Henry Moseley, el joven que ordenó el rompecabezas de la tabla periódica

Por Mar Gulis (CSIC)

Moseley

Moseley (año 1910) en el laboratorio del Balliol-Trinity College poco después de su graduación. En su mano derecha sostiene un globo de vidrio grueso para bajas presiones que utilizaba en la medida del número atómico de gases.

A comienzos del siglo XX los avances en la comprensión de la estructura del átomo no solo removieron los cimientos de la física, sino también los de la química.

Sin ir más lejos, el creador de la tabla periódica, Dimitri Mendeleiev, creía que el hallazgo del electrón amenazaba sus postulados. Décadas antes, en 1869, el científico ruso había propuesto ordenar los 63 elementos químicos entonces conocidos en una particular disposición. En la primera formulación de su tabla periódica, muy distinta de la que conocemos en la actualidad, las columnas mostraban los elementos ordenados de menor a mayor según su peso atómico  –por ejemplo, berilio = 9,1 (su peso real es de 9,01); boro = 11 (10,81); carbono = 12 (12,01); etc.–, de tal forma que en las filas quedaban agrupados elementos que compartían propiedades químicas semejantes –por ejemplo, el litio, el sodio, el rubidio y el cesio, que junto al francio constituyen el grupo de los metales alcalinos–.

Tabla Mendeleiev

Tabla periódica propuesta por Mendeleiev en 1869.

La propuesta tuvo un tímido reconocimiento al inicio, pero fue haciéndose cada vez más popular a medida que fueron confirmándose muchas de sus predicciones. Mendeleiev había dejado huecos para ser completados con elementos aún no descubiertos, de los cuales no solo pronosticó acertadamente su existencia sino también algunas de sus propiedades. Esto fue posible porque fue una de las primeras personas en comprender que las propiedades químicas de los elementos se ‘repetían’ de forma periódica a medida que se incrementaba su peso atómico.

Sin embargo, Mendeleiev había trabajado con la idea de que el átomo era indivisible. En 1897 Joseph Thomson descubre el electrón y en 1911 Ernest Rutherford formula su famoso modelo atómico, en el que un número variable de electrones (de carga negativa) giran alrededor de un pequeño núcleo de carga positiva. ¿Cómo iban a afectar estos avances a la tabla periódica?

Contrariamente a lo que Mendeleiev creía, iban a perfeccionar sus teorías. También en 1911, antes de que se descubrieran los protones (de carga positiva) en el núcleo atómico, el físico aficionado Antonius van den Broek propuso en Nature que el orden de los elementos en la tabla periódica dependía del número de cargas positivas del núcleo o número atómico. Es decir, el hidrógeno ocupa el primer lugar de la tabla periódica porque solo tiene una carga positiva en el núcleo (hoy diríamos un protón) y, por tanto, su número atómico es el uno; el helio ocupa la segunda posición porque tiene dos cargas positivas (dos protones) y su número atómico es el dos; y así sucesivamente.

Sin embargo, fue Henry Moseley en 1913 quien logró probar esta hipótesis estudiando los espectros de rayos X de 50 elementos químicos. Moseley demostró que la frecuencia de los rayos X era proporcional (concretamente, la raíz cuadrada) al número atómico del elemento. Con este hallazgo, daba una justificación cuantitativa al concepto de número atómico y un apoyo fundamental al modelo atómico de Rutherford.

La utilización del número atómico para ordenar los elementos iba a resolver muchos problemas que habían traído de cabeza a quienes trabajaban en química hasta entonces. Por ejemplo, de acuerdo con su peso atómico, el níquel (58,693) debía situarse antes que el cobalto (58,933) en la tabla periódica; sin embargo, Mendeleiev había intercambiado sus posiciones para que resultaran más congruentes con sus propiedades químicas. La incoherencia desapareció cuando pudo conocerse que el número atómico del níquel era 28 y el del cobalto 27. Efectivamente, aunque el níquel pese un poco menos que el cobalto, tiene una carga positiva más en su núcleo, y por tanto puede agruparse junto a los elementos con los que compartía propiedades sin violar la ley periódica de Mendeleiev.

Tabla periódica moderna

Tabla periódica moderna, en la que los elementos aparecen ordenados según su número atómico.

Además, el número atómico permitió saber de forma inequívoca qué casillas faltaban por rellenar en la tabla periódica (43, 61, 72, 75, 85, 87 y 91) y la técnica de Moseley hizo posible identificar elementos de una forma mucho más rápida y certera. Hasta entonces las llamadas tierras raras, una denominación que engloba al escandio, el itrio y los quince elementos del grupo de los lantánidos, habían resultado enormemente difíciles de separar e identificar en el laboratorio. En el libro Las tierras raras (CSIC-Catarata), el investigador del CSIC Ricardo Prego cuenta que George Urbain, uno de los mayores expertos en este ámbito, viajó a Oxford en cuanto conoció el innovador trabajo de Moseley. Allí el francés le entregó una muestra que contenía una mezcla de tierras raras que le había llevado meses identificar con métodos químicos y desafió a su joven colega a intentarlo. Moseley tardó solo una hora en llegar al resultado de Urbain: la mezcla contenía erbio, tulio, iterbio y lutecio. La crisis de las tierras raras había quedado resuelta.

Mendeleiev murió en 1907, sin saber que la ‘intrusión’ de la física en la química no iba a contradecir sus planteamientos sino a darles un nuevo fundamento. Sus aportaciones siguen tan vigentes a día de hoy que la ONU ha declarado 2019 como Año internacional de la tabla periódica y de los elementos químicos precisamente porque se cumplen 150 años desde que Mendeleiev formulara por primera vez su sistema periódico. Moseley, que estuvo nominado tanto al Premio Nobel de Física como al de Química, falleció en 1915, a la temprana edad de 28 años, mientras luchaba con el ejército inglés en la famosa batalla de Galípoli. No pudo participar en los siguientes descubrimientos sobre la estructura del átomo, que seguirían revolucionando la física y la química.

El mercado de la reproducción asistida: ¿qué ocurre con las donantes de óvulos?

Por Vincenzo Pavone y Sara Lafuente Funes (CSIC)*

Entre el 1 y el 8% de todos los nacimientos que se producen en la actualidad son fruto de técnicas de reproducción asistida. Lo que en los años ochenta era casi experimental y estaba al alcance de muy pocas personas, se ha convertido en un abanico de técnicas y prácticas sociales presentes en todo el mundo.

La fecundación in vitro con óvulos de otras mujeres es el tratamiento que más ha aumentado. En España, este tratamiento representa una tercera parte de la reproducción asistida. Ese crecimiento se debe a dos cuestiones fundamentales: la primera es que nuestro país es el primer destino europeo de turismo reproductivo. De todos los residentes extranjeros que realizan procesos de reproducción asistida aquí, el principal tratamiento implica la donación de óvulos, seguido de la donación de semen. De hecho, la mitad de los ciclos de donación de óvulos realizados en Europa se llevan a cabo en España.

Future element/Odra Noel

La segunda cuestión es el retraso de la edad reproductiva. Si bien no existen datos de edad en los hombres (a pesar de que también estén afectados por el llamado ‘reloj biológico’), sí sabemos que una parte muy importante de las mujeres que acceden a reproducción asistida, y por ende a óvulos donados, tiene más de 40 años. Este cambio de patrón en la fertilidad es especialmente llamativo en España, donde la edad media del primer embarazo es de 32 años. Muchas parejas intentan reproducirse cuando los gametos de ambos no son de una calidad y eficacia suficiente para conseguir un embarazo. De ahí el uso de gametos ajenos, sobre todo óvulos. Obviamente, si se configurara el mundo de forma que las mujeres y los hombres no tuvieran que posponer constantemente la reproducción, habría menos necesidad tanto de óvulos donados como de vitrificación de los mismos.

Depende de a qué nivel miremos, la solución a este retraso generalizado de la maternidad puede ser estrictamente tecnológica y biomédica, o tener un enfoque múltiple, en combinación con el sociológico o el político. La tecnología sirve para algunas cuestiones, pero no es la única solución y, en el caso de la donación de óvulos, no va sola, sino que precisa de la colaboración de terceras partes, las donantes, de las que se sabe muy poco. En el proyecto Donación de óvulos en Reino Unido, Bélgica y España, EDNA por sus siglas en inglés, tratamos de entender mejor las experiencias de las donantes y el papel que representan en el contexto de un sistema que, por el momento, prefiere desarrollar técnicas reproductivas a establecer medidas económicas y sociales que posibiliten adelantar la edad de maternidad.

El proyecto EDNA se basa en un estudio internacional e interdisciplinar y pretende recopilar información sobre toda la experiencia del proceso de donación en los tres países mencionados. Partimos de la idea de que es fundamental conocer bien el punto de vista de las donantes: sus experiencias, dudas, deseos y preocupaciones.

España, a la cabeza de la bioeconomía reproductiva

En España la reproducción asistida con gametos de terceros/as es asumida fundamentalmente por el sector privado, ya que la Seguridad Social no trata a mujeres de más de 40 años y no cuenta con recursos suficientes ni para compensar económicamente a las donantes ni para montar la infraestructura necesaria para reclutarlas y gestionar los ciclos. Andalucía es una excepción a lo primero, y existen programas de donación sin compensación en otros lugares como el País Vasco, si bien el número de ciclos que realizan es muy bajo.

La donación funciona de forma anónima en todos los casos, y se compensa con aproximadamente 1.000 euros (con pequeñas variaciones según clínica y comunidad autónoma). En este contexto, el punto de vista de las protagonistas principales de esta práctica sigue siendo ignorado. Además, de acuerdo con las clínicas, la mayoría de las mujeres que se movilizan para donar sus óvulos son rechazadas por razones médicas, psicológicas o fenotípicas. Cómo viven el rechazo estas mujeres también es un tema completamente desconocido.

Gracias a la información procedente de las clínicas, los profesionales y de las propias donantes, nuestra investigación está desvelando una paradoja: a las mujeres que aportan sus óvulos se les pide que vean el proceso como una donación, pero con sus óvulos se ha construido un mercado. Todos los actores implicados actúan en un régimen comercial claramente definido: el personal sanitario, las receptoras y las agencias intermediarias que reclutan a las donantes. Sin embargo, a las mujeres donantes se les demanda que actúen desde el altruismo y la generosidad. Esto se afirma en el plano discursivo, pero en la práctica existe una compensación económica que parece explicar que haya tantas donantes en España, un país donde el salario mínimo no llega a la cantidad de la compensación.

Las clínicas de reproducción asistida, además, ofrecen discursos diferentes a sus clientes en función del tratamiento que reciben. Por ejemplo, cuando se habla de tratamientos con óvulos donados, se pone el foco en que la gestación es un proceso vital para el vínculo materno filial. Sin embargo, cuando se trata de gestación subrogada, todavía no permitida en España, la genética es lo central. El mercado crea un relato que permita construir un producto vendible.

Según el país del que se trate, las bioeconomías reproductivas se expanden de acuerdo a distintos modelos. El modelo español regula que la donación sea “no pagada”, pero reconoce una “compensación económica por las molestias”; en Estados Unidos existe un mercado libre; en Francia se ha desarrollado un sistema público (anónimo y sin compensación, que da lugar a muy pocos tratamientos); en múltiples países la donación de óvulos no está permitida… Y cada vez más los países están más interrelacionados: Italia compra óvulos a España, y en Bélgica se mezclan características de varios modelos.

En relación a la movilidad de los óvulos, cabe destacar que por cada donación se extraen unos 16 óvulos de media, lo que permite la realización de múltiples tratamientos. Hay clínicas que utilizan 4-6 óvulos para una receptora, congelan el resto y los comercializan hacia otras clínicas dentro y fuera del Estado. ¿Cuáles son las opiniones de las donantes sobre estas prácticas?, ¿las conocen?, ¿deberían formar parte de las decisiones sobre qué pasa con sus óvulos?

Nuevas preguntas sobre la reproducción asistida

Debatir estas cuestiones es fundamental para avanzar hacia un modelo que sea más justo, más eficaz, donde se repartan mejor los riesgos y los beneficios. En la bioeconomía reproductiva, uno de los problemas es que siempre se realizan las mismas preguntas, y se contestan desde una perspectiva muy tecnológica.

Uno de los objetivos del proyecto EDNA es generar nuevas preguntas. Para ello es esencial separar las tecnologías en sí de las prácticas; una cosa es la reproducción asistida y otra la implicación de terceras partes. En el caso de la donación de óvulos, estaríamos hablando no tanto de una técnica de reproducción asistida, como de una transferencia de capacidad reproductiva. Los óvulos de mujeres jóvenes, además de ayudar a otras mujeres a ser madres, estarían sosteniendo un sistema que retrasa la edad de maternidad, un modelo biomédico privado de reproducción asistida, es decir, están siendo utilizados para sostener la ‘reproducción’ de un sistema social, político y económico concreto.

Todo esto, además, debe ser tenido en cuenta al regular otros tipos de “transferencias de capacidad reproductiva” como la gestación subrogada, otra práctica relacional que tiende a presentarse como una “técnica”. Si se regulara la gestación subrogada en España de forma similar a la regulación de la donación de óvulos, se generarían dinámicas comerciales similares, ya que muchos de los actores implicados serían los mismos.

Entonces, ¿hacia dónde dirigir estas tecnologías y estas regulaciones? Como sociedad tenemos una gran responsabilidad respecto a los avances biomédicos, biotecnológicos y bioeconómicos. El hecho de que exista un tratamiento no quiere decir que debamos garantizar el acceso al mismo, fundamentalmente cuando requiere de la participación de terceras personas. Es importante estudiar detenidamente la relación entre estas tecnologías y prácticas, la estratificación reproductiva y la posible ampliación de estos tratamientos, su normalización y su naturalización. El futuro va a depender de lo en serio que nos tomemos pensar colectivamente qué queremos hacer con este conocimiento.

 

* Vincenzo Pavone y Sara Lafuente Funes son investigadores del Instituto de Políticas y Bienes Públicos del CSIC y responsables en España del proyecto EDNA, coordinado por Nicky Hudson de la Universidad de Monfort.

¿Te atreves con los microrrelatos científicos? Participa en el concurso #100QSD

Por Mar Gulis (CSIC)

Estamos de celebración. Acaba de publicarse el libro número 100 de nuestra colección de divulgación ‘¿Qué sabemos de?’. Se titula El LHC y la frontera de la física. El camino a la teoría del todo y lo firma el físico teórico del CSIC Alberto Casas, que escribió la primera parte de esta obra hace ya una década. Ahora, Casas actualiza y amplía lo que es un viaje fascinante por la ciencia básica y la física fundamental.

La colección, fruto de la colaboración entre el Consejo Superior de Investigaciones Científicas (CSIC) y Los Libros de la Catarata, cumple además 10 años. En todo este tiempo, ‘¿Qué sabemos de?’ ha despertado la curiosidad de personas que querían aprender sobre mecánica cuántica, inteligencia artificial, neutrinos o cometas y asteroides. O descubrir la cultura de los neandertales, algunos falsos mitos sobre la alimentación, cómo se comunican las neuronas o las últimas terapias contra el cáncer o la enfermedad de Alzheimer. Los volcanes, la exploración planetaria, todo lo que se ha denominado la química verde o las células madre también están presentes en varios títulos de la colección. Y por supuesto las matemáticas, protagonistas de varias obras, la antimateria, la locura y temas de plena actualidad como las tierras raras o el debate sobre si vivimos o no en una nueva era, el Antropoceno. En fin, la lista sería demasiado larga…

Vamos a la celebración. Ayer lanzamos en Twitter el concurso de microrrelatos científicos #100QSD. Este es el reto: echad un vistazo al listado con los 100 títulos de ‘¿Qué sabemos de?’ (podéis consultarlo aquí) y buscad inspiración para condensar en un máximo de 280 caracteres un microrrelato propio, único y original. Eso sí, vuestra breve obra deberá contener el título (o alguna de sus palabras clave) de alguno de los 100 libros publicados hasta el momento.

Cuando la escribáis en Twitter utilizad el hashtag #100QSD y mencionad nuestra cuenta @CSICdivulga. Ojo, quienes se animen a participar deberán seguir a las cuentas @CSICdivulga y @CatarataLibros. Y si os sobra inspiración, aprovechadla: cada seguidor o seguidora podrá presentar un máximo de 5 microrrelatos en 5 tuits, a razón de un solo microrrelato por tuit (es decir, no son válidos hilos o microrrelatos divididos en varios tuits).

Os tenéis que dar prisa. El concurso comenzó este 4 de abril y solo podréis participar hasta el 7 de abril (hora española peninsular).

¿Y el premio? Lo habéis adivinado. Los tres mejores microrrelatos científicos recibirán un lote de cinco libros de ‘¿Qué sabemos de?’. El CSIC contactará con las personas premiadas a través de MD para concretar la dirección de envío.

Antes de poneros a escribir, podéis consultar las bases del certamen aquí.

¿Sabes cuánto tarda un nuevo medicamento en llegar a tus manos?

Por Mar Gulis (CSIC)*

Hay que remontarse al siglo XVIII para dar con el origen de los ensayos clínicos. El cirujano escocés James Lind (1716-1794) decidió probar distintos remedios frente al escorbuto, enfermedad causada por la deficiencia en vitamina C. Así, tomó a doce pacientes, los dividió en parejas y aplicó una terapia distinta a cada una: vinagre, nuez moscada o agua de mar, entre otras sustancias. Al parecer, el resultado fue que se curaron los que recibieron cítricos, mientras que los que llevaban una dieta escasa o nula en frutas y verduras siguieron padeciendo ese mal. Con este experimento, mediante la planificación de diversas curas, se consiguió demostrar la más eficaz.

En el siglo XIX, el médico francés Pierre Charles Alexandre Louis (1787-1872) propuso un método numérico para cuantificar los resultados de la experimentación. Cien años más tarde, el epidemiólogo británico Bradford-Hill (1897-1991) encontró una fórmula que hacía comparables los distintos grupos de estudio y estableció los “criterios de causalidad”. En ese momento se inició la era moderna de los ensayos clínicos.

Se estima que son de diez a doce años de media lo que tarda en desarrollarse un nuevo medicamento

A pesar de que para entonces empezaba a adquirirse conciencia del valor de la investigación, no fue hasta los años setenta cuando empezó a considerarse esencial el estudio de la eficacia y la seguridad de un medicamento antes de su lanzamiento al mercado. El punto de inflexión se produjo en los años cincuenta, cuando la administración de la recientemente descubierta ‘talidomida’ produjo un efecto indeseado, ocasionando malformaciones en recién nacidos, y poniendo de manifiesto la necesidad de establecer una regulación.

Actualmente se estima que son de diez a doce años de media lo que tarda en desarrollarse un nuevo medicamento. Se trata de un largo y costoso proceso en el que el fármaco ha evolucionado, sorteando obstáculos, hasta su lanzamiento como producto final, cuando se convierte en el posible remedio para nuestras dolencias. En el libro Cómo se fabrica un medicamento (Editorial CSIC – Los Libros de la Catarata), las investigadoras del Centro de Investigaciones Biológicas del CSIC María del Carmen Fernández y Nuria E. Campillo señalan que “una vez que en el laboratorio se identifica una molécula prometedora comienza el verdadero reto: ponerla en el mercado”.

El proceso se inicia con la búsqueda de la diana terapéutica, seguido de la identificación y desarrollo de moléculas que pueden interaccionar con dicha diana. De estas primeras etapas de identificación, síntesis y evaluación biológica (in vitro) nacerán las primeras moléculas o hits con potencial para llegar a ser un fármaco. Las etapas más complicadas comienzan ahora, con la fase preclínica, en la que se recurre a modelos celulares y a animales de experimentación para estudiar la seguridad y la toxicidad de las moléculas. Esta fase es el “puente necesario para pasar del laboratorio –etapa de descubrimiento– a la fase clínica”, en la que se realizan estudios en humanos, explican las investigadoras.

Esto es lo que se conoce como ‘desarrollo clínico’, del que forman parte los ensayos clínicos, centrados en descubrir o comprobar los efectos clínicos y farmacológicos, así como en identificar cualquier reacción adversa a los mismos y determinar su seguridad y eficacia en voluntarios y pacientes.

Proceso del desarrollo clínico de un medicamento

Proceso del desarrollo clínico de un medicamento. / María del Carmen Fernández y Nuria E. Campillo

Antes de que llegue hasta nuestras manos, el medicamento en cuestión debe ser autorizado y estará sujeto a diferentes regulaciones para su comercialización, por lo que el mundo farmacéutico se convierte en un entorno hiperregulado y sometido a una exigencia de alta calidad. Es una exigencia justificada porque precisamente es en las primeras fases de la investigación clínica donde pueden surgir reacciones adversas y, de hecho, alrededor de la mitad de los efectos indeseables de los fármacos se identifican solo en los ensayos clínicos en humanos, es decir, el éxito no siempre está garantizado ya que, como aseguran las investigadoras, “la probabilidad general de éxito clínico, es decir, que un fármaco pase con éxito todos los ensayos, es inferior al 12%”.

En definitiva, para comprender el proceso del desarrollo clínico habría que imaginarse un embudo: durante varios años se caracterizan entre 5.000 y 10.000 moléculas prometedoras, y solo unas 250 pasan a las fases preclínicas (un año), hasta llegar menos de 10 a los ensayos clínicos en humanos (seis-siete años). En ese momento, se da con un compuesto que podría ser el nuevo medicamento y si todo va bien… se lanza al mercado.

 

* Puedes leer más en el libro Cómo se fabrica un medicamento (Editorial CSIC – Los Libros de la Catarata), de la colección ¿Qué sabemos de?

¿Qué reflejan estas siete fotografías? Descubre las mejores imágenes científicas de FOTCIENCIA 16

Por Mar Gulis (CSIC)

Además de ser perjudicial para la salud, ¿qué efectos tiene el hábito de fumar para el medio ambiente? ¿Qué sucede al modificar genéticamente un ratón? ¿Sabes qué es el efecto Schlieren? Las imágenes seleccionadas en la 16ª edición de FOTCIENCIA tratan de explicar gráficamente estos y otros fenómenos científicos. Un jurado integrado por profesionales de distintos campos ha escogido siete fotografías, de entre las 697 que han participado en FOTCIENCIA, por ser las más impactantes y que mejor describen hechos relacionados con la ciencia.

Una de ellas, titulada ¡Prohibido fumar!, muestra el corte transversal de un filtro de cigarro visto a través del microscopio. Quizá no sepas que esta es la parte más contaminante del tabaco, por su elevada concentración de acetato de celulosa. De hecho, grupos de investigación de todo el mundo estudian métodos para reciclar las colillas para su reutilización. Pero antes de seguir, mira el vídeo con esta y las otras seis imágenes seleccionadas:

Seguimos. Al observar ‘Entrelazados’ llamarán tu atención unas curiosas estructuras que forman parte de las hojas de Galium aparine, la ‘hierba pegajosa’. Lo que aparenta ser una especie de pinchos rosáceos son en realidad los acúleos de esta especie, responsables de que la planta se adhiera a la ropa o a la piel como si fuera velcro.

Si miras la imagen ‘El abrazo’, intuirás fácilmente que se trata de un embrión de ratón. Pero, ojo, lo que ves es fruto de las técnicas de biología molecular, que permiten visualizar en un color distinto las partes del cuerpo en las que se está expresnado un gen ‘foráneo’ o exógeno introducido en el genoma de este animal.

También los fenómenos ópticos han llamado la atención de jurado en esta ocasión. Una de las fotografías elegidas, ‘Trampa de luz’, refleja un desconcertante juego luminoso: luces y colores se proyectan sobre una hoja de hiedra al aplicar técnicas de nanotecnología. Concretamente, la fabricación de cristales fotónicos permite, además de activar fenómenos electrónicos, térmicos o biológicos, jugar con la luz.

En ‘Las redes sociales del bosque’ encontrarás un red de hilos azulados que se entrecruzan de forma caótica. Podría ser una obra pictórica abstracta, pero no. La imagen muestra micorrizas, las asociaciones que establecen el 90% de las plantas terrestres con hongos que se encuentran en el suelo. Son relaciones simbióticas en la que ambos obtienen beneficios.

El impacto del desarrollo tecnológico sobre la industria alimentaria se condensa en ‘Manzana programable’, una fotografía que nos remite a cuestiones como el diseño de ingredientes activos y la manipulación genética en la producción de alimentos.

Llegamos a la séptima fotografía escogida: ‘Efecto Schlieren’. Obsérvala porque estás ante algo que tus ojos no podrían apreciar sin la intervención de la ciencia. Sí, estás viendo una cerilla encendida, pero lo que desprende la llama no es humo, sino el movimiento del aire que provoca el aumento de la temperatura…

Con estas siete imágenes y una selección más amplia, próximamente se realizará una exposición itinerante y un catálogo. A través de la iniciativa de FOTCIENCIA, el CSIC y la FECYT pretenden acercar la ciencia a la sociedad a través de la fotografía. Si quieres participar en la próxima edición, no pierdas de vista esta web: www.fotciencia.es

 

Cometas: el terror que vino del cielo

Por Montserrat Villar (CSIC)*

Concebidos como profetas de la muerte, los cometas han inspirado terror en muchas culturas a lo largo de más de veinte siglos. Aparecían de pronto y se mantenían en el cielo durante semanas o incluso meses, perturbando su armonía. Se consideraban portadores de grandes desventuras: lluvias de sangre, animales nacidos con dos cabezas, enfermedades mortales… Una larga lista de horrores fue atribuida a los cometas hasta el Renacimiento. El pavor que causaban impulsó su observación, registro y clasificación para tratar de descifrar su significado y prepararse para las fatalidades que anunciaban.

China, siglo II antes de nuestra era. El aristócrata y político Li Cang, su esposa Xin Zhui y su hijo renacen tras la muerte y emprenden el viaje hacia la inmortalidad. Más de 2000 años después, en la década de 1970, se descubren sus tumbas en el yacimiento arqueológico de Mawangdui. Entre los miles de objetos encontrados, se halla un delicado lienzo de seda manuscrito. Contiene los dibujos de alrededor de 30 cometas, cada uno acompañado por un texto breve que previene sobre el mal concreto que causará (hambruna, derrota en una batalla, epidemia…).

En 1587 se publicaba el manuscrito Libro sobre cometas, con hermosas ilustraciones. El texto, anónimo, describe la materia de los cometas, su conexión con los planetas y su significado según la forma, color y posición. Así, cuando el cometa Aurora aparece sobre oriente habrá sequía, incendios y guerra. En la ilustración, una ciudad es devastada por las llamas bajo su auspicio sangriento. El resplandor de la conflagración ilumina la escena, mientras el brillo de Aurora se refleja en las nubes. El artista, por tanto, identifica los cometas como fenómenos atmosféricos. Diez años antes de la edición de este libro, el Gran Cometa de 1577 apareció en los cielos de Europa asombrando a sus gentes durante semanas. Tras estudiar sus movimientos, el astrónomo danés Tycho Brahe confirmó que se trataba de un acontecimiento celeste situado mucho más allá de la luna, y no de un fenómeno atmosférico, como creían numerosos eruditos de la época.

A principios del siglo XIV un joven pintor florentino rompía con la tradición. Cumpliendo el encargo de decorar el interior de la capilla de los Scrovegni en Pádova (Italia), Giotto de Bondone cubrió sus paredes de maravillosos frescos referentes a la vida de Jesús y de la Virgen María. En La adoración de los Reyes Magos representa la estrella de Belén como un cometa. Es probable que el artista viera el cometa Halley en 1301 y se inspirara en su aspecto. En este caso el mensaje es de esperanza: Cristo ha venido a salvar el mundo. Seis siglos después, en 1985, la Agencia Espacial Europea (ESA) lanzó la misión Giotto, con cuyo nombre rendía tributo al artista. Se acercó a unos 600 kilómetros del cometa Halley, del que obtuvo imágenes espectaculares.

En octubre de 1858 el artista escocés William Dyce pasó unos días de descanso en Pegwell Bay, un popular lugar de vacaciones en la Inglaterra de la Reina Victoria. En su obra Pegwell Bay, Kent – Recuerdo del 5 de Octubre de 1858, el artista representa una escena entrañable en la que su familia pasea por la playa mientras recoge piedras y conchas. El esbozo apenas perceptible del cometa Donati descubierto ese año se aprecia en el cielo de la tarde. Es un elemento más del paisaje, ya no simboliza desgracias venideras: en el siglo XIX los cometas habían perdido su aura de terror. Desde el siglo XVII, las investigaciones de científicos como Edmund Halley habían ido desenmascarando la inocuidad de estos astros. Su significado en la obra de Dyce es aún más profundo: ese trazo sutil en el cielo sugiere que la existencia del ser humano es efímera, casi instantánea.

Obra de la artista rusa Ekaterina Smirnova

Obra de la artista rusa Ekaterina Smirnova

Comenzaba el año 2015 cuando la artista rusa Ekaterina Smirnova aprendía a producir agua pesada mediante electrólisis. Quería conseguir una composición similar a la hallada unos meses antes en forma de hielo en el cometa 67P/Churyumov–Gerasimenko por la misión Rosetta-Philae de la ESA. Con esta agua, Smirnova creó una serie de acuarelas de considerables dimensiones a partir de las imágenes del cometa obtenidas por la exitosa misión. Además, utilizó pigmentos oscuros mezclados a mano para recrear el bajo albedo (capacidad reflectora) de la superficie del cometa. Smirnova se sumerge en la ciencia para crear una obra bella e inspiradora, retrato de un astro distante y frío.

Decía Séneca en sus Cuestiones Naturales en el siglo I: “¡Tan natural es admirar lo nuevo más que lo grande! Lo mismo acontece con los cometas. Si se presenta alguno de estos cuerpos inflamados con forma rara y desacostumbrada, todos quieren saber lo que es; se olvida todo lo demás para ocuparse de él; ignórase si se debe admirar o temblar, porque no faltan gentes que difunden el terror, deduciendo de estos hechos espantosos presagios”. Dos mil años después, el mensaje cifrado de los cometas, esos ‘misteriosos’ cuerpos celestes compuestos por hielo, polvo y rocas que orbitan alrededor del Sol, nos habla de mundos primitivos y helados, del origen del Sistema Solar e incluso, quizás, de la propia vida.

 

* Montserrat Villar es investigadora del Centro de Astrobiología (CSIC-INTA). Coordina ‘Cultura con C de Cosmos’, un proyecto que surge del diálogo entre el estudio del universo y su reflejo en las diferentes manifestaciones artísticas a lo largo de la historia.

Pero… ¿Había mujeres en la Prehistoria?

Por Juan F. Gibaja, Ariadna Nieto y Millán Mozota (CSIC)*

La respuesta es obvia. Sin embargo, a juzgar por las imágenes que aparecen en museos, libros, cómics o webs sobre las sociedades prehistóricas, no parece que esta sea una cuestión que preocupe a editores, científicos y arqueólogos. Esas representaciones son parte de un discurso que no solo contribuye a invisibilizar a la mujer, sino que también consolida una imagen muy concreta de cómo debían ser estas sociedades a través de ideas como las siguientes:

  1. La mayor parte de las actividades en la Prehistoria eran efectuadas por los hombres, ya que cuantitativamente están mucho más representados.
  2. Se aprecia una clara división de las tareas según la cual los hombres se dedican a aquellas consideradas más heroicas, arriesgadas y relevantes para la sociedad, como la caza, la defensa del grupo o las pinturas rupestres. Las mujeres, en cambio, aparecen cuidando de sus hijos, llorando en las escenas de enterramientos o haciendo trabajos artesanales, como la elaboración de cerámicas o tejidos de vestimentas.
  3. La importancia de la figura masculina es tal que suele estar en la parte central de la mayoría de imágenes, y casi siempre se representa con un tamaño mayor. La mujer, si aparece, lo hace en un lado, agachada y con sus hijos siempre a cuestas.
  4. Finalmente, el lenguaje inclusivo brilla por su ausencia en la mayoría de las publicaciones y las portadas de los libros suelen acompañarse de títulos en masculino.

La pregunta es: ¿cuántos datos científicamente sólidos tenemos para apoyar que la realidad prehistórica fue así, y que además sucedió lo mismo en todos los ámbitos geográficos? En realidad, muy pocos. Solo en algunas ocasiones podemos percibir que determinadas actividades las realizaban hombres, mujeres o ambos, o la importancia que algunas mujeres debieron tener en su comunidad. En los ajuares de las sepulturas del neolítico del noreste de la Península Ibérica se deduce una cierta división de tareas, ya que los hombres tienen útiles usados para descarnar y segar cereales, proyectiles y hachas para trabajar madera; y las mujeres, instrumentos para tratar la piel y también hoces para segar. Asimismo, a lo largo de la Edad de los Metales encontramos mujeres que recibieron un tratamiento funerario especial. Es el caso de la Señora de las Montañas (Cueva de Montanisell, Lleida), que fue inhumada en la Edad del Bronce junto a diversos elementos ornamentales elaborados con este metal (brazaletes, collar y diadema). Otro ejemplo es el enterramiento megalítico colectivo de Montelirio (Sevilla), perteneciente a la Edad del Cobre, en el que el 75% de las personas enterradas son mujeres. En su interior se halló un ajuar absolutamente excepcional, formado por miles de objetos, muchos de los cuales requirieron una inversión de trabajo inimaginable teniendo en cuenta la tecnología utilizada y que muchos de los materiales empleados procedían de otros lugares.

Reconstrucción del aspecto de la cámara grande del tholos de Montelirio, zona arqueológica Valencina de la Concepción-Castilleja de Guzmán (Sevilla), siglos 29-28 ANE / Autora: Ana García. Cortesía del Grupo de Investigación ATLAS (HUM-694) de la Universidad de Sevilla

En todo caso, desconocemos si siempre eran los hombres los autores de las pinturas rupestres o los protagonistas en la caza (ámbito público), o si eran las mujeres las únicas que cuidaban a los más pequeños o se dedicaban a tejer (ámbito privado). Por eso es paradójica la escasa presencia que tiene actualmente la imagen de la mujer en cuentos, cómics o libros, frente a la importancia que debió tener en el pasado; de hecho son precisamente ellas las figuras humanas más representadas en el Paleolítico europeo a través de las esculturas conocidas como ‘Venus’.

Venus de Willendorf, datada entre 28.000 y 25.000 ANE / Wikipedia

Esta visión androcéntrica quizás se explique, en parte, porque hasta hace pocas décadas la mayoría de arqueólogos, ilustradores, editores o periodistas eran hombres. Afortunadamente, hoy la presencia cada vez más importante de arqueólogas, y de arqueólogos más sensibilizados con la perspectiva de género, hace que estas interpretaciones y representaciones se vayan matizando. Sin embargo, es evidente que queda mucha pedagogía por hacer.

Aspectos como el papel de la mujer en la Prehistoria, las relaciones de género, los modelos de familia, la alimentación de aquellas comunidades o el hecho de formar parte de una especie migrante por naturaleza, son algunos de los temas que tratamos en las conferencias, actividades y talleres que organizamos en la Institució Milà i Fontanals del CSIC. Desde hace años investigamos sobre los enterramientos neolíticos de individuos masculinos, femeninos e infantiles para aproximarnos a algunas de estas cuestiones. Así, las diferencias en inversión de trabajo y tiempo en el ajuar y en la construcción de las tumbas indican que debían ser sociedades con una incipiente jerarquía. Asimismo, los estudios de dieta demuestran que a veces se daban ciertas desigualdades sociales también en el acceso a ciertos alimentos.

La divulgación de estos trabajos debe servir para estimular una actitud reflexiva y crítica ante las informaciones y estereotipos que aparecen en algunos medios de comunicación, libros, museos, etc. Conocer nuestro pasado nos permitirá entender mucho mejor nuestro presente.

 

* Juan F. Gibaja, Ariadna Nieto y Millán Mozota son investigadores de la Institución Milà y Fontanals del CSIC. Trabajan desde hace años en divulgación científica para todo tipo de públicos y colectivos, algunos de ellos ajenos habitualmente a las actividades de difusión (personas con diversidad funcional, de la tercera edad, en riesgo de exclusión social o inmigrantes recién llegados a nuestro país).

 

¿Conoces las tierras raras? Son 17 y algunas te acompañan cada día

Por Mar Gulis (CSIC)*

¿Has oído hablar del europio? ¿Y del gadolinio? ¿O quizá te suene el neodimio? Si alguna de tus respuestas es afirmativa, seguramente querrás saber más de estos y otros elementos de las tierras raras. Si no has escuchado nunca esos nombres, te sorprenderá averiguar que el europio está presente en tus billetes de euro para evitar falsificaciones, que el gadolinio se inyecta a los pacientes durante las resonancias magnéticas para detectar un cáncer, o que el neodimio entra en contacto con nuestras orejas cuando usamos auriculares. El investigador del CSIC Ricardo Prego Reboredo cuenta estas y otras muchas curiosidades en su libro Las tierras raras (Editorial CSIC-Los libros de la Catarata), donde se remonta a los primeros hallazgos de estos elementos químicos.

Fue a finales del siglo XVIII cuando, en el pequeño pueblo de Ytterby (Suecia), se abrió una mina para extraer feldespato, un mineral utilizado en la industria cerámica y del vidrio. Prego relata que un joven teniente del ejército sueco, Karl Arrhenius, visitó la mina y se fijó en un extraño trozo de roca negra que parecía carbón. Tras muchas vicisitudes y los trabajos de varios químicos, a partir de ese trozo de mineral se aislaron por primera vez varios elementos de las tierras raras: itrio, terbio y erbio. Pese a los avances, en el siglo XIX aún reinaba el desconcierto entre los mineralogistas y químicos que investigaban los nuevos elementos químicos y trataban de descifrar sus propiedades para ubicarlos en la tabla periódica. Tuvo que comenzar el siglo XX para que pudiera completarse “el mágico número de 17 elementos” de esta curiosa familia química: escandio, itrio, lantano, cerio, praseodimio, neodimio, prometio, samario, europio, gadolinio, terbio, disprosio, holmio, erbio, tulio, iterbio y lutecio. Según la Unión Internacional de Química Pura y Aplicada, todos ellos, excepto el escandio y el itrio, pertenecen al grupo de los lantánidos, situados en la parte inferior de la tabla periódica.

 

Este año se conmemora el 150º aniversario de la creación de la tabla periódica por el científico ruso Dimitri Mendeleiev. La Asamblea General de la ONU ha proclamado 2019 como el Año Internacional de la Tabla Periódica / Tximitx

En cualquier caso, no fue hasta después de la II Guerra Mundial cuando se avanzó en las aplicaciones de estos minerales. Desde entonces, la utilización de las tierras raras -denominadas así porqueen un principio los minerales que las contenían eran muy escasos y, además, todos ellos había que buscarlos en Escandinavia- se ha multiplicado exponencialmente, utilizándose en medicina y todo tipo de procesos industriales y desarrollos tecnológicos. Por ejemplo, el cerio aún se usa en cremas para el tratamiento de quemaduras, y también en catalizadores. El escandio forma parte de aleaciones empleadas para fabricar componentes de la industria aeroespacial. Uno de los elementos menos abundantes es el tulio, demandado como fuente de radiación en equipos de rayos X portátiles y láseres de estado sólido. El neodimio, el holmio y el disprosio son necesarios en algunos tipos de cristales de láser. Igualmente han sido exitosos los antiinflamatorios basados en compuestos con samario, y, en general, son varias las tierras raras utilizadas en la fabricación de teléfonos móviles, ordenadores, baterías, imanes y electrodomésticos.

Desde los años 60, las transformaciones económicas y tecnológicas han ido de la mano de la explotación de estos minerales, hoy considerados esenciales para las tecnologías del futuro. He aquí la paradoja: dependemos de ellos, pero pocas personas los conocen. “Las tierras raras están omnipresentes en nuestra sociedad de alta tecnología hasta el punto de que se podría hablar de una Edad de las Tierras Raras con la misma propiedad que lo hacemos de las edades de Bronce o de Hierro”, explica Prego. “Sin embargo, esos elementos químicos no ocupan portadas en los periódicos”, agrega.

Desde el centro superior, en el sentido de las agujas del reloj: praseodimio, cerio lantano, neodimio, samario y gadolinio / Peggy Greb, US department of agriculture

La atención mediática podría aumentar, pues son minerales estratégicos para los Estados. Tanto es así que su explotación genera crisis económicas y tensiones geopolíticas entre países. Ese ‘lado oscuro’ de las tierras raras tiene distintas ramificaciones; por ejemplo, su utilización por la industria militar para la fabricación de los misiles teledirigidos. Pero quizá sea la dimensión ambiental la más preocupante. Aunque los elementos de las tierras raras se emplean en las denominadas tecnologías verdes (en la fabricación de aerogeneradores, paneles fotovoltaicos, coches eléctricos o iluminación LED), su extracción y procesamiento provocan graves impactos ambientales. Precisamente por ello, en Galicia, donde hay una importante concentración, Prego no ve de momento factible su explotación.

Las tierras raras se extraen de minas a cielo abierto –China concentra la mayor producción– a través de procesos en los que se emiten gases contaminantes a la atmósfera, se utilizan agresivos productos químicos y se filtran aguas residuales a ríos y lagos. A partir de ahí, puede darse el círculo vicioso que ya conocemos: deterioro del entorno natural y la producción agroalimentaria, problemas de salud en las zonas afectadas y desplazamientos masivos de población. Pero todo esto daría para varios post.

 

* Este post se basa en varios fragmentos del libro Las tierras raras (CSIC-Los libros de la Catarata), escrito por el investigador Ricardo Prego Reboredo, del Instituto de Investigaciones Marinas de Vigo.

Canibalismo… y otras formas de interacción galáctica

Por Mariano Moles y Mar Gulis (CSIC)*

Las galaxias son sistemas de estrellas, gas y polvo encerrados en un enorme halo de materia oscura. La mayoría de ellas forman sistemas múltiples en los que viven y evolucionan. De hecho, es complicado encontrar galaxias verdaderamente aisladas, es decir, que hayan evolucionado fuera de la influencia de otras, al menos durante los últimos dos mil millones de años. La interacción de las galaxias con otras del entorno, aun si esta no es violenta ni destructiva, juega un papel esencial en sus propiedades.

Vamos a considerar tres situaciones que nos permiten visualizar, brevemente, lo que puede significar esta interacción gravitatoria para la evolución de las galaxias.

Interacción secular

En las regiones externas de los cúmulos de galaxias o de grupos dispersos, la interacción entre galaxias no es en general violenta sino que va actuando a lo largo del tiempo, produciendo transformaciones paulatinas. Incluso las galaxias que están en situación de interacción suave presentan propiedades claramente distintas a las de las galaxias aisladas en las masas, los tamaños e incluso los colores fotométricos. Las galaxias aisladas son más pequeñas, menos masivas y más azuladas.

Galaxy Cluster Abell 1689. Los cúmulos de galaxias, en tanto que entidades gobernadas por la interacción gravitatoria, son lugares ideales para estudiar la evolución de las galaxias bajo los efectos de esa interacción. / hubblesite

Galaxy Cluster Abell 1689. Los cúmulos de galaxias, en tanto que entidades gobernadas por la interacción gravitatoria, son lugares ideales para estudiar la evolución de las galaxias bajo los efectos de esa interacción. / hubblesite

Choques de galaxias

Aunque no es muy frecuente, en los cúmulos también se producen agrupamientos y hasta colisiones destructivas de galaxias. Esto suele ocurrir en las etapas iniciales de la formación de la parte central del cúmulo. Pero hay casos, como el de la galaxia IC 1182, en los que la colisión de dos galaxias se produce en etapas posteriores.

¿Qué sucede en estas colisiones galácticas? Sabemos que las estrellas por su lado y la materia oscura por el suyo solo responden a las fuerzas gravitatorias. Además, lo que podríamos llamar gas de estrellas, es decir, el conjunto de todas las estrellas con sus velocidades respectivas, es de muy baja densidad. En efecto, la distancia media entre dos estrellas es más de un millón de veces superior al tamaño medio de estas. De modo que la probabilidad de colisión entre estrellas de una galaxia es, por lo general, muy baja.

Cuando dos galaxias colisionan, sus respectivos gases de estrellas pueden pasar uno a través del otro casi inalterados salvo por efectos de larga escala cuando una de ellas es capturada por otra y empieza a orbitar en espiral a su alrededor. Entonces pueden producirse largas colas o apéndices que se extienden a gran distancia de la galaxia y que evidencian la interacción. También el gas puede ser arrancado del cuerpo de la galaxia y formar apéndices y estructuras de gran escala. Magníficas muestras de esos procesos son la galaxia que se denomina, por su forma, del renacuajo (Tadpole Galaxy), catalogada como NGC 4676; y la galaxia llamada de los ratones (Mice Galaxy).

La galaxia IC 1182 está ya en una fase avanzada del proceso de fusión. La larga cola de marea atestigua la violencia del choque. / eso

La galaxia IC 1182 está en una fase avanzada del proceso de fusión. La larga cola de marea atestigua la violencia del choque. / eso.org

Por otra parte, la interacción violenta altera fuertemente el ritmo de formación estelar de una galaxia y provoca una aceleración notable de su evolución. Quizá uno de los ejemplos más espectaculares de este proceso es el que puede apreciarse en la galaxia de las Antenas. La extensión total abarcada por las dos antenas es de casi cuatro veces la dimensión de nuestra Galaxia (Vía Láctea). En la zona central capturada por el telescopio espacial Hubble se observa una intensísima formación estelar, con más de 1.000 cúmulos jóvenes de estrellas.

El resultado final de esas grandes colisiones es una única galaxia de forma esferoidal, relajada y exhausta, evolucionando tranquilamente a medida que sus estrellas jóvenes desaparecen y las demás van envejeciendo. A veces ocurre que las colisiones no sólo dan lugar a nuevas estrellas, sino también a nuevas galaxias que se van construyendo en las colas de marea o en los aledaños de la zona más directamente afectada por la interacción. Estas galaxias, llamadas enanas de marea, por producirse en esas situaciones, se han detectado en el apéndice de IC1182 o en las colas producidas en el Quinteto de Stephan.

Canibalismo galáctico

Cuando una de las galaxias que interaccionan es mucho mayor que la otra puede ocurrir que la segunda acabe siendo engullida por la primera, sin que se produzcan los fenómenos que acabamos de ilustrar, propios de colisiones entre dos galaxias más o menos similares. Los signos de este canibalismo galáctico son mucho menos espectaculares y difíciles de detectar. Por eso el estudio de este fenómeno y su importancia para la evolución de las galaxias es reciente.

Simulación por ordenador del proceso de canibalismo: una galaxia enana está siendo desorganizada para ser luego engullida por una galaxia como la Vía Láctea. / astro.virginia.edu

Simulación por ordenador del proceso de canibalismo: una galaxia enana está siendo desorganizada para ser luego engullida por una galaxia como la Vía Láctea. / astro.virginia.edu

En nuestro Grupo Local de galaxias hay tan solo tres masivas: Andrómeda, la Vía Láctea y M33 (mucho menos masiva que las otras dos), mientras que existen cerca de 50 galaxias enanas, poco masivas, pequeñas, meros satélites de las dominantes. A lo largo de la evolución del sistema puede ocurrir que una de esas galaxias sea atrapada definitivamente por una de las masivas y acabe siendo tragada por ella. Las estrellas de la galaxia canibalizada van a constituir una corriente estelar en la galaxia grande, que solo con muy sofisticados medios se puede detectar, medir y caracterizar. Aunque de momento solo podemos conjeturarlo, ese parece ser el caso de la galaxia enana Sagitario, que podría estar siendo engullida por nuestra galaxia.

 

* Este texto está basado en contenidos del libro de la colección ¿Qué sabemos de? (Editorial CSIC – Los Libros de la Catarata) ‘El jardín de las galaxias’, escrito por Mariano Moles.

Fibra óptica: cómo tus ‘mails’ pueden viajar a 200.000 km/s

Por Mar Gulis (CSIC)*

Cable de fibra óptica iluminado con un puntero láser / Hustvedt

Sabemos que la velocidad de la luz alcanza los 300.000 kilómetros por segundo en el vacío. Ese es el límite máximo que determinan las leyes físicas. Nada en el universo puede viajar más rápido. Por eso, el reto de las tecnologías de telecomunicaciones es alcanzar ese límite: lograr que la información, los millones de datos que intercambiamos cada día en mails, llamadas, compras on line y transacciones de todo tipo, ‘viajen’ a la velocidad de la luz.

De momento, la fibra óptica es la tecnología que más se ha acercado. A partir de la herencia del telégrafo y el teléfono, “los cables de fibra óptica han reemplazado a los hilos de cobre porque pueden transportar una mayor cantidad de datos y más deprisa que su contraparte electrónica”, explica el libro Descubriendo la luz. Experimentos divertidos de óptica (CSIC-Los libros de la Catarata). Aun así, las fibras ópticas tienen limitaciones. No pueden reproducir el vacío del espacio, donde, al no existir atmósfera, la luz se mueve sin resistencia, de ahí que a través de la fibra los datos viajen a ‘tan solo’ 200.000 kilómetros por segundo (la cifra es aproximada).

En las comunicaciones ópticas se envía información codificada en un haz de luz por un hilo de vidrio o de plástico muy procesado. “Este sistema fue originalmente desarrollado para los endoscopios en la década de los 50, con el objetivo de ayudar a los médicos a ver el interior del cuerpo humano sin necesidad de abrirlo. En 1960, los ingenieros encontraron una forma de utilizar esta misma tecnología para transmitir llamadas telefónicas a la velocidad de la luz”, continúa el libro.

Sin embargo, las leyes físicas que explican el funcionamiento de esta tecnología se descubrieron tiempo atrás. Ya en el siglo XIX, el físico irlandés John Tyndall demostró a la Royal Society en Londres que la luz podía viajar a través de un chorro de agua. En óptica, este fenómeno se conoce como reflexión interna, y se produce cuando un rayo de luz atraviesa un medio con un índice de refracción menor que el índice de refracción en el que este se encuentra. Así, el haz luminoso se refracta de tal modo que no es capaz de atravesar la superficie entre ambos medios, reflejándose completamente. La reflexión interna total solo se produce en rayos que están viajando de un medio de alto índice refractivo hacia medios de menor índice de refracción. Precisamente este principio explica la conducción de la luz a través de la fibra sin que haya fugas.

La reflexión total puede realizarse mediante el experimento de Tyndall. En la imagen, un puntero láser (a la dcha.) atraviesa el plástico del recipiente y el agua que hay en su interior, para ‘salir’ por el agujero realizado previamente en el recipiente. Al atravesar los dos medios, la luz queda confinada dentro del chorro viajando con su misma curvatura / Juan Aballe / CSIC-IOSA

Una fibra óptica está formada por un núcleo, que es por donde viajan las señales luminosas, y una cubierta o revestimiento transparente. Intuitivamente, cualquiera pensaría que la luz que transita por este tipo de hilos transparentes se saldría por los bordes. Sin embargo, los fotones (partículas elementales en que se puede dividir un rayo de luz) viajan por el núcleo de la fibra óptica rebotando contras sus paredes constantemente, como una pelota entre las paredes de vidrio de una pista de squash. De este modo el haz de luz  queda confinado y se propaga sin que se produzcan pérdidas de información. Esto es posible porque el material interno tiene un índice de refracción más grande que el material que lo rodea.

Ocurre algo parecido con el agua: si un haz de luz incide en un chorro de agua bajo un cierto ángulo, la luz quedará confinada dentro del chorro, viajando con su misma curvatura, tal y como demostró Tyndall en su experimento. La superficie agua-aire actuaría como un espejo en el que la luz se refleja y, por tanto, sigue la trayectoria del líquido. En una fibra óptica la luz viaja de forma similar: va rebotando por sus paredes internas, pero manteniendo la dirección del cable, sin detenerse y pudiendo recorrer miles de kilómetros en segundos.

 

*Este post se basa en varios fragmentos del libro Descubriendo la luz. Experimentos divertidos de óptica (CSIC-Los libros de la catarata), coordinado por María Viñas Peña.