Entradas etiquetadas como ‘Schrödinger’

Nueve libros del CSIC para disfrutar de la ciencia, la historia o el arte

Por Mar Gulis

¿Sabías que el físico Erwin Schrödinger, el creador de la famosa paradoja del gato, fue también poeta? ¿O que en el Tierra hay ocho millones de especies sin contar a las bacterias? ¿Habías oído hablar de los juicios sumarísimos a los que fueron sometidas las personas represaliadas por el franquismo? Estos son solo algunos de los temas que abordan los nuevos libros publicados por el Consejo Superior de Investigaciones Científicas (CSIC) en 2023.

En este post te presentamos las novedades de Editorial CSIC escritas para un público amplio o no necesariamente especializado: libros en los que podrás descubrir aspectos poco conocidos de la historia de la ciencia, como la contribución de las mujeres a la ilustración botánica; explorar los últimos avances científicos en los ámbitos de la nutrición o la búsqueda de vida extraterrestre; o acercarte a un pasado no tan distante, como el de las expediciones militares españolas en Asia a finales del siglo XVIII.

Caseta del CSIC en la Feria del Libro de Madrid / Álvaro Minguito

En todos los casos se trata de libros escritos por especialistas y revisados por pares que podrás encontrar en librerías, el portal de edición electrónica del CSIC o en la caseta de Editorial CSIC en la Feria del Libro de Madrid. Varios de ellos, los marcados con asterisco, también se presentarán el martes 30 de mayo, a las 19:00, en el Pabellón Europa de la Feria. ¡No te los pierdas!

Historias de ciencia, arte y literatura

Ellas ilustran botánica*. Sorteando infinidad de dificultades, las mujeres han estudiado y difundido la flora a lo largo de la historia. Este libro da cuenta de ello reproduciendo más de 50 de obras botánicas de gran valor realizadas por mujeres entre el siglo XVII y la actualidad. Dibujos, grabados, pinturas y fotografías se entremezclan con ensayos y biografías que revelan “cómo se han ido trazando los caminos de la igualdad” en el ámbito de la ilustración botánica. Toya Legido, profesora de Bellas Artes en la Universidad Complutense de Madrid, coordina esta cuidada monografía, en la que historia, sociología y cultura ayudan a desentrañar las relaciones entre ciencia, arte y género.

Fragmento de ‘Los bosques más antiguos?, ilustración incluida en ‘Ellas ilustran botánica’. / © Aina Bestard

Schrödinger, poetaConocido por ser uno de los padres de la física cuántica y el creador de la paradoja más célebre de su disciplina, Erwin Schrödinger tuvo una vida apasionante en la que también cultivó la filosofía y la poesía. En Erwin Schrödinger y el salto espacios-tiempo de Galileo Galilei, la poeta Clara Janés presenta el pensamiento y la obra del Schrödinger humanista. Las relaciones del científico con intelectuales como Ortega y Gasset o Xavier Zubiri o su fascinación con España son otros de los temas tratados por la autora. La obra se ha publicado conjuntamente con ‘Gedichte’ [poemas] y Fragmento de un diálogo inédito de Galileo, una selección de poemas y textos literarios, algunos inéditos, escritos por Schrödinger.

Santiago Ramón y Cajal. Hasta donde quieras llegar. Cajal fue muchas otras cosas además de pionero de las neurociencias y Premio Nobel de Medicina. Esta breve biografía dirigida al público juvenil recorre su trayectoria científica y cuenta aspectos de su vida personal menos conocidos. Los historiadores Elisa Garrido Moreno y Miguel Ángel Puig-Samper reseñan que el prestigioso científico español fue también un niño travieso que trepaba a los árboles, un adolescente rebelde al que le gustaba la pintura o un joven que trabajaba con tesón su musculatura. Publicado por primera vez en 2021, el libro ha sido reeditado este año en acceso abierto con motivo de la celebración del Año Cajal.

Autorretrato de Ramón y Cajal realizado en su juventud.

Erudición sobre hormigas y rositas: acerca de los libros y las mujeres que los escriben*. ¿Qué diferencias hay entre la novela de alguien que se dedica en exclusiva a la escritura y la de alguien que tiene otro trabajo y cuida de su familia? En este ensayo publicado en abierto, la escritora y editora Elena Medel reflexiona acerca de cómo el género y la clase social inciden sobre la escritura. La autora aborda, sin esconder sus “costuras y contradicciones”, cuestiones como si existe o no la literatura femenina; y también dialoga sobre las circunstancias que rodean al hecho de escribir con escritoras de distintas épocas y procedencias, como Virginia Woolf, Gertrude Stein o Carmen Martín Gaite.

Los avances de la ciencia, para todos los públicos

La vida y su búsqueda más allá de la Tierra. ¿La vida extraterrestre será similar o muy distinta a la que conocemos en la Tierra? En este libro de divulgación, Ester Lázaro explica que hay “buenas razones” para creer en la vida extraterrestre, y defiende que probablemente será muy diferente a cómo la imaginamos. La investigadora del CSIC se pregunta qué características tendría que tener un objeto que halláramos fuera de la Tierra para ser considerado un ser vivo, y recorre algunos de los lugares del cosmos más prometedores para encontrar vida: Marte, las lunas de Júpiter o los exoplanetas situados en la zona de habitabilidad de sus respectivas estrellas.

Las moléculas que comemos. Azúcares, hidratos de carbono, fibra, grasas, minerales, proteínas y vitaminas son los componentes básicos de los alimentos, las moléculas que comemos. ¿Qué propiedades tienen? ¿Por qué son importantes para nuestro desarrollo y salud? ¿Cómo proporcionan a los alimentos sus diferentes aromas, colores, sabores y texturas? ¿Qué tipo de reacciones químicas se producen al cocinar? Esta guía didáctica coordinada por las investigadoras del CSIC Inmaculada Yruela e Isabel Varela responde a estas y otras preguntas sobre la alimentación y las moléculas presentes en nuestra dieta. El libro incluye sencillas explicaciones y una amplia variedad de experimentos y talleres que pueden hacerse tanto en la cocina de casa como en el colegio.

Cómo se meten ocho millones de especies en un planeta. ¿Por qué hay monos en Sudamérica? ¿Por qué en el ecuador hay más especies que en los polos? ¿Por qué se dice que hay ocho millones de especies diferentes en el planeta y no solo cien o cien millones? ¿Por qué la especie más competitiva no gana a todas las demás y vive sola dominando el mundo? Para responder estas preguntas, el investigador del CSIC Ignasi Bartomeus realiza un recorrido a través de la historia de la ecología, una disciplina nacida hace apenas 150 años. En este libro de la colección ¿Qué sabemos de? presenta las principales leyes que regulan las comunidades ecológicas y los cuatro mecanismos básicos que determinan los ecosistemas: la evolución, la dispersión, las regulaciones bióticas y abióticas y, por último, la suerte.

Un pasado muy presente

Tragedia en tres actos. Los juicios sumarísimos del franquismo*. Durante la guerra civil y la posguerra, más de medio millón de personas fueron sometidas a juicios sumarísimos: procedimientos regidos por la jurisdicción militar, carentes de garantías y en los que la mayoría de las sentencias supusieron condenas a muerte. El antropólogo de la UNED Alfonso M. Villalta Luna reconstruye la dinámica de estos procesos y las vivencias de sus protagonistas: los presos que desde el interior de la cárcel intentan escapar de la muerte, los militares que sobre el estrado buscan una condena en el consejo de guerra y los familiares y amigos, que realizan viajes y gestiones repletos de incertidumbres y adversidades con el fin de salvar la vida de sus seres queridos.

Consejo de guerra contra los supuestos integrantes de la llamada ‘Checa de Bellas Artes’. / Revista Semana.

La Escuadra de Asia. Entre 1795 y 1803, mientras el mundo entero está en guerra, una pequeña división es enviada a Filipinas para proteger los intereses españoles. Capitaneada por Ignacio María Álava, la Escuadra de Asia tendrá que hacer frente a una misión compleja y lidiar con huracanes, asaltos, incendios, persecuciones, engaños, corruptelas y rivalidades. El historiador Pablo Ortega-del-Cerro relata las hazañas y vicisitudes de la expedición y se adentra en un periodo especialmente convulso, caracterizado por la rivalidad militar y económica entre Gran Bretaña y España. Este episodio excepcional le permite observar el nacimiento de una nueva realidad global.

Cartel del CSIC para la Feria del Libro 2023. / Irene Cuesta

William R. Hamilton: el niño prodigio que emuló a Arquímedes

Por Sergio Barbero (CSIC) *

No es usual que un adolescente de 17 años se sienta interpelado a ocupar un lugar destacado en la historia de la ciencia. Y menos aún que semejante sentimiento acabe convirtiéndose en realidad, haciendo veraz el viejo aforismo de que sólo quien persigue con ahínco sus sueños es capaz de alcanzarlos. Esta es la historia de William Rowan Hamilton (1805-1865).

Retrato de Hamilton. Imagen de dominio público.

Hamilton fue educado por su tío James, un erudito en lenguas clásicas graduado en el Trinity College de Dublín. No es de extrañar, pues, que la educación del joven William tuviese un especial énfasis en el aprendizaje de idiomas. A muy temprana edad quedó patente la increíble capacidad de William: a los diez años –según su padre Archibald– conocía y hablaba, en mayor o menor grado, hebreo, persa, árabe, sánscrito, caldeo, siriaco, indostano, malayo, bengalí, griego, latín y varias lenguas europeas modernas. Dado el don de su hijo, Archibald aspiraba a que en el futuro William hiciese carrera con la prestigiosa Compañía Británica de las Indias Orientales. Sin embargo, la aritmética se interpuso a los deseos del padre. William descubrió que estaba dotado no sólo para aprender lenguas sino también para los cálculos aritméticos.

Su tío empezó a preparar a William para su entrada en el Trinity College. Allí, a pesar de las reticencias de James, Hamilton comenzó a estudiar distintas ramas de las matemáticas y mostró un interés especial por la aplicación de la geometría al estudio de la propagación de la luz. Desde tiempos de Euclides se había utilizado un modelo geométrico de la luz que postulaba que ésta se propagaba como una familia de líneas rectas, denominadas rayos de luz.

Hamilton no se limitaba a estudiar lo que se conocía sobre la geometría de la luz sino que, a pesar de su juventud (17 años), aspiraba a crear algo nuevo. Era plenamente consciente de su valía intelectual y prefería las ciencias naturales a los estudios humanísticos, porque, según escribió: “¿Quién no preferiría tener más la fama de Arquímedes que la de su conquistador Marcelo, o la de cualquier erudito de los clásicos, cuya máxima ambición fuese estar familiarizados con los pensamientos de otros hombres? […] Las mentes poderosas de todos los tiempos se han unido para encumbrar el vasto y hermoso templo de la Ciencia, inscribiendo sus nombres en caracteres imperecederos; pero el edificio no está finalizado: no es aún demasiado tarde para añadir un nuevo pilar u ornamento. No he llegado apenas a los pies de este templo, pero aspiro, un día, a alcanzar su cima.” Tal postura no implicaba que Hamilton despreciase las humanidades. De hecho siempre amó la poesía, a la que veía como fruto del mismo espíritu creativo del que emana la ciencia.

Sus estudios sobre óptica fructificaron. En 1823 escribía a su primo: “En óptica he hecho un descubrimiento muy curioso”. Tan sólo un año después, Hamilton mandaba su primer artículo científico –titulado ‘Sobre las cáusticas’– a la Royal Irish Academy.  Durante los siguientes años Hamilton establecería una teoría completamente original sobre la óptica geométrica basada en un nuevo principio determinante que  descubrió y denominó “Principio de acción constante”. Se sabía que una familia de rayos de luz siempre tiene asociada una superficie ortogonal a todos ellos que se denomina frente de onda. Étienne-Louis Malus (1775-1812) demostró que una familia de rayos con un frente de onda asociado seguía manteniéndolo a pesar de que esos rayos sufriesen una reflexión en un espejo o un cambio de medio (lo que se llama refracción). Pues bien, el principio de acción constante de Hamilton establecía que esa misma familia de rayos, al propagarse por un sistema de lentes o espejos, cumple la propiedad de que todos los rayos llegan a la superficie del frente de onda al mismo tiempo. La figura 2 muestra un esquema ilustrativo de este principio. La familia de rayos asociada al frente de onda W al refractarse en la superficie R se transforma en una nueva familia de rayos con el frente de onda W’. El principio que descubrió Hamilton establece que los rayos A, B, C de W llegan a los puntos A’, B’, C’ pertenecientes a W’ invirtiendo para ello el mismo tiempo. Esto tiene unas implicaciones muy profundas y prácticas en el ámbito de la óptica geométrica y por ende en el diseño de sistemas ópticos, como cámaras, telescopios, etc.

Esquema explicativo del Principio de acción constante.

Además, Hamilton se dio cuenta de que el formalismo que había creado para la óptica geométrica era válido para reformular la mecánica newtoniana. Así lo expuso en el que se convertiría en su más importante artículo científico: ‘Sobre un método general de la dinámica’ (1834). Allí definía una función, el denominado concepto Hamiltoniano, que describía por completo la evolución de un sistema mecánico. Paradójicamente, a pesar de que Hamilton ideó su teoría matemática para describir la mecánica clásica, su formulación alcanzaría su clímax precisamente con la crisis de esta misma mecánica clásica y la aparición de la mecánica cuántica, para la cual estaba especialmente adaptada. Tal fue así que Erwin Schrödinger (1887-1961), creador de la mecánica cuántica ondulatoria, diría de él: “El Principio Hamiltoniano se ha convertido en la piedra angular de la física moderna […] Su famosa analogía entre la mecánica y la óptica prácticamente anticipó la mecánica ondulatoria, que no tuvo que añadir mucho a sus ideas sino simplemente tomarlas en serio. Por lo tanto Hamilton es uno de los más grandes hombres de ciencia que el mundo ha creado”.

Hamilton consiguió su sueño: labrar para siempre su nombre en el templo sagrado de la ciencia. El Hamiltoniano es hoy en día, como afirmó Schrödinger, uno de los conceptos cruciales de la física moderna.

 

*Sergio Barbero Briones es investigador del CSIC en el Instituto de Óptica (CSIC).