes. En el núcleo Accumbens, ¿tenemos astrocitos especializados regulando la información de recuerdos de aquello que nos gusta? ¿Hay otros asociados a las emociones? ¿Intervienen en los circuitos de toma de decisión?

Un sensor de calcio para superar las limitaciones de los microscopios

En el último trabajo publicado por el Laboratorio de Plasticidad Sináptica e Interacciones astrocito-neurona del IC-CSIC, dirigido por Marta Navarrete, profundizamos en estas preguntas y presentamos una nueva herramienta que nos ha permitido estudiar, por primera vez, la actividad de los astrocitos a gran escala y con precisión temporal. Se trata de CaMPARIGFAP, un sensor de calcio con el que hemos podido observar el núcleo Accumbens al completo y detectar qué astrocitos responden a un estímulo concreto.

El tamaño de las lentes de los microscopios es limitado y hace que no sea posible observar al mismo tiempo todos los astrocitos de una región cerebral. La particularidad de CaMPARIGFAP es que detecta, mediante la fluorescencia, el calcio que emiten los astrocitos cuando se activan. Es como hacer una foto: al enviar un ‘flash’ de luz violeta, los astrocitos inactivos se muestran en verde y los activos en rojo. De este modo, podemos analizar cómo responden regiones amplias del cerebro a un estímulo determinado.

Tejido del núcleo Accumbens en el que cambia el color de CaMPARIGFAP según la actividad de los astrocitos. / Irene Serra

Utilizando esta herramienta hemos descubierto que los astrocitos del núcleo Accumbens forman redes funcionales que responden de diferente forma según la procedencia de los estímulos -memoria, emociones o decisiones­-. Los resultados indican que los astrocitos son capaces de distinguir de dónde viene la información y, también, que integran las diferentes señales en un procesamiento paralelo al de las neuronas. Todo apunta a que los astrocitos están mucho más especializados en los circuitos cerebrales de lo que pensábamos.

Comprender en detalle cómo interaccionan con las neuronas y cómo regulan la información que llega de las diferentes zonas del cerebro nos acercaría mucho a encontrar soluciones eficaces para tratar la adicción. Y eso solo en el núcleo de Accumbens: llegar a entender cómo interaccionan los astrocitos en otras regiones cerebrales nos permitiría comprender mucho mejor el potencial de nuestro cerebro, que a día de hoy esconde tantos misterios como el universo.

*Irene Serra Hueto es investigadora predoctoral en el Laboratorio de plasticidad sináptica e interacciones astrocito-neurona del Instituto Cajal del CSIC, dirigido por Marta Navarrete.

Cerebros de plastilina: ¿es posible conseguir una “supermemoria”?

Por Sandra Jurado Sánchez (CSIC)*

Ilustración de Silvia Jurado Sánchez

       Ilustración de Silvia Jurado Sánchez

En estas fechas de junio ya casi se pueden tocar las tan ansiadas vacaciones… Durante este mes, miles de estudiantes se han tenido que enfrentar a los exámenes de fin de curso, a la temida EBAU (antes Selectividad o PAU) o incluso a los exámenes de recuperación. En estas semanas el alumnado pone a prueba su templanza, pero sobre todo su memoria y conocimiento. Algunos demuestran una excelente capacidad de retención de manera innata (o, más probablemente, producto del trabajo continuado durante el curso), mientras que otros creen “conveniente” mejorar sus posibilidades con la ayuda de suplementos alimenticios. También hay quienes, dudando de su propia capacidad, se dedican al diseño de complejas formas de outsourcing intelectual o “chuletas” de última generación.

En estos momentos de incertidumbre, qué no daríamos por conocer los secretos de la memoria: ¿cómo aprendemos?, ¿cómo se forman nuestras memorias y recuerdos? Y sobre todo, ¿cómo podemos potenciar estas capacidades y generar una “supermemoria”? El cerebro guarda la clave de estos misterios, y la neurociencia, la ciencia encargada de estudiar el funcionamiento cerebral, trabaja sin descanso para entenderlos.

El desarrollo temprano durante la infancia es un momento crítico para el aprendizaje, pero las personas adultas seguimos aprendiendo y formando recuerdos sin que se produzcan cambios significativos en nuestro volumen cerebral. Una posible estrategia del cerebro adulto para codificar nueva información implicaría remodelar las conexiones neuronales ya existentes en función de su frecuencia de uso. Por ejemplo, consideremos el aprendizaje de un instrumento musical principalmente adquirido a través de constante repetición. Aquellos contactos neuronales o sinapsis que comienzan a emplearse con mayor frecuencia podrían verse potenciados, mientras que si abandonamos el entrenamiento, estos contactos o conexiones podrían comenzar a debilitarse, llegando incluso a desaparecer. Los puntos de contacto entre neuronas, o sinapsis, son regiones extremadamente flexibles que tienen la capacidad de responder a distintas necesidades según los estímulos que reciben, potenciándose o debilitándose en función de la frecuencia de uso durante un proceso conocido  como plasticidad sináptica.

El concepto del cerebro como una estructura plástica se introduce por primera vez en el siglo XIX por el psicólogo estadounidense William James, y posteriormente es asimilado por los padres de la neurociencia moderna, con su máximo exponente en la figura de Santiago Ramón y Cajal. Meticulosas observaciones de las redes neuronales en cerebros embrionarios convencieron a Cajal de que el tejido neuronal era lo suficientemente flexible como para permitir la formación y desaparición de conexiones dependiendo del momento del desarrollo, y que posiblemente esta flexibilidad se encontrara en la base de la formación de memorias y recuerdos en el cerebro adulto.

Dibujo de corteza cerebelosa realizado por Santiago Ramón y Cajal en 1904. / Ministerio de Ciencia, Innovación y Universidades

Dibujo de corteza cerebelosa realizado por Santiago Ramón y Cajal en 1904. / Ministerio de Ciencia, Innovación y Universidades

Aunque plausible e interesante, la plasticidad cerebral acabó siendo un concepto puramente teórico. Habría que esperar hasta principios de los años setenta para que los investigadores Timothy Bliss y Terje Lømo, de la Universidad de Oslo, detectaran por primera vez un fenómeno de plasticidad sináptica. Así, lograron demostrar que en respuesta a un aumento de la frecuencia de estimulación, la fuerza de las sinapsis en el hipocampo, una región cerebral importante para la memoria y afectada severamente en la enfermedad de Alzheimer, aumentaba muy rápidamente: ¡en cuestión de segundos podía aumentar hasta un 200%! Lo más importante era que estas conexiones permanecían potenciadas durante horas. Este aumento en la frecuencia de estimulación en el laboratorio mediante técnicas de electrofisiología in vivo pretendía mimetizar el aumento de la actividad de determinadas conexiones durante el proceso de aprendizaje. El resultado fue que estas conexiones eran capaces de adaptarse muy rápidamente y facilitarse tal y como se venía especulando desde el siglo XIX.

Este hallazgo revolucionó la neurociencia, ya que proporcionaba evidencias experimentales para el concepto de plasticidad cerebral, que hasta entonces era una mera hipótesis. En los años sucesivos, numerosos laboratorios profundizaron en el estudio de la plasticidad sináptica y, gracias al avance de las técnicas de biología molecular, electrofisiología y microscopía, se pudieron identificar diferentes moléculas claves para este fenómeno neuronal.

La identificación de estas moléculas abre la puerta al diseño de nuevas estrategias y fármacos destinados a potenciar los procesos cognitivos, principalmente en individuos afectados por patologías que afectan a la memoria, como las enfermedades neurodegenerativas. Aunque la tan ansiada “píldora de la memoria” aún está fuera de nuestro alcance, es intrigante pensar qué efectos podrían provocar estos fármacos en individuos sanos. Intuitivamente podríamos imaginar la aparición de una “supermemoria”. Sin embargo, es probable que llegar a obtenerla no sea tan sencillo. Consideremos que el efecto de estos fármacos, aún en vías de desarrollo, podría ser diferente en un cerebro sano y en un cerebro afectado por neurodegeneración, en donde el entorno neuronal se ve profundamente alterado con la aparición de agregados moleculares inexistentes en situaciones normales. En este escenario, es esperable que el uso de fármacos que modulan moléculas cuyo efecto es predominante en el cerebro enfermo no tendría por qué afectar positivamente a las capacidades de memoria de un cerebro saludable que carece de estas dianas.

Todas estas cuestiones han de ser analizadas meticulosamente, incluyendo la reflexión acerca de si es necesario desarrollar una “píldora para la memoria” en un mundo en donde gran parte de nuestros recuerdos se almacenan de manera digital. Tal vez mucha memoria no suponga ya una ventaja pues, como dijo Nietzsche, “la buena memoria es a veces un obstáculo al buen pensamiento”.

* Sandra Jurado Sánchez es investigadora en el Instituto de Neurociencias de Alicante, del CSIC y la Universidad Miguel Hernández. Más sobre su trabajo en: https://www.juradolab.com/