Entradas etiquetadas como ‘bioquímica’

Proteínas recombinantes: una historia de mutantes zombis al servicio de la ciencia

Por María Zapata Cruz, Laura Tomás Gallardo y Alejandro Díaz Moscoso (CSIC)*

Las proteínas son las moléculas que más funciones diferentes desempeñan en los seres vivos. Entre muchas otras cosas, forman nuestros órganos y tejidos, como hace el colágeno; refuerzan nuestras defensas en forma de anticuerpos; y realizan el metabolismo, como las enzimas que transforman los nutrientes en energía y en otras moléculas necesarias para la vida.

Además, las proteínas resultan muy útiles fuera del organismo: la prueba PCR (Reacción en cadena de la Polimerasa), que se hizo famosa durante la pandemia de COVID-19, o las herramientas de edición genética CRISPR-Cas, conocidas como ‘tijeras moleculares’, basan su funcionamiento en estos ingredientes básicos de la vida. Y lo mismo ocurre con medicamentos como la insulina y algunas vacunas.

Por todo ello, fabricar proteínas despierta un gran interés científico e industrial. Necesitamos producirlas para hacer funcionar esas aplicaciones y para analizar su comportamiento en condiciones controladas, algo que hacemos en el Centro Andaluz de Biología del Desarrollo con el objetivo de conocer mejor su funcionamiento.

Sin embargo, crear una proteína en el laboratorio enlazando uno a uno los aminoácidos que la componen puede resultar muy lento y laborioso: en cada proteína se suelen unir cientos de estas moléculas formando una cadena. Una solución muy práctica para obtener proteínas es ‘secuestrar’ la maquinaria natural de las células para que hagan el trabajo, es decir, conseguir células que fabriquen las proteínas que nos interesan.

Domesticando bacterias

Vamos a explicar este procedimiento con algo más de detalle. Para ello, necesitamos saber que las instrucciones para fabricar una proteína se encuentran en el ADN. En el código genético, hay un gen con las indicaciones para crear cada proteína uniendo de una forma determinada los veinte tipos de aminoácidos que existen en la naturaleza.

Los aminoácidos se unen unos a otros químicamente mediante un ‘enlace peptídico’. Podríamos plantearnos tener veinte botes en el laboratorio, cada uno con un aminoácido distinto, e ir uniéndolos según nos indique el gen correspondiente para fabricar la proteína que nos interesa. Pero, como veíamos, los seres vivos poseen una maquinaria celular mucho más eficaz para formar estos enlaces.

Se pueden utilizar distintos tipos de células para fabricar proteínas, pero la más popular entre los científicos es, sin duda, Escherichia coli, una bacteria que vive de forma natural en el intestino de los seres humanos y otros animales sanos. En las últimas décadas, hemos aprendido a criar esta bacteria en el laboratorio y ha resultado ser una ‘mascota’ muy agradecida que, además, es muy fácil de cuidar.

Puede vivir en un rango amplio de temperaturas; incluso permanecer congelada durante largos periodos de tiempo y después recuperar su actividad normal como si nada. Además, su alimentación es muy barata y crece muy rápido, tanto que es capaz de duplicarse en apenas veinte minutos, lo que permite tener un ‘ejército’ de millones de bacterias en un solo día.

Pero lo más importante es que también hemos aprendido a introducir genes de otros seres vivos en Escherichia coli de forma muy sencilla (lo que se conoce como ‘ADN recombinante’). Esto permite meter en la bacteria un gen con las instrucciones para fabricar una proteína de cualquier otro ser vivo, es decir, crear un mutante.

Da igual si el gen es de otra bacteria, de un pez, una mosca, un ratón, una planta, un lobo o un ser humano. Como las bases moleculares de la vida, el lenguaje del ADN y la síntesis de proteínas son iguales en todos los seres vivos de este planeta, la maquinaria de las bacterias es capaz de construir cualquier cadena de aminoácidos (proteína) independientemente de su origen genético.

Sin embargo, no todo es tan sencillo. Por muy pequeñas que sean, las bacterias no son tontas y no se van a poner a sintetizar, así por las buenas, una proteína extraña que no les sirve para nada o que incluso podría hacerles daño. Para resolver este problema, los investigadores han conseguido bacterias capaces de leer el gen de interés solo cuando queremos que lo lean.

Añadiendo una sustancia específica al cultivo de bacterias, estas pierden parcialmente el control de sus actos y empiezan a fabricar la proteína que queremos como si en ello les fuese la vida. Y así es como conseguimos tener un ejército de bacterias mutantes y zombis que realiza el duro trabajo de fabricar la proteína que nos interesa.

Placas de cultivo con distintas bacterias mutantes. Cada puntito blanco es una colonia de bacterias compuesta por millones de células que ha crecido a partir de una sola célula.

¿Y qué hay de lo mío?

Finalmente, hay un último problema que resolver. La gran mayoría de las veces, producir una sola proteína extraña no es suficiente para que las bacterias cambien de aspecto. No les salen alas, ni garras, ni ojos, ni nada que nos permita distinguirlas. A simple vista, una bacteria normal y una bacteria mutante son exactamente iguales. Para saber si nuestras bacterias mutantes han fabricado la proteína que queríamos, hay que destruir las bacterias y ver si, entre toda la mezcla de proteínas que normalmente fabrican para vivir, se encuentra la nueva.

Se pueden utilizar distintas características que nos permitan distinguir unas proteínas de otras en esta mezcla. Una de las características más utilizadas es su tamaño. En cualquier célula podemos encontrar proteínas desde muy grandes hasta muy pequeñas, según lo larga que sea la cadena de aminoácidos que las forman. Y como la secuencia de aminoácidos de la proteína que nos interesa la podemos conocer a partir del gen que previamente hemos introducido en las bacterias, podemos calcular el tamaño que tendrá.

Para separar las proteínas por su tamaño, utilizamos una técnica llamada ‘electroforesis’. Etimológicamente, este término proviene de la unión de los vocablos ‘electro-’, que hace referencia al uso de electricidad, y ‘-foresis’, que en griego significa ‘transporte’. La técnica consiste en poner la mezcla de proteínas en un medio que hace que adquieran carga negativa. Después, se aplica una corriente eléctrica a la mezcla que hace que las proteínas cargadas negativamente se desplacen a un polo positivo (ánodo).

En su camino, las obligamos a pasar por un gel que forma una red de microtúneles. Al encontrarse con este obstáculo, las proteínas pequeñas serán capaces de avanzar mucho más rápido que las grandes, que se irán quedando retrasadas. Más retrasadas cuanto más grandes sean. Así, al cortar la corriente eléctrica y ver el resultado de la ‘carrera’, observaremos bandas que corresponden a proteínas de distintos tamaños. Las más pequeñas cerca del polo positivo y las más grandes cerca del punto de partida.

Comparando el patrón de bandas de bacterias naturales con el de bacterias mutantes, deberíamos poder ver una única diferencia. Una proteína que esté en la mezcla de bacterias mutantes, que no esté en las naturales y que tenga el tamaño calculado para la proteína que nos interesa. Si es así, ¡¡premio!!, habremos conseguido que las bacterias mutantes zombies fabriquen la proteína que necesitábamos.

Ejemplos de electroforesis de proteínas. Cada una tiene 3 carriles: uno con una muestra de referencia de tamaños (Ref), otro con la mezcla de bacterias naturales (Nat) y otro con la mezcla de bacterias mutantes (Mut). La proteína nueva se indica con una flecha.

* María Zapata Cruz, Laura Tomás Gallardo y Alejandro Díaz Moscoso son el equipo técnico de la Plataforma de Proteómica y Bioquímica del Centro Andaluz de Biología del Desarrollo, centro mixto del CSIC y la Universidad Pablo de Olavide de Sevilla.

¿Qué son las “enzimas promiscuas”?

Por Francisco J. Plou (CSIC)*

Las enzimas son catalizadores biológicos, o biocatalizadores, responsables de regular y acelerar de forma sustancial la velocidad de las reacciones químicas en los seres vivos. Trabajos de los químicos estadounidenses Sumner y Northrop (ambos compartieron Premio Nobel de Química en 1946, junto con Stanley) permitieron determinar que las enzimas eran proteínas. Por tanto, al igual que estas últimas, las enzimas están formadas por aminoácidos y juegan un papel crucial en casi todos los procesos biológicos. El potencial químico de un ser vivo queda definido por su información genética, y las enzimas son las entidades biológicas que convierten dicha información en acción. Dicho de otro modo, las enzimas son proteínas que incrementan la velocidad de una reacción química sin consumirse y recuperándose sin cambios esenciales. Así, las enzimas son muy eficaces y específicas, ya que cada una está especializada en procesar una reacción concreta.

En esta imagen de microscopía electrónica de barrido se pueden observar tres enzimas distintas formando complejos cristalinos con fosfato de cobre. Los complejos de proteína y sal crecen formando estructuras semejantes a algunas flores. / David Talens Perales (IATA-CSIC). FOTCIENCIA16

En esta imagen de microscopía electrónica de barrido se pueden observar tres enzimas distintas formando complejos cristalinos con fosfato de cobre. Los complejos de proteína y sal crecen creando estructuras semejantes a algunas flores. / David Talens Perales (IATA-CSIC). FOTCIENCIA16

En los últimos años, un nuevo concepto, que se contrapone a esta especificidad de las enzimas, ha adquirido un notable protagonismo: la promiscuidad. Este término nos puede evocar a relaciones poco estables o “de flor en flor” entre personas, pero también se ha he­cho un hueco en el ámbito de la bioquímica, si bien suele utilizarse en su lugar el concepto más académico de “amplia especificidad”. En el metabolis­mo cada enzima se ha especializado, a través de la evolución, en una determinada reacción química, para lo que es necesa­rio que la enzima reconozca un sustrato muy concreto. Este es el caso de la glucosa oxidasa, una enzima que solo reconoce a la glucosa y se muestra indiferente con azúcares muy similares como la galactosa o la fructosa. Por ello tiene múltiples aplicaciones en biotecnología, entre las que destaca el poder cuantificar la glucosa libre en los fluidos biológicos (sangre y orina), base de los biosensores de las personas diabéticas. Sin embargo, cada año se publican nuevos artículos en los que se reseña cómo una enzima es capaz de aceptar sustratos alternativos al original (lo que se denomina “promiscuidad de sustrato”) o, lo que resulta mucho más rompedor, catali­zar otro tipo de transformaciones químicas (lo que se conoce como “promiscuidad catalítica”). La mayoría de enzimas, entonces, son promiscuas.

¿De dónde proviene esta propiedad? Se cree que las enzimas actuales han evolucionado a partir de enzimas ancestrales que mostraban una gran promiscuidad, esto es, las primeras enzimas eran generalistas y realizaban por tanto funciones muy diversas. Así, las células no podían gastar energía en producir enzimas especializadas y preferían en­zimas multifunción, como esos sacacorchos que, además de permitirnos abrir una botella de vino, incluyen una pequeña navaja y un sinfín de accesorios. Pero con el tiempo fue nece­sario dotar a las enzimas de mayor actividad catalítica y espe­cificidad, como laboriosa “mano de obra” cada vez más especializada y eficaz. Parece ser una consecuencia evidente de la divergencia evolutiva.

Estos conceptos chocan de frente con los descritos en uno de los libros más vendidos sobre estas cuestiones en los últimos años, La enzi­ma prodigiosa, del médico Hiromi Shinya. El autor señala, con poca base científica, que en nuestro organismo “hay una enzima madre, una enzima prototipo, sin especialización. Hasta que esta enzima madre se convierte en una enzima específica como respuesta a una necesidad particular, tiene el potencial de convertirse en cual­quier enzima”.

La Mata Hari de las enzimas

Pero sigamos con nuestras enzimas promiscuas. Desde el punto de vista aplicado, la promiscuidad de sustrato presenta connotaciones de gran interés. Por un lado, para ciertos usos es deseable que las enzimas sean poco es­pecíficas. Nos referimos, por ejemplo, a su empleo en deter­gentes, donde una lipasa debe atacar cuantos más tipos de manchas de grasa, mejor, o a su utilización en descontaminación, en la que una oxidorreductasa es preferible que oxide el mayor número posible de compuestos recalcitrantes.

En cuanto a la promiscuidad catalítica, que implica que una misma enzima es funcional en reacciones que pertenecen a varias de las seis clases descritas en el cuadro de la imagen (tabla 1), es notorio el caso de la lipasa B de la levadura Candida an­tarctica. Esta enzima, a la que podríamos denominar la Mata Hari de la enzimología, se ha convertido en uno de los bio­catalizadores con mayores aplicaciones industriales. Por citar algunas: cataliza reaccio­nes diversas que incluyen la hidrólisis e interesterificación de grasas, la obtención de poliésteres, la síntesis de amidas, reso­luciones racémicas, condensaciones aldólicas, epoxidaciones y la reacción de Mannich, que se usa por ejemplo para sintetizar fármacos, entre otras cosas. Como señalan algunos científicos, “es el momento de investigar nuevas re­acciones para viejas enzimas”. Con ello aumentarán las posibilidades catalizadoras de las enzimas.

 

* Francisco J. Plou es investigador en el Instituto de Catálisis y Petroleoquímica del CSIC y autor del libro ‘Las enzimas’ (Editorial CSIC  Los Libros de la Catarata).