Entradas etiquetadas como ‘mar’

La accidentada vuelta al Mediterráneo de una gota de agua

Por Manuel Vargas Yáñez (CSIC)*

En comparación con los grandes océanos, el tamaño del Mar Mediterráneo puede resultar pequeño. Sin embargo, es grande por su historia y su cultura… Y también por la complejidad de los fenómenos oceanográficos que en él se producen. Tanto es así, que ha llegado a ser considerado como un océano en miniatura por la comunidad oceanógrafa. Para conocer su funcionamiento, seguiremos las peripecias de una protagonista muy humilde: una gota de agua de apenas un mililitro. Realizaremos un largo viaje de ida y vuelta entre el Océano Atlántico y el Mar Mediterráneo. Y, como en toda gran expedición, nos serviremos de un mapa para seguir sus aventuras.

Mapa del recorrido de ida y vuelta entre el Océano Atlántico y el Mar Mediterráneo de la gota de agua. / Irene Cuesta (CSIC).

Comienza la aventura: Golfo de Cádiz

Nos encontramos en un lluvioso día de enero. Una gota cae sobre el mar a unos cincuenta kilómetros de la costa de Cádiz (punto 1). Debido al oleaje, se mezcla con el agua que la rodea. Cuando vuelve a lucir el sol, se sitúa cerca de la superficie, a diez metros de profundidad. Está completamente transformada, ahora es agua de mar, y se mueve hacia el sudeste, siguiendo el movimiento de las líneas de color azul claro del mapa.

El paso del Estrecho

De repente, se ve arrastrada por una violenta corriente que la succiona hacia el Estrecho de Gibraltar (punto 2). El mar se estrecha hasta que África y Europa casi pueden tocarse; y la profundidad disminuye considerablemente. La gota sube y baja, a veces hasta los 200 metros de profundidad. Allí se acerca a gotas más profundas que hacen el camino inverso y salen del Mediterráneo cargadas de nutrientes (compuestos de nitrógeno, fósforo y silicio). Sin embargo, todavía no sabe por qué esas aguas profundas están tan ricamente abonadas. Este será uno de los aprendizajes de su viaje.

Después de este ajetreo, la gota se encuentra por fin en el Mediterráneo; concretamente, en el Mar de Alborán, al sudoeste de Málaga. Ahora, viaja sobre una fuerte corriente de un metro por segundo y es una gota de agua salada rica en vida. En su interior crecen unos organismos verdes unicelulares: el fitoplancton. Estos organismos realizan la fotosíntesis gracias a la luz del sol, un proceso en el que absorben CO2 y producen oxígeno. Son la base de la cadena alimenticia del mar. Los más grandes, el micro-fitoplancton, tienen entre 20 y 200 micras; es decir, son mil veces más pequeños que un mililitro. La gota contiene más de cien de estas células y más de mil aún más pequeñas: el nano y pico plancton. También tiene cianobacterias, parientes muy próximas de las primeras bacterias que empezaron a hacer la fotosíntesis en nuestro planeta hace miles de millones de años. Si aumentásemos el tamaño de la gota, veríamos el micro-fitoplancton y también el zooplancton, que se alimenta del fitoplancton y que, a su vez, será el alimento de muchos peces, como las sardinas o los boquerones.

En el Estrecho de Gibraltar, la gota se acerca a otras más profundas que hacen el camino inverso y salen del Mediterráneo cargadas de nutrientes. / Pexels

Anticiclones frente a la costa argelina

Dentro del Mar de Alborán hay dos giros anticiclónicos en los que el agua se mueve en el sentido de las agujas del reloj. Después de treinta días dando vueltas, la gota se sitúa frente a las costas de Argelia (punto 3), donde el mar se ensancha. La corriente se calma (ahora avanza a 20 centímetros por segundo), sigue progresando hacia el este y deja a su derecha la costa del país africano. Es un camino tortuoso. Algunas de sus compañeras de viaje quedan atrapadas y ralentizan su marcha, pero nuestra gota sigue la corriente principal y, pasados sesenta días, divisa el Mediterráneo Oriental.

En una época cercana a la primavera, empieza a observar grandes cambios: en la superficie hace calor y hay una fuerte evaporación. El resultado es que su salinidad y temperatura aumentan. Sus inquilinos fitoplanctónicos necesitan nutrientes para hacer la fotosíntesis, pero se han agotado. La mayoría de las células más grandes han muerto y solo las más pequeñas parecen adaptarse a estas condiciones de escasez.

En Rodas, un año después

La corriente serpentea describiendo giros anticiclónicos y ciclónicos, en los que el agua se mueve en sentido contrario a las agujas del reloj. Nuestra gota pasará en estas aguas el verano y el otoño. Su salinidad llegará a alcanzar los 39,2 gramos por litro y su temperatura hasta 26 grados centígrados.

Llegará al sur de la Isla de Rodas (punto 4) durante el siguiente invierno, tras un viaje de más de un año. Entonces, su temperatura bajará hasta los 15ºC y será un agua muy salada y densa que no podrá mantenerse a flote. Finalmente, se hundirá hasta los 200 o 300 metros de profundidad. Solo entonces comenzará a ser llamada agua mediterránea por la comunidad científica. A pesar de llevar ya más de un año en el Mare Nostrum, hasta este momento será considerada agua atlántica, por su origen.

La gota de agua alcanzará una profundidad media de 1.400 metros. / Pexels

Descenso a las profundidades

La gota viajera ha pasado a un entorno frío, oscuro e inmenso; y su profundidad media es de 1.400 metros, aunque puede alcanzar los 5.000. Los organismos fitoplanctónicos han muerto por la falta de luz y los restos orgánicos son descompuestos por las bacterias. En este proceso se generan CO2 y nutrientes, y se consume parte del O2. La gota entiende ahora por qué el agua profunda con la que se cruzó en el Estrecho de Gibraltar era rica en nutrientes.

Empieza a moverse lentamente hacia el oeste, en la dirección de las líneas azul oscuro del mapa. Aunque hay varios caminos posibles, toma el más directo hacia Sicilia y Cerdeña; islas que fueron su puerta de entrada al Mediterráneo Oriental, y que ahora marcan la salida. Por aquí las aguas profundas salen a razón de algo menos de un millón de metros cúbicos por segundo. El volumen del agua de las capas profundas del Mediterráneo Oriental es de más de 1.800 billones de metros cúbicos, así que la gota tardará alrededor de sesenta años en atravesar los canales de Sicilia y Cerdeña.

Una vez en el Mediterráneo Occidental, la gota bordeará la costa occidental de Italia hasta llegar a otro hito de su periplo: el sur de las costas francesas del Golfo de León (punto 5). En esta región, los fríos y secos vientos invernales del norte enfrían el agua superficial, que aumenta su densidad y se hunde hasta los 200 o 300 metros de profundidad, donde se encuentra con nuestra gota. Los temporales en esta zona continúan todo el invierno, y al final el agua se hace tan fría y densa que se hunde hasta el fondo del mar, a 2.500 metros de profundidad.

Fin de viaje: regreso al Atlántico

Aún le queda un largo camino por recorrer, ya que hasta salir por el Estrecho de Gibraltar pueden pasar otros cincuenta años. Al menos, su combinación con agua de la superficie le ha supuesto una inyección de oxígeno. La salida del Mediterráneo es parecida a la llegada. La gota viajera se mueve lentamente hasta que, al sentir la proximidad del Estrecho, empieza a sufrir una fuerte aceleración y alcanza velocidades de 1 metro por segundo. Ahora es una corriente profunda que ve como nuevas gotas de agua pasan por encima de ella para entrar en el Mediterráneo y comenzar un viaje parecido al que ella inició hace más de 100 años.

Aquella gota que cayó en forma de lluvia parece ahora una anciana que regresa al Océano Atlántico, donde durante un tiempo será llamada agua mediterránea. Sin embargo, en la escala de tiempo de los mares de la Tierra, aún es joven. Es cierto que está muy transformada, pero todavía tiene que experimentar muchas peripecias y visitar rincones muy lejanos antes de, tal vez dentro de mil años, volver a la superficie del mar o incluso a la atmósfera. Pero esta es otra historia, y deberá ser contada en otro momento.

*Manuel Vargas Yáñez es investigador en el Instituto Español de Oceanografía (IEO) del CSIC.

Sumérgete en el océano desde casa: una propuesta del CSIC para explorar los ecosistemas marinos

Por Mar Gulis (CSIC)

3, 2, 1… ¡Al agua! Este viaje comienza con los habitantes más pequeños del océano: protozoos, microalgas, virus, bacterias y animales microscópicos como los tardígrados o las pulgas de agua. Aunque no los vemos a simple vista, son millones de seres diminutos que cumplen un papel esencial para el funcionamiento de los ecosistemas marinos. Este fascinante micromundo te espera en ‘El océano en casa’, un proyecto del Instituto de Ciencias del Mar (ICM-CSIC) que ofrece todo tipo de materiales para que el público infantil se sumerja en las aguas oceánicas sin moverse del sofá.

Solo tenéis que entrar en su web y elegir entre varios bloques temáticos que dan a conocer la biodiversidad marina y la importancia de los mares en nuestro día a día. Si os decantáis por el epígrafe ‘Un océano con muchas características’, encontraréis lecturas, dibujos para colorear o rompecabezas y enigmas sobre los distintos ambientes marinos que hay en el planeta. También podréis probar el juego ‘De tierra o de mar’ o experimentar el viaje que realiza un grano de arena desde los Pirineos hasta el cañón de Palamós.

La web del proyecto, cuyos contenidos fueron inicialmente publicados en catalán y ahora se han traducido al castellano, está llena de recursos para niñas y niños curiosos. Por ejemplo, los epígrafes ‘El océano: un mar de ríos’, ‘Las praderas del mar’ y ‘Animales del océano’ incluyen animaciones de la NASA, experimentos caseros, unidades didácticas y hasta cuentos y cómics para aprender qué son las corrientes marinas, ver prados de posidonia y conocer la diversidad animal que esconden mares y océanos.

El viaje no ha hecho más que empezar, porque el bloque titulado ‘El océano y nosotros/as’ está repleto de contenidos para seguir buceando y descubriendo organismos fascinantes. A través de varios vídeos, en el primer apartado, dedicado a las medusas, entenderéis por qué estos animales nos pican cuando nos bañamos en la playa, qué necesitamos para identificarlos y cómo actuar en caso de una picadura. Quienes quieran saber más sobre estos extraños invertebrados podrán también participar en el proyecto de ciencia ciudadana ‘Observadores del mar’.

La aventura continúa con ‘Buques oceanográficos’, donde encontraréis información sobre las grandes embarcaciones donde muchos científicos y científicas investigan a la vez el océano. Si estáis listos para embarcar, buscad el vídeo que os llevará a bordo del Sarmiento de Gamboa, uno de los buques oceanográficos del CSIC.

Hay más. Los epígrafes ‘El fitoplancton’, ‘Basura marina’ y ‘Océano y atmósfera’ contienen audiovisuales para descubrir ese universo de microbios y pequeños organismos acuáticos o calibrar el impacto que tienen los microplásticos y otros residuos en el mar. En esos apartados se puede acceder a otro montón de actividades para realizar en casa: experimentos, guías didácticas o incluso fichas para colorear y entender el ciclo del agua.

Si el mundo marino os engancha, estad atentos a la web de ‘El océano en casa’ porque habrá nuevos contenidos. ¡Y participad! El Instituto de Ciencias del Mar os anima a enviar comentarios, preguntas o sugerencias a la dirección de correo electrónico oceanliteracy@icm.csic.es. Al otro lado de la pantalla, alguien dedicado a investigar el universo marino os contestará.

 

 

¿Qué es la marea roja que afecta a algunas playas?

Por Elena Ibáñez y Miguel Herrero (CSIC)*

En La Jolla (San Diego, California), el mar adquiere un tono rojizo debido a las proliferaciones algales / Alejandro Díaz.

A veces, el mar cambia su tonalidad azul hacia el verde, el marrón, el rojo o el blanco. Este episodio, conocido como marea roja, se debe al crecimiento masi­vo de unas algas microscópicas: el fitoplancton. La proliferación masiva de las algas se produce cuando se dan condiciones ambientales favora­bles de luz, temperatura, salinidad y disponibilidad de nu­trientes. Bajo estas circunstancias, algunas algas pueden crecer y alcanzar concentraciones muy elevadas (del orden de miles o millones de células por litro) en comparación a su concentración natural en el ambiente (decenas o centenas de células por litro). A este suceso se le denomina prolife­ración algal y su color (si lo posee) dependerá del tipo de pigmento predominante del alga, así como de su concentración.

Muchas proliferaciones algales son beneficio­sas, ya que proporcionan alimento a peces y organismos marinos; sin embargo, algunas algas con características nocivas para otros seres vivos generan proliferaciones algales nocivas (PAN) o algal Bloom. Estas especies perjudiciales pueden impactar negativamente en la salud tanto del ser humano como de animales debido a la producción de potentes toxinas naturales y/o provocar graves pérdidas económicas y ecológicas. De entre las 5.000 especies descritas de fito­plancton marino, unas 300 son susceptibles de provocar proliferaciones capaces de cambiar el color del mar, y solo unas 60 pueden pro­ducir toxinas, algunas de ellas con un elevado potencial tóxico.

Los impactos de las PAN son diversos. Las algal Bloom asociadas a un elevado contenido en bio­masa suelen implicar la reducción del oxígeno disponible en el fondo de las aguas. Cuando la proliferación llega a su fin, las algas se hunden y son las bacterias quienes las descomponen y consumen todo el oxí­geno disponible en el agua, por lo que los peces y otros organismos no pueden respirar. Si las concentraciones de biomasa son tan grandes que las podemos ver a simple vista, la luz no podrá penetrar en la columna de agua, alcanzando solo la su­perficie. Esto provoca que otras plantas, fuente de alimento para muchos peces, no puedan crecer y se altere el hábitat natural.

Las algal bloom, también presentes en agua dulce, pueden ser una amenaza para los seres vivos que habitan en las aguas afectadas / Lamiot.

También existen especies que producen PAN con bajas concentraciones de biomasa y que pueden ser nocivas debido a la producción de biotoxinas paralizantes, diarreicas, amnésicas, etc., que provocan un envenenamiento con efectos sobre el sistema nervioso y digestivo de mejillones, almejas, navajas y otros organismos que se alimentan de fitoplancton. Por tanto, las toxinas pueden llegar a afectar al ser humano por ingesta de marisco contaminado.

Aunque los organismos responsables de las PAN existen desde hace siglos, ahora se observa una mayor actividad de los mismos. Esto puede ser debido, en parte, a que disponemos de mejores métodos de detección e identifica­ción de toxinas y más observadores pendientes de estos sucesos. Al mismo tiempo, la mayor parte de la comuni­dad científica cree que la polución y la actividad humana son responsables del aumento de las PAN. Sin embargo, no siempre existe una relación directa. En muchos casos, la introducción inicial de las especies tó­xicas se ha debido a corrientes oceánicas u otros fenómenos naturales como los huracanes. No obstante, no podemos obviar la relación entre un aumento en los nutrientes de las aguas costeras con la proliferación de algas que pueden originar los blooms. Algunos investigadores argumentan que los nutrientes que llegan a las aguas coste­ras, producto de las actividades humanas, son tan distintos a los que habría de forma natural que solo algunos grupos de algas ven favorecido su crecimiento, por su mejor capacidad de adaptación. Entre estos grupos se encuentran algunas de las especies responsables de las PAN, como el dinoflagelado Pfiesteria, cuya proliferación se ve fa­vorecida en aguas contaminadas.

También las crecientes áreas de recreo cos­teras (playas con espigones o puertos deportivos) dan lugar a zonas donde la tasa de renovación del agua es baja, una de las condiciones para que los blooms se desarrollen. Otro factor importante es la dispersión geográfica de especies tóxicas mediante embarcaciones de recreo, residuos de plásticos flo­tantes, etc. Pero tampoco hay que caer en el alarmismo. Aunque parece que las PAN son cada vez más comunes en nuestras playas, la mayoría de estas proliferaciones no son tóxicas y sólo producen un cambio de coloración en el agua. Esto puede resultar desagradable, pero no peligroso.

 

* Elena Ibáñez y Miguel Herrero trabajan en el Instituto de Investigación en Ciencias de la Alimentación (CSIC) y son autores del libro Las algas que comemos (CSIC-Catarata).

¿Hay realmente ahora más medusas en el mar que antes?

Por Mar Gulis

En los últimos años la llegada de medusas a las costas mediterráneas españolas ha generado cierta alarma entre la sociedad y también ha despertado el interés de la comunidad científica. Aunque el sentir general es que cada vez hay más medusas en nuestras costas, los científicos no pueden afirmarlo con certeza debido sobre todo a la falta de datos a largo plazo. Sin embargo, es una realidad que cada verano cerca de dos millones de bañistas sufren picaduras de medusa. Además, la situación ha empeorado en los últimos años debido a la llegada de nuevas especies.

Aunque aún no haya datos concluyentes sobre el aumento de las proliferaciones de medusas, los investigadores del Instituto de Ciencias del Mar del CSIC (ICM) se atreven a formular alguna hipótesis. Los enjambres de medusas son arrastrados hacia las playas por las corrientes superficiales generadas por los vientos (de mar a tierra). Si el agua costera tiene una temperatura (y por tanto una densidad) distinta a la de mar abierto, las corrientes superficiales encuentran grandes dificultades en arrastrar los enjambres de medusas hacia la costa. Pero cuando las aguas presentan una temperatura muy similar, las corrientes las arrastran en pocos días. Uno de los factores climáticos que mencionan son los inviernos suaves y cortos (cada vez más frecuentes), que dan lugar a una menor emisión al mar de agua dulce y fría. Otro factor, que requiere estudios más detallados, es el progresivo calentamiento global, que podría agudizar la frecuencia de inviernos más suaves y más cortos. Sin embargo, los factores climáticos, aunque son importantes, no explican por sí solos la llegada a las playas mediterráneas de gran cantidad de medusas y de zooplancton gelatinoso.

Entre las causas más defendidas por algunos científicos está la disminución drástica de los grandes depredadores de medusas: tortugas y algunos peces como los atunes. Las poblaciones de estos organismos se han visto reducidas enormemente en las costas mediterráneas debido a su pesca indiscriminada. Otros animales que se alimentan de medusas son las aves marinas, pero su incidencia es menor.

Además, las medusas ejercen de forma natural un control sobre sus poblaciones. Entre ellas no es extraño el canibalismo cuando les falta otro tipo de presas para su alimentación. Pero, aparentemente, en las zonas de máxima abundancia de medusas en el Mediterráneo hay suficiente zooplancton como para no necesitar comerse las unas a las otras.

Medusas del Mediterráneo

Especies de medusas comunes en el Mediterráneo.

Las más frecuentes y temidas del Mediterráneo

Se calcula que en las costas mediterráneas hay alrededor de 300 de las 4.000 especies que existen en el planeta. Entre las frecuentes y urticantes destaca la medusa luminiscente (Pelagia noctiluca). Es de color rosado rojizo, su umbrela (esa especie de ‘bolsa’ tan característica) puede alcanzar un diámetro de 20 cm y sus ocho tentáculos marginales llegan a medir hasta dos metros de longitud. La superficie de la umbrela está cubierta de verrugas marrones.

Entre las medusas que abundan en las costas mediterráneas españolas también se encuentran Rhizostoma pulmo y Cotylorhiza tuberculata. Rhizostoma pulmo o acalefo azul es una de las medusas más grandes de nuestras costas y es algo urticante. En cuanto a Cotylorhiza tuberculata es conocida como huevo frito por su forma y color; es poco urticante y tiene preferencia por las aguas cálidas.

La temida carabela portuguesa (Physalia physalis) es una colonia flotante formada por individuos con una cámara llena de gas de color transparente-violeta y una vela en la parte superior muy reconocible. La parte sumergida está formada por tentáculos azules finos y largos que pueden alcanzar hasta 20 metros. Es nativa del océano Atlántico y poco frecuente en las costas mediterráneas españolas, pero cuando las visita, causa alarma. Está clasificada como muy urticante: posee un veneno potente con propiedades neurotóxicas, cardiotóxicas y citotóxicas (que afectan a las células). El contacto puede producir escozor y dolor intenso, y en algunos casos reacciones sistémicas. En la zona de contacto suele aparecer una línea de bultos blancos ovalados en el centro y un margen rojo. Algunos efectos generales aunque poco comunes incluyen temblores, diarrea, vómitos y convulsiones.

Temidas y comunes

De izquierda a derecha, medusa luminiscente (Pelagia noctiluca), acalefo azul (Rhizostoma pulmo), ‘huevo frito’ (Cotylorhiza tuberculata) y carabela portuguesa (Physalia physalis). / ICM

Con el objetivo de determinar la evolución de la masificación de las medusas y predecir su proliferación, el CSIC creó en 2008 el Proyecto Medusa, que actualmente se enmarca en otros dos grandes proyectos europeos (MED-JellyRisk y Cubomed). Como los investigadores no pueden llegar a todos los puntos del mar, han pedido ayuda a la sociedad a través del proyecto Observadores del mar, del que hablamos la semana pasada en este blog. Dentro del portal web, que agrupa varios proyectos de ciencia ciudadana, se encuentra el proyecto Alerta Medusa. En esta página, cualquier persona puede informar de las medusas que haya visto, aportando el mayor número de datos posible (fecha, lugar, especie si se identifica, fotografías). Como dicen los investigadores del proyecto, ¡todo avistamiento cuenta!

 

Si quieres más ciencia para llevar sobre medusas, descárgate la guía de identificación de estos animales y los protocolos de actuación elaborados por el ICM. El proyecto de ciencia ciudadana Observadores del mar cuenta con el apoyo económico de la FECYT.