Archivo de la categoría ‘Biomedicina y Salud’

Células estrelladas: ‘agentes dobles’ en el hígado

Por Raquel Benítez Ruiz (CSIC)

¿Qué es una célula estrellada? ¿Cómo nos ayuda a mantener la salud del hígado? Y, sobre todo, ¿por qué a veces se desata y provoca más daño del que intenta reparar? Raquel Benítez Ruiz, investigadora del CSIC en el Instituto de Parasitología y Biomedicina ‘López Neyra’, nos lo cuenta en el vídeo y el relato que os presentamos a continuación. El audiovisual ganó la última edición del certamen ‘Yo Investigo. Yo Soy CSIC’, en la que participaron cerca de 100 investigadores e investigadoras predoctorales del CSIC. Si quieres descubrir el importante papel que las células estrelladas juegan en nuestro organismo, no te los pierdas.

UNA NOCHE CON LA CÉLULA ESTRELLADA

Ahí estaba yo, haciendo tiempo leyendo algunos artículos cuando de repente, aparecida de la nada, ahí estaba ella también. Como si de una película del agente 007 se tratase, me encontraba frente a una espía. Aunque de esta espía no había películas en la gran pantalla, sólo fotografías y más bien de tamaño reducido, muy reducido.

–Sí, sí, sí. Sé lo que estás pensando, que todos estos días de confinamiento te han vuelto loca. Y, la verdad, no te culpo, es una suposición bastante razonable.

La célula me hablaba a mí y os juro que, por más que me pellizqué, no despertaba de lo que yo pensaba que era una alucinación hiperrealista.

–Bueno, empecemos. Me llamo Estrellada, Célula Estrellada –me dijo mientras se acomodaba.

–¿Perdón? –Evidentemente yo seguía sin salir de mi asombro.

–Sí, mira, dejémonos de tonterías. La cosa es así, nos hemos cansado de que nuestro trabajo se lo atribuyan a otros y de que la gente aún no entienda quiénes somos o lo que hacemos. Así que he decidido darnos a conocer en profundidad y para la exclusiva te hemos elegido a ti, enhorabuena.

–¿Nos? –De normal suelo ser más locuaz, os lo aseguro.

–Nos, sí, las células implicadas en estas misiones. Hoy estamos algo lentas, ¿eh? –De verdad, a esta célula sólo le faltaba tener un cigarro para agarrarlo con sus ramificaciones a modo de manos y cruzar las ‘piernas’ para ser la viva imagen de esos individuos de peli policiaca antigua que tan seguros de sí mismos parecen en los interrogatorios.

–Pues sí, discúlpeme señora… Estrellada. Pero no todas las noches me encuentro con una célula en mi salón hablándome –dije empezando a recobrar algo de capacidad verbal.

–Bueno, pues va siendo hora de recuperarse de la sorpresa, que mi tiempo es muy importante y no estoy para tonterías. Mis compañeras ya me estarán echando en falta en el hígado.

–Entonces, ¿qué quiere que haga? –le pregunté.

–Creo que va a ser más rápido si yo hablo y tú apuntas, porque como tenga que esperar a que me hagas una entrevista con esa labia que tienes ahora, lo llevamos claro…

Decidí dejarme llevar por el momento y ya cuando despertase, si lo recordaba, me echaría unas risas con el sueño que aún creía estar teniendo. Aparté lo que tenía en la mesa, cogí un bolígrafo y empecé a anotar todo lo que empezó a contarme:

“Mi primera aparición pública se remonta al siglo XIX cuando fui descubierta por un famoso investigador llamado Kupffer. El caso es que, como es normal debido a mi importante labor, desde aquel momento el dosier que tienen sobre mí las agencias de espionaje ha ido engordando. Me han llamado de muchas formas, célula rica en vitamina A, célula Ito, lipocito, célula perisinusoidal, hasta célula almacén de grasa… Y sí, bueno, soy todo eso, pero me identifico más como Célula Estrellada hepática.”

La verdad, mirándola detenidamente tenía sentido. Mi interlocutora poseía una serie de elongaciones que partían de su cuerpo central y que le permitían tantear todo lo que tenía alrededor, recordando así a la figura estrellada que le daba nombre.

“Soy una agente de tipo fibroblasto y las misiones que mejor domino son las de fibrosis hepática.”

–Entiendo que entonces trabajas en el hígado, ¿no?, por lo de ‘hepática’ me refiero –le interrumpí.

–Correcto. Se me puede encontrar en una zona que se llama Espacio de Disse. Es una zona pequeñita dentro del hígado que está entre los hepatocitos y los sinusoides por los que discurre la sangre. Y cuando digo pequeñita evidentemente es a vuestra escala, para mí es todo un mundo. –El orgullo al hablar de su hogar se reflejaba claramente en su citoplasma. –El tema es que ahí yo me puedo enterar de todo y, si me dan el chivatazo de que algo está pasando, entro en acción.

–Espera un momento, antes me pareció escucharte mencionar a unas compañeras, ¿eso es que sueles tener colaboradores en tus misiones?

–Sí, muy bien, y eso que parecía que no estabas atenta. En mis misiones no estoy sola, cuento con la ayuda de otros agentes, mis compañeras celulares, los hepatocitos, los macrófagos, los linfocitos, las células endoteliales… Todas tenemos nuestro propio objetivo, pero siempre que es necesario colaboramos entre nosotras. En fin, déjame que continúe con mi historia que el tiempo apremia.

“El caso es que yo siempre me encuentro preparada y lista para actuar. En una situación normal, lo que sería dentro de un hígado sano, estoy en estado quiescente, es decir, tranquila y centrada en el almacenamiento de vitamina A. Sin embargo, si se produce un daño en el tejido hepático, la cosa cambia, me enfado, entro en modo combate y asciendo al rango de Miofibroblasto.”

Observé que cuando hizo mención a esto se empezó a remover en su sitio, no estaba cómoda con lo que ahora me iba a confesar.

“La verdad es que todas en algún momento hemos tenido algún enfado que se nos ha ido de las manos… Y me temo que yo no soy menos. El problema reside en que cuando yo pierdo el control al estar demasiado furiosa pues provoco más daño del que intento reparar y es cuando la fibrosis hepática se desarrolla.”

–Perdona que te vuelva a interrumpir, pero esto de la fibrosis que tanto mencionas, ¿en qué consiste? –Me sonaba el término, pero hasta ese momento no me había parado a pensar en qué era eso realmente.

–A ver, la fibrosis, en condiciones normales, es un proceso de cierre de heridas. Cuando se producen daños en el tejido, en este caso el hígado, por un ataque de enemigos como los maquiavélicos virus, como el de la hepatitis C, o agentes tóxicos, como el abuso de alcohol, o por una inflamación crónica que se infiltra en nuestro territorio, pues yo me activo y diferencio a Miofibroblasto. En este estado lo que hago, entre otras funciones, es generar matriz extracelular para reparar esa herida inicial. El problema viene cuando esto se me va de las manos y genero demasiada. –Se notaba que le afectaba profundamente y no se sentía nada orgullosa de ello. –Lo que provoco entonces es aún más daño el tejido y, si no recupero el control y la fibrosis progresa, se puede llegar a un fallo hepático, lo cual es terrible… Y, por eso mismo era necesario que te contara nuestra historia.

–Entiendo, pero ¿qué puedo hacer yo? –le pregunté.

–Pues lo que puedes hacer es divulgar a los cuatro vientos todo lo que te he contado. Es muy importante que el conocimiento se difunda e inspire tanto a investigadores como tú como a gente ajena a ese mundo. A los primeros, para que entiendan más sobre nuestra existencia y que así puedan encontrar tratamientos para curar los estragos que causo sin querer; y a los segundos, para que sepan lo que sucede en el interior de su propio cuerpo y lo esencial que somos todas y cada una de las células que les componemos.

–Está bien, eso haré –le prometí haciéndome cargo del que ahora era mi cometido.

–De acuerdo, pues ya me marcho. Estaré vigilando que cumplas tu misión igual que yo cumplo la mía. –Y tal cual dijo estas palabras se desvaneció en el aire de la misma sorprendente forma en que había aparecido.

Aún no sé si fue un sueño inducido por el calor de aquella noche o un delirio de mi desmedida imaginación. Pero de lo que sí estoy segura es de dos cosas, que por fin pude entender eso de la fibrosis hepática y que ya nunca olvidaría la noche en que conocí a aquella célula, la Célula Estrellada.

 

Enfermedades raras: cuando lo excepcional se subestima

Por Francesc Palau (Hospital Sant Joan de Déu) y Mar Gulis (CSIC)*

Acondroplasia, uveítis, esclerodermia, síndrome de Prader-Willi, fenilcetonuria, ataxia de Friedreich…¿Reconoces algún término? ¿Sabes de qué se trata? Son nombres de enfermedades poco comunes, por lo que tal vez tengas la suerte de que no te suene ninguna. ¿Y si te decimos que a esta pequeña lista de patologías se podrían añadir otras 6.165 y que todas se conocen como “enfermedades raras”? A pesar de denominarse así, este conjunto de trastornos es muy numeroso y afecta a una población nada desdeñable. En la Unión Europea, con aproximadamente 446 millones de habitantes, el número de pacientes afectados por ellos se calcula en unos 26 millones. Estudios recientes realizados por la Genetic Alliance en Reino Unido confirman que una de cada diecisiete personas puede estar afectada por una enfermedad rara en algún momento de su vida.

Cuando oímos golpes de cascos, solemos pensar en caballos, pero podrían ser cebras. Lo común, frente a lo raro

El contraste entre los datos epidemiológicos de la población afectada y la elevada diversidad y heterogeneidad de estas patologías, muchas reconocidas a lo largo de los siglos XIX y XX y otras descritas hace poco tiempo o muy recientemente, nos pone ante la paradoja de la rareza: las enfermedades son raras, pero los pacientes que las padecen son muchos. Además, cuando se trata de este tipo de patologías, sus tasas de incidencia son bajas, pero su impacto colectivo en las poblaciones y los sistemas de salud es enorme, algo que a menudo se subestima.

Pero, ¿cuáles son las características que cumple una enfermedad para definirla como rara? La Unión Europea establece que un trastorno o condición de salud se puede etiquetar como enfermedad rara si el número de personas afectadas es menor de una entre dos mil, es decir, en términos epidemiológicos tiene una prevalencia de menos de cinco afectados por cada diez mil habitantes. En Estados Unidos, la Rare Diseases Act de 2002 afirma que “enfermedades raras son aquellas que afectan a poblaciones pequeñas de pacientes, concretamente a poblaciones menores de 200.000 individuos”. Algunas enfermedades raras son relativamente frecuentes y más conocidas por todos y todas, como ocurre con la fibrosis quística o la distrofia muscular de Duchenne, pero muchas de ellas son infrecuentes, con menos de una persona afectada por cada cien mil, y se conocen como ultra-raras.

Un difícil diagnóstico y tratamiento

Según el Estudio sobre la situación de Necesidades Sociosanitarias de personas con Enfermedades Raras en España (Estudio ENSERio)un paciente con una enfermedad rara espera una media de cuatro años hasta obtener un diagnóstico, aunque en el 20% de los casos transcurren diez o más años hasta lograr el adecuado.

Por otro lado, la complejidad de estas enfermedades y su ‘escasa’ frecuencia hacen que el tratamiento sea complicado, en parte debido  a que la industria farmacéutica tiene un interés menor en desarrollar y comercializar productos destinados a un pequeño número de pacientes. Los medicamentos que finalmente terminan saliendo al mercado se denominan medicamentos huérfanos.

La Agencia Europea del medicamento (EMA) mantiene información actualizada anualmente sobre la realidad de los medicamentos huérfanos en Europa y en el portal de Orphanet- España se puede consultar la lista completa. Aunque esta lista va en aumento, en la actualidad hay un 90% de enfermedades raras sin tratamiento.

El Estudio ENSERio destaca que el 47% de pacientes recibe un tratamiento que considera inadecuado o que no es el que necesita, solo el 15% utiliza medicamentos huérfanos y el 51% de las familias tiene dificultades para acceder a estos medicamentos.

La investigación en los ámbitos fisiopatológico, diagnóstico y terapéutico, así como el compromiso de financiación, tanto pública como privada, resultan fundamentales para resolver la situación. Se requieren ideas innovadoras e impulsar el desarrollo de consorcios público-privados, con participación del ámbito académico y de la industria y la implicación de los pacientes. Tampoco hay que olvidar la importante labor que realizan las asociaciones de pacientes y las fundaciones sin ánimo de lucro, incluso la aportación más reciente que tienen los ensayos clínicos financiados directamente por los propios pacientes.

Está claro que se requiere un gran esfuerzo médico, sanitario, científico, social y político para poder mejorar el diagnóstico y el tratamiento de cada una de las enfermedades raras, así como la calidad de vida y curación de los afectados. También es importante ser capaces de planificar para prevenirlas y lograr la incorporación social del individuo como persona plena, adaptada al entorno e integrada en la sociedad. Que su “rareza” no nos haga subestimarlas.

 

* Francesc Palau dirige el Servicio de Medicina Genética y el Instituto Pediátrico de Enfermedades Raras del Hospital Sant Joan de Déu y un grupo de investigación del CIBER de Enfermedades Raras (CIBERER). Es autor del libro Enfermedades raras, de la colección de divulgación ¿Qué sabemos de?, disponible en la Editorial CSIC y Los Libros de la Catarata.

Tus descendientes podrían beneficiarse del ejercicio físico que practicas

Por Mar Gulis (CSIC)

Casi todo el mundo sabe que la actividad física es buena para nuestro organismo, incluido el cerebro, aunque a unas personas les cuesta más que a otras poner en práctica esta pauta de bienestar. Ahora bien, ¿y si la actividad física que practicamos influyese en la salud cerebral de nuestros descendientes? Cuando hacemos ejercicio se produce un incremento de nuestra capacidad cognitiva. También crece el flujo sanguíneo en el cerebro y el consumo de oxígeno por las células neurales, e incrementa la funcionalidad y disponibilidad de neurotransmisores. A nivel conductual, tiene efectos ansiolíticos y antidepresivos. La práctica deportiva también interviene en la formación de neuronas nuevas -denominada neurogénesis- incluso en individuos adultos, por lo que el ejercicio físico también supone una vía de resiliencia contra el envejecimiento. De hecho, se ha probado que es una de las terapias no farmacológicas más efectivas y que mejora la evolución de determinadas enfermedades neurodegenerativas como el Alzheimer.

El ejercicio físico produce diversos beneficios a nivel cerebral, como la formación de neuronas. / J.M. GUYON 20minutos

Después de esta relación no exhaustiva de las consecuencias directas de correr, nadar o jugar al baloncesto, por citar solo algunos ejemplos, viene el dato sorprendente: es posible que estos beneficios se hereden de padres a hijos. “Estamos acostumbrados a oír que el ejercicio influye para bien en nuestra salud. Lo que hasta hace poco no se sabía es que estos beneficios pueden alcanzar a las siguientes generaciones, es decir, que el ejercicio que realizamos a lo largo de nuestra vida puede tener efectos positivos en nuestros hijos, aunque estos sean sedentarios”, explica José Luis Trejo, investigador del CSIC en el Instituto Cajal y coautor del libro Cerebro y ejercicio (CSIC-Catarata) junto con Coral Sanfeliu.

Ratones deportistas y ratones sedentarios

El grupo de investigación de Trejo y otros equipos científicos han demostrado que los efectos cognitivos y emocionales del ejercicio en animales de laboratorio son heredables por la siguiente generación. “Camadas de ratones procedentes de padres con mayor actividad son capaces de presentar más capacidad de potenciación sináptica y de discriminación de estímulos, al igual que la presentaban sus progenitores”, señala el científico del CSIC.

En sus experimentos se vio que el aumento del número de neuronas asociado al ejercicio en los padres, así como el mejor funcionamiento mitocondrial de las células del hipocampo, fueron transmitidos a la descendencia, aun cuando esta no realizó ningún tipo de actividad física. “En las crías sedentarias de padres corredores había más neuronas nuevas, que eran más activas, al igual que sus circuitos, y, en consecuencia, los sujetos tenían más capacidad de ejecutar con éxito las tareas conductuales. Esto nos indica que la transmisión de efectos adquiridos por la práctica del ejercicio físico es epigenética”, detalla Trejo. “Desde hace décadas existen evidencias científicas de que el estrés se hereda, y el ejercicio físico no deja de ser un tipo de estrés al que el organismo se adapta, siempre que sea ejercicio moderado”, añade.

Ejemplar de ratón doméstico Mus musculus. / Wikimedia Commons

¿Cómo se transmiten estos efectos de una generación a la inmediata? Se ha demostrado que uno de los factores que median esta transmisión son los microARN, diminutas secuencias de ARN producidas constantemente por nuestro organismo que participan en incontables procesos biológicos. De hecho, son uno de los mediadores de los efectos epigenéticos asociados a la dieta, a ciertos tóxicos medioambientales, al estrés y, por supuesto, al ejercicio. Pues bien, se ha observado que ciertos microARN viajan en los espermatozoides de los ratones más activos, y también que esos mismos microARN inducen la expresión diferencial de ciertos genes en el hipocampo, tanto del propio padre que realiza el ejercicio como de sus crías sedentarias que no lo hacen. “Lo importante de este descubrimiento es que dichos genes que se expresan diferente en las crías cuyos padres corrieron, comparados con los de las crías de los padres sedentarios, son precisamente los genes que controlan la actividad mitocondrial, la formación de nuevas neuronas, y la actividad sináptica”, explica el investigador.

Hasta el momento el grupo liderado por Trejo solo ha hecho estudios en ratones machos. “En breve testaremos también a las madres. No hay ninguna razón para pensar que no se transmitirán estos beneficios de madres a hijos/as”. Según el científico del CSIC, “parece un mecanismo adaptativo de la naturaleza el hecho de que aquellos sujetos que tienen que procesar poca información ambiental y, por lo tanto, se desplazan poco y hacen poco ejercicio, teniendo por ello menor número de neuronas y menor capacidad cognitiva, tengan también crías con las mismas características, mientras que un aumento de la demanda de procesamiento de información, mediante un aumento del ejercicio físico, induzca mayor número de neuronas, mayor capacidad cognitiva y unas futuras crías con las mismas capacidades”.

Queda para el futuro comprobar si esta herencia también se da en seres humanos, así como durante cuántas generaciones pueden mantenerse estos efectos. “En la actualidad estamos estudiando en animales si los nietos se pueden beneficiar del ejercicio que realizaron sus abuelos”, concluye Trejo.

Mientras que estos nuevos retos obtienen respuesta, lo aconsejable es huir del sedentarismo y realizar actividad física en la medida de nuestras posibilidades. La literatura científica aún no se ha puesto de acuerdo en la cantidad e intensidad adecuadas, pero lo que sí es seguro es que el sofá no siempre es un buen compañero de viaje.

¿Qué ocurre en un cerebro esquizofrénico?

Por Jesús Ávila (CSIC)*

En el mundo hay aproximadamente 25 millones de personas con esquizofrenia, un trastorno cuya edad media de aparición se sitúa en torno a los 25 años.

El término ‘esquizofrenia’ es la combinación de dos pala­bras griegas, schizo (dividir) y phrenos (mente), y se refiere a un trastorno en el que la división de funciones mentales da lugar a un comportamien­to social anómalo, pues el paciente confunde lo que es real con lo imaginario. La persona afectada puede sufrir alucinaciones, fundamentalmente auditivas, que pueden derivar en un estado de psicosis, es decir, en la pérdida temporal del contacto con la realidad. En muchos casos, la esquizofrenia se asocia también a estados de depresión y de ansiedad o a una capacidad reducida para sentir placer. Además, los pacientes suelen tener problemas de interacción social y profe­sional.

La esquizofrenia es un trastorno mental grave que afecta a determinadas funciones cerebrales.

La esquizofrenia es un trastorno mental grave que afecta a determinadas funciones cerebrales.

Aunque en la esquizofrenia la mente cambia una situación real por otra ficticia, lo cual implica un funcionamiento de la mente fuera de ‘lo normal’, existen casos de personajes geniales que han sufrido esta enfermedad. Este es el caso de Van Gogh, que pintaba con colores que podían mejorar la misma naturaleza; de Edgar Allan Poe, cuyos relatos imaginarios exageraban (pero casi perfeccionaban) la realidad; o de otro paciente de esquizofrenia, John Nash, que obtuvo el Nobel de Economía en 1994 por el enfoque distinto que supo dar a los hechos.

A finales del siglo XIX y principios del XX había gran interés en Alemania por conocer las causas de la(s) demencia(s). Fundamentalmente, en el laboratorio del doctor Kraepelin, en Baviera, se buscaban causas de demencia diferentes a la provocada por la bacteria T-pallidum, que daba lugar a la neurosífilis, un tipo de demencia (infecciosa) bastante prevalente en aquellos tiempos. Así, buscando otros orígenes para la demencia, fue Kraepelin, que más tarde sería mentor de Alois Alzheimer, quien describió la esquizofrenia como demencia precoz. También fue quien realizó una clara distinción entre esquizofrenia y trastorno bipolar.

El cerebro esquizofrénico

Las causas de este trastorno todavía se desconocen con exactitud. En cualquier caso, en la esquizofrenia aparecen algunas áreas cerebrales afectadas, como el nucleus accumbens, en donde una alta cantidad de secreción de dopamina puede dar lugar a alucina­ciones. Dado que la esquizofrenia va acompañada, a veces, con alucinaciones, un posible mecanismo para la aparición de las mismas podría estar basado en cambios en la transmisión dopaminérgica. Dicha transmisión depende de la dopamina y de los receptores celulares a los que asocia. Se ha sugerido que, en la esquizofrenia, la cantidad o la presencia de variantes de estos receptores dopaminérgicos puedan tener una función en el desarrollo de la patología.

Los pacientes de esquizofrenia tienden a empeorar con el uso de sustancias tóxicas como el alcohol o la cocaína. De hecho, estas sustancias pueden llegar a causar en personas no esquizofrénicas la aparición de una psicosis similar a la encontrada en este trastorno.

Los pacientes de esquizofrenia tienden a empeorar con el uso de sustancias tóxicas como el alcohol o la cocaína. De hecho, estas sustancias pueden llegar a causar en personas no esquizofrénicas la aparición de una psicosis similar a la encontrada en este trastorno.

Recientemente, además, se ha señalado que una elevación anormal de un tipo específico de receptores de dopamina (DRD2) en regiones del tálamo puede estar relacionada con las alucinaciones audi­tivas. De hecho, muchos estudios apuntan a una variante del gen que expresa dichos receptores DRD2 como un importante factor de riesgo.

Otra área afectada es la corteza prefrontal, donde tiene lugar una deficiente secreción de dopa­mina, la cual se ha relacionado con los problemas de an­siedad o con la aparición, en ocasiones, de conductas violentas o de desarraigo social. Aun­que no muy específica de esta enfermedad, otra posible característica son los niveles elevados de homocisteína. Se cree que este aminoácido puede interac­cionar con determinados receptores de glutamato (receptores tipo NMDA) y provocar estrés oxidativo, es decir, un desequilibrio entre la producción y la eliminación de especies reactivas del oxígeno o radicales libres, y muerte neuronal. Es un hecho constatado que la esquizofrenia comparte con las demencias seniles la pérdida de comunicación neuronal (sinapsis), que puede observarse parcialmente por la pérdida de espinas dendríticas.

En busca de las causas

Respecto a las causas de la esquizofrenia, es posible que en algunos casos tenga un origen familiar. Es lo que ocurre con el gen implicado en la expresión de DRD2 y, posiblemente, en una familia escocesa en la que se ha encontrado una baja expresión de un gen –provocada por una translocación entre los cromosomas 1 y 11– denominada DISC-1 (disrupted in schizo­phrenia 1) y que puede inducir a la aparición del trastorno. Eso sí, aunque el nombre del gen se ha relacionado con la esquizofrenia, algunos portadores de la translocación pueden su­frir otros problemas como, por ejemplo, la enfermedad maníaco-depresiva.

 

Hay bastante consenso en que convergen tanto factores genéticos como ambientales en la aparición de la esquizofrenia.

Hay bastante consenso en que convergen tanto factores genéticos como ambientales en la aparición de la esquizofrenia.

Por otro lado, además de los factores genéticos, se cree que el modo de vida durante el desarrollo de una persona puede afectar a la aparición de la enferme­dad. Así, se ha señalado que un defecto en la cantidad de vitamina D en la infancia o problemas de nutrición durante el desarrollo fetal pueden suponer riesgos para padecer esquizofrenia cuando se llega a la edad adulta.

 

* Jesús Ávila es neurocientífico y profesor de investigación en el Centro de Biología Molecular “Severo Ochoa” del CSIC (centro del que fue director), además de autor del libro La demencia’ de la colección de divulgación ¿Qué sabemos de?, disponible en la Editorial CSIC y Los Libros de la Catarata.

 

¿En qué se diferencian los probióticos de los prebióticos?

Por Carmen Peláez, Teresa Requena y Mar Gulis (CSIC)*

Con frecuencia nos encontramos en el mercado productos que contienen probióticos o prebióticos, o bien una combinación de ambos. Su creciente comercialización en alimentos y en productos farmacéuticos y de parafarma­cia hace que estos compuestos nos parezcan muy saludables, pero lo cierto es que muchas veces no sabemos distinguirlos ni cuáles son sus propiedades. En este texto vamos a explicar en qué consisten, en qué se diferencian y qué beneficios pueden tener los probióticos y los prebióticos para nuestra microbiota intestinal y, por tanto, para nuestro organismo.

El colon: uno de los ecosistemas más densamente poblados de la Tierra

Si bien la microbiota se aloja en diferentes partes del cuerpo (en la piel, la boca, la cavidad genitourinaria…), el tracto intestinal es la región que contiene la comunidad microbiana más numerosa, densa y diversa del cuerpo humano. En concreto, la microbiota intestinal está compuesta por billones de microorganismos, de los que una gran mayoría son bacterias.

El colon posee características fisiológicas y un constante aporte de nutrientes que lo convierten en un eficiente reactor biológico. Gracias a ello, este órgano forma uno de los ecosistemas más densamente poblados de la Tierra, en el que se desarrolla una microbiota que interviene en numerosas funciones fisiológicas del organismo.

Algunas enfermedades están asociadas con desequilibrios en la microbiota intestinal, que interviene en numerosas funciones de organismo.

Es fácil deducir que semejante cantidad y diversidad microbiana ejerce importantes funciones en nuestro cuerpo y que, por tanto, sus desequilibrios podrían causar diversos desajustes en nuestra salud. Algunas alteraciones de la microbiota intestinal, como la reducción de diversidad, la excesiva proliferación de patobiontes (patógenos oportunistas) o la reducción de la producción de ácidos grasos de cadena corta o de bac­terias con propiedades antiinflamatorias, están asociadas con algunas enfermedades, tanto infecciosas como no transmisibles. Aunque no se ha demos­trado que las alteraciones de la microbiota, conocidas como disbiosis, sean la causa de patologías, cada vez resulta más evidente la importancia de emplear estrategias que modulen la composición y/o la funcionalidad de la microbiota intestinal. Entre ellas, las estrategias más estudiadas son tres: la utilización de microorganismos probióticos, el consumo de compuestos prebióticos y los trasplantes fecales. En esta entrada del blog nos centraremos en las dos primeras.

Probióticos

Según una definición ampliamente aceptada por la co­munidad científica, los probióticos son microor­ganismos vivos que, cuando se administran en cantidades adecuadas, proporcionan un beneficio para la salud del or­ganismo. La diferencia con las bacterias mutualistas del tracto gastrointestinal (aquellas que en su relación con un organismo proporcionan un beneficio mutuo) es que son microorganismos que se han aislado y cultivado, y que existen evidencias científicas y clínicas sobre su capacidad para aportar un beneficio para la salud.

Se considera que este beneficio es gene­ral en algunas especies de bacterias que pertenecen a los géneros Bifidobacterium y Lactobacillus. Son especies con las que se han realizado numerosos ensayos clínicos que demuestran su potencial para mejorar ciertas condiciones intestinales y ejercer una modulación inmunológica. Los efectos saludables se han demostrado frente a la diarrea infecciosa, la asociada al tratamiento con antibióticos o el síndrome de intestino irritable, así como con la mejora del tránsito intestinal. Los mecanismos por los que los probióticos mejo­ran la salud gastrointestinal se relacionan con la produc­ción de compuestos antimicrobianos, vitaminas, nutrientes esenciales o mecanismos de defensa y competición frente a patógenos y la interacción con el sistema inmune.

Alimentos como el yogur o el queso cuentan con bacterias que favorecen una adecuada microbiota intestinal.

Alimentos como el yogur o el queso cuentan con bacterias que favorecen una adecuada microbiota intestinal.

Aunque la mayoría de los probióticos no se ins­talan permanentemente en el intestino, parece que ejercen un efecto saludable durante su tránsito. El beneficio está asociado a su funcionali­dad, que podría contribuir a restablecer un equilibrio micro­biológico intestinal saludable. Por otra parte, no exis­ten datos de efectos adversos por su consumo, aunque siempre es recomendable consultar antes con los profesionales sanitarios.

Hay especies de lactobacilos y bifidobacterias, en las que se incluyen muchos probióticos, que están presentes en alimentos como el yogur, el kéfir o el queso, así como en otro tipo de alimentos fermentados, como el chucrut, las aceitunas o el kimchi. Sin embargo, el creciente interés científico, clínico y comercial sobre los probióticos ha generado un esce­nario en el que proliferan multitud de productos que se denominan probióticos, pero todavía resulta difícil para consumidores y profesionales sa­nitarios separar la paja del grano.

No todos los productos etiquetados como probióticos responden a la definición y en algunos no existe ningún dato que identifique a las bacterias que contiene, la cantidad en que se encuentran y la evidencia que respalda el beneficio para la salud. Es fundamental conocer la composición de cada producto y contar con información fiable y contrastada de la acción de estos microorganismos sobre nuestra salud. También es importante conocer los mecanismos y las características que explican los beneficios de cada probiótico.

Prebióticos

A diferencia de los probióticos (microorganismos vivos), los prebióticos son componentes de los alimentos, no digestibles, que están presen­tes de forma natural o añadidos. Por decirlo de un modo muy sencillo, los prebióticos serían el “alimento” de las bacterias beneficiosas (probióticos). Por ello, también pueden contribuir a restablecer la diversidad bacte­riana y riqueza genética que se ve empobrecida en ciertas condiciones patológicas, como obesidad, enfermedades inflamatorias intestinales, etc.

Los prebióticos son sustratos utilizados selectivamente por microorganismos del hospedador que le confieren un efecto beneficioso para la salud. En el tracto intestinal, sirven como sustrato de crecimiento para la microbiota resi­dente en el intestino y, de este modo, promueven cambios de composición o metabólicos que se consideran beneficiosos. Se trata fun­damentalmente de carbohidratos que favorecen una po­blación microbiana intestinal sacarolítica, que a su vez aumenta la formación de ácidos grasos de cadena corta que proporcionan múltiples beneficios metabólicos. En algunos casos son suministrados con probióticos, denominándose simbiótico al conjunto.

Los alimentos ricos en fibra son los que nos aportan más componentes prebióticos.

Los alimentos ricos en fibra son los que nos aportan más componentes prebióticos.

Los alimentos que nos aportan más componentes prebióticos son los ricos en fibra, como las frutas, las verduras, las legumbres o los cereales integrales. Curiosamente, el primer prebiótico natural de consumo humano está constituido por los oligosacáridos que se ingieren con la leche materna. Estos compuestos favorecen el desarrollo de bacterias beneficiosas como las bifidobacterias, y a la vez aumentan la resistencia a la invasión por patógenos. Por ello, una línea de investigación y desarrollo comercial actual consiste en incluir, en la fórmula de leches maternizadas, oligosacáridos equivalentes a los presentes en leche humana (que prácticamente no existen en la leche de vaca).

¿Te ha quedado algo más claro qué son los probióticos y los prebióticos y en qué se diferencian? Conocer estos componentes beneficiosos para nuestra microbiota intestinal nos ayudará a valorar lo que ingerimos.

 

* Carmen Peláez y Teresa Requena son investigadoras del CSIC en el Instituto de Investigación en Ciencias de la Alimentación (CIAL) y autoras de La microbiota intestinal, de la colección de divulgación ¿Qué sabemos de?, disponible en la Editorial CSIC y Los Libros de la Catarata.

¿Cómo ha cambiado nuestra movilidad con la pandemia? Ayúdanos a estudiarlo

Por Frederic Bartumeus y John Palmer (CSIC)*

La eliminación de las restricciones impuestas para doblegar la primera ola de la epidemia de COVID-19 trajo consigo un aumento de la movilidad y de las interacciones sociales, pero no de una forma homogénea en el conjunto de la población. Esta es una de las primeras conclusiones de las dos encuestas sobre movilidad y distanciamiento social realizadas a la población en el marco del proyecto Distancia-COVID, en el que participamos investigadores e investigadoras de varios centros del Consejo Superior de Investigaciones Científicas (CSIC) y la Universidad Pompeu Fabra (UPF).

Nuestro objetivo es comprender mejor las dinámicas de contagio observadas durante las distintas fases de la pandemia y contribuir a plantear escenarios de mayor utilidad para gestionar la crisis generada por el SARS-CoV-2. Por eso acabamos de lanzar una tercera encuesta completamente anónima en la que te animamos a participar.

Movilidad COVID

Imagen de César Hernández (CSIC)

Cambios tras el estado de alarma

Gracias a las respuestas de 6.952 personas, hemos podido aproximarnos a la diversidad de los patrones de movilidad e interacción social de la población española entre el 14 de mayo y el 31 de agosto de 2020. Los resultados obtenidos nos indican que, si bien en este periodo la estructura de los hogares –el número de personas y las edades con los que se convive– no cambió, lo que sí lo hizo fue el número de contactos diarios fuera de casa.

Con la supresión del estado de alarma la población de más de 20 años pasó de una media de 3 contactos diarios durante el confinamiento a una media de 5. Sin embargo, este cambio no fue homogéneo ya que los contactos aumentaron principalmente en franjas de edad concretas: por un lado, crecieron los encuentros entre jóvenes de 20 a 29 años y, por otro, los contactos de mayores de 65 con personas de 30 a 49 años.

Las estimaciones denotan un cambio notable en el número medio de contactos en la franja de 20 a 29 años, pero la encuesta no nos informa de su contexto y puede haber múltiples causas que expliquen este aumento. En el caso del grupo de edad igual o mayor de 65 años el incremento podría corresponderse con personas mayores que se relacionan con los que generacionalmente podrían ser sus hijos adultos.

En relación a la movilidad, nuestro estudio muestra que durante el estado de alarma la mayoría de los movimientos de las personas encuestadas fuera de casa no superaban los 10 kilómetros de distancia. De hecho, el 40% informó de que sus desplazamientos diarios no iban más allá de un radio de acción de 1 km alrededor de su casa. Sin restricciones, los desplazamientos por encima de los 10 km se dispararon, al igual que lo hicieron el número de salidas semanales.

El destino de los viajes de los encuestados durante y tras el estado de alarma siguió dominado por los comercios, así como por escapadas a espacios públicos y viajes diarios a los lugares de trabajo. No obstante, será necesario realizar un modelo estadístico de los datos disponibles para poder hacer estimaciones más detalladas y fiables sobre la distancia y destino de los desplazamientos.

Iniciamos la tercera fase de encuestas

La primera encuesta se llevó a cabo dentro del período de estado de alarma, entre el 14 mayo y el 10 de junio de 2020. La segunda se completó ya fuera de este período, entre el 24 de julio y el 31 de agosto, cuando ya no existían la mayoría de las restricciones. Los datos obtenidos se han recogido en un informe, que también incluye unas primeras estimaciones de los parámetros de movilidad y distanciamiento social para el conjunto de la población española.

Para poder completar esta información necesitamos más datos y por ello vamos a realizar una tercera encuesta, en la que se puede participar de manera anónima a través de la página web del proyecto: https://distancia-covid.csic.es/encuesta/

Las preguntas del cuestionario se centran en las dinámicas de movilidad, el número de contactos mantenidos en los últimos días y las personas con las que se convive en un mismo hogar. Participar en la encuesta es contribuir de una forma importante a la lucha científica contra la COVID-19 en España.

 

* Frederic Bartumeus es investigador del CSIC en el Centro de Estudios Avanzados de Blanes (CEAB) y el Centro de Investigación Ecológica y Aplicaciones Forestales (CREAF). John Palmer es profesor de la Universidad Pompeu Fabra (UPF). En el proyecto  Distancia-COVID participan también el Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC), un centro mixto del CSIC y de la Universitat de les Illes Baleares, el Instituto de Física de Cantabria (IFCA-CSIC) y el Instituto de Economía, Geografía y Demografía (IEGD-CSIC).

¿Existen los virus ‘buenos’?

Por Mar Gulis (CSIC)

La respuesta es sí. Entre los 5.000 virus descritos por la comunidad científica, hay algunos devastadores para el ser humano como el SARS-CoV-2, causante de la pandemia que vivimos desde hace meses, pero también existen otros que pueden ser beneficiosos para nuestra salud. Los bacteriófagos (fagos) pertenecen a este segundo grupo y se perfilan como la solución contra las bacterias resistentes a los antibióticos, que cada año causan 33.000 muertes en la Unión Europea y 700.000 en todo el mundo.

Ejemplares de bacteriófago phiA72 de ‘Staphylococcus aureus’ aislados en el Instituto de Productos Lácteos de Asturias (IPLA-CSIC). / Pilar García

Como cualquier otro agente vírico, los fagos son parásitos intracelulares que necesitan infectar una célula, en este caso una bacteria, para multiplicarse en su interior, pero, a diferencia de otros virus, resultan totalmente inocuos para humanos, otros animales, plantas y el medioambiente (en este vídeo puedes ver cómo se comportan). Si los comparamos con los antibióticos disponibles –muchos incapaces de eliminar las infecciones provocadas por bacterias– tienen otras ventajas. “Son muy específicos, por lo que solo eliminan el patógeno de interés, mientras que los antibióticos suelen ser de amplio espectro; infectan por igual bacterias resistentes y bacterias sensibles a los antibióticos; y se pueden autorreplicar”, explican Lucía Fernández, Diana Gutiérrez, Ana Rodríguez y Pilar García, investigadoras del CSIC en el Instituto de Productos Lácteos de Asturias (IPLA) y autoras de Los bacteriófagos. Los virus que combaten infecciones (CSIC-Catarata). Además, añaden, “la infección de la bacteria por parte del fago produce más fagos, con lo que la capacidad antimicrobiana aumenta, al contrario de lo que sucede con los antibióticos, cuya dosis efectiva disminuye a lo largo del tiempo”.

Invisibilizados por los antibióticos

Los antibióticos y los bacteriófagos tienen historias paralelas. Ambos se descubrieron a principios del siglo XX, pero su devenir ha sido totalmente distinto. En 1917 el microbiólogo Félix d’Herelle observó cómo cultivos bacterianos que crecían en un medio líquido desaparecían de la noche a la mañana si se les añadía agua residual filtrada, lo que solo se podía interpretar como consecuencia de un virus filtrable, parásito de las bacterias. Félix d’Herelle llamó bacteriófagos (comedores de bacterias) a estos virus, y tanto él como otros microbiólogos llegaron a supervisar la comercialización de productos fágicos para uso clínico en los años 20. Incluso la compañía estadounidense Lilly puso en el mercado compuestos basados en bacteriófagos. Sin embargo, su potencial terapéutico quedó relegado en favor de los antibióticos.

Una década más tarde, en el año 1928, el doctor Alexander Fleming realizó uno de los descubrimientos más importantes del siglo: la penicilina. Algunos años después comenzó a producirse a gran escala y fue utilizada a nivel mundial para el tratamiento de infecciones humanas y animales. Más adelante, en los años cuarenta y cincuenta, tuvo lugar lo que se conoce como edad de oro de los antibióticos, durante la cual se llevó a cabo el descubrimiento de todos los antibióticos conocidos y utilizados hasta la fecha.

Este comienzo y desarrollo estelar tiene un final un tanto fatídico, debido a su pérdida de eficacia. “A pesar de la euforia inicial, poco tiempo después se comprobó que las bacterias pueden evolucionar y adquirir diversos mecanismos de resistencia a estos compuestos”, señalan las autoras. Este proceso de selección natural se ha visto incrementado por el uso abusivo de los antibióticos, de manera que la resistencia a antimicrobianos se ha convertido en un problema de nivel global. “Según estudios realizados por la OMS, se prevé que en el año 2050 las bacterias multirresistentes serán la principal causa de muerte de la población humana”, agregan.

Mientras tanto, ¿qué sucedió con los bacteriófagos? Las investigadoras explican en su libro un hecho poco conocido. “Independientemente del abandono del uso terapéutico de los bacteriófagos en Occidente, varios grupos de investigación de países de Europa del Este continuaron con esta línea de trabajo, debido sobre todo a la baja disponibilidad de antibióticos y a su alto precio”. De hecho, el uso hospitalario de los fagos se ha mantenido en Polonia, Rusia y antiguas repúblicas soviéticas como Georgia, donde se encuentra el Instituto Eliava, fundado en 1923 y considerado actualmente el centro de referencia mundial en la aplicación clínica de fagos.

Morfología de los bacteriófagos. A: representación esquemática de la morfología de un bacteriófago. B: microfotografías electrónicas de distintos bacteriófagos aislados en los laboratorios del IPLA-CSIC. / Diana Gutiérrez

Así, la terapia fágica no es un tratamiento nada novedoso, y ahora parece resurgir entre la comunidad científica occidental. Las científicas del IPLA así lo confirman: “entre los años 1987-2000 se obtuvieron resultados muy satisfactorios que demuestran la gran eficacia de los bacteriófagos en comparación con los antibióticos. A partir de ese momento, numerosos grupos de investigación han encaminado su trabajo hacia este campo, utilizando fagos de forma individual, como cócteles o en combinación con otros agentes antimicrobianos (antibióticos o desinfectantes) para la eliminación de las bacterias patógenas”.

En Occidente, el tratamiento de infecciones con fagos queda restringido a pacientes individuales, y solo con un uso compasivo, es decir, cuando no existen otras posibilidades para salvarles la vida o simplemente para aliviar su sufrimiento. No obstante, “a pesar de la falta de una regulación clara, se están llevando a cabo varios ensayos clínicos en diferentes países con resultados prometedores”, indican las biólogas.

Biocidas y desinfectantes

Además de la terapia fágica en humanos, estos virus presentan un amplio abanico de aplicaciones. En el ámbito de la veterinaria, la investigación se orienta al “uso de fagos como agentes profilácticos y terapéuticos en animales de granja, principalmente para tratar bacterias patógenas en pollos y cerdos”. Ya se aplican en algunos países como en EEUU como alternativa ‘amigable’ desde el punto de vista medioambiental a algunos de los productos fitosanitarios. Además, el hecho de que los fagos se aíslen de distintas fuentes naturales permite que sean registrados como biopesticidas y así ser utilizados en agricultura ecológica.

Bacteriófago phiIPLA-C1C de ‘Staphylococcus epidermidis’ aislado en el IPLA-CSIC. / Pilar García

El sector de la seguridad alimentaria también es prometedor para el empleo de los bacteriófagos, ya que “pueden servir como bioconservantes de alimentos, como desinfectantes de instalaciones industriales o incluso en el desarrollo de sistemas de identificación de contaminación bacteriana en los alimentos. De esta forma, se abarca cada etapa de elaboración del producto”, resumen las científicas del CSIC.

Una vez detectadas sus potencialidades, hay todo un campo de trabajo por delante para el aislamiento, la caracterización y la producción de fagos a gran escala. “En la actualidad se están diseñando métodos adecuados de producción y purificación para facilitar y abaratar su comercialización”, precisan las investigadoras.

Los requerimientos legales para la administración de productos fágicos también son otro paso imprescindible dentro del largo proceso que ha de recorrer todo compuesto antes de incorporarse al vademécum de medicamentos. En este ámbito hay diferencias notables entre los países donde existe una legislación específica para la terapia con fagos, como Polonia o Georgia, y otros países europeos donde solo se permite su uso compasivo. A este respecto, las investigadoras son optimistas: “en la práctica clínica existen aún esperanzas de que esta nueva estrategia de tratamiento de enfermedades infecciosas pueda llegar a tiempo para resolver la crisis actual. Algunos de los puntos clave que es preciso reforzar son el apoyo a la investigación básica y a los ensayos clínicos, así como una mayor interacción entre empresas biotecnológicas, farmacéuticas, centros de investigación y autoridades sanitarias”, concluyen.

 

Bacterias en nuestro cuerpo: ¿dónde se aloja la microbiota humana?

Por Carmen Peláez y Teresa Requena (CSIC)*

La inscripción “Conócete a ti mismo”, grabada en el frontispicio del templo griego de Apolo en Delfos, ya indicaba que el conocimiento de lo absoluto comienza por el conocimiento de uno o una misma. Si nos preguntamos ¿qué somos realmente?, y nos ceñimos exclusivamente al pragmático método científico de describir lo que podemos experimentar, podríamos empezar tratando de contestar a la siguiente cuestión: ¿de qué se compone nuestro cuerpo?

Teniendo en cuenta que nuestro organismo está formado tanto de células humanas (organizadas en tejidos, órganos y sistemas) como de células microbianas, podría decirse que ‘somos’ toda esa amalgama de células humanas más la microbiota. En ese ‘somos’ las células microbianas serían ‘los otros’, haciendo un paralelismo con la película de Alejandro Amenábar. Solo que en este caso esos otros, aunque no los vemos, también están vivos y forman parte de ‘nosotros’, pues convivimos en un mismo escenario que es nuestro cuerpo. Si queremos conocernos debemos considerar la presencia de esos otros y la influencia que ejercen en el contexto de nuestra inevitable convivencia. A la unidad que forman la microbiota y las células humanas, y que interactúa como una entidad ecológica y evolutiva, se la denomina holobionte humano.

Considerado como holobionte, el ser humano es un ecosistema formado por millones de microorganismos, entre los cuales se da una relación simbiótica. / Gerd Altmann - Pixabay

Considerado como holobionte, el ser humano es un ecosistema formado por billones de células humanas y de microorganismos, entre los cuales se da una relación simbiótica. / Gerd Altmann – Pixabay

Se ha llegado a afirmar que la microbiota humana puede alcanzar alrededor de 100 billones de bacterias, un número que podría superar en 10 veces al de nuestras propias células. No obstante, estas cantidades se están reconsiderando y las estimaciones más recientes indican que nuestro organismo está compuesto por 30 billones de células y que el número de células bacterianas, sin ser constante –ya que se evacúa cierta cantidad del intestino de manera regular–, sería similar. Es decir, los cálculos recientes estiman que tendríamos, más o menos, el mismo número de células humanas que de bacterias. En cualquier caso, lo que está claro es que la población de bacterias del holobionte humano es extraordinariamente numerosa.

Las bacterias de la microbiota que se reparten por nuestro cuerpo presentan una estructura filogenética muy particular que se asemeja a un gran árbol con pocas ramas principales que, a su vez, se dividen en numerosos brazos. Las ramas principales serían los órdenes o filos, que en el cuerpo humano están representados principalmente por 5 de los más de 100 que existen en la naturaleza: Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria y Verrucomicrobia. Veamos en qué partes del cuerpo se alojan estos diferentes tipos de bacterias.

Un recorrido por las partes del cuerpo donde se aloja la microbiota humana

La piel está recubierta de microorganismos, aunque de diferente modo según las zonas: en las partes más secas, como brazos y piernas, el número es bajo. Pero en los poros, los folículos pilosos, las axilas o los pliegues de la nariz y las orejas, donde hay más humedad y nutrientes, su número es mayor y su composición, diferente. Las manos se caracterizan por tener la microbiota más diversa y más variable. El filo que predomina en las diferentes regiones de la piel es Actinobacteria, como corinebacterias y cutibacterias, y también los filos Firmicutes y Bacteroidetes, representados por Staphylococcus epidermidis. Esta especie es la más abundante en la piel, participa en la regulación del pH y, entre otras cosas, compite con el patógeno Staphylococcus aureus e impide su asentamiento.

La cavidad oral, puerta de entrada al aparato digestivo, es una de las regiones del cuerpo con mayor abundancia y diversidad de microorganismos. La microbiota se reparte de manera diferente entre la saliva, la lengua, los dientes, las mejillas y las encías, y contribuye a mantener el equilibrio necesario para la salud oral. Si este equilibrio se rompe, la microbiota oral puede ser responsable de la caries dental y de infecciones como la periodontitis.

La cavidad genitourinaria femenina, particularmente la vagina, también está habitada por una microbiota abundante, que durante la etapa reproductiva está dominada por lactobacilos. Estas bacterias constituyen una barrera eficaz frente a la invasión por patógenos bacterianos y fúngicos. En la infancia y tras la menopausia, la microbiota de esta zona se asemeja más a la de la piel y la región anal.

La Escherichia coli es una de las muchas especies de bacterias que pueblan el tracto intestinal humano. / Gerd Altmann -Pixabay

La ‘Escherichia coli’ es una de las muchas especies de bacterias que pueblan el tracto intestinal humano. / Gerd Altmann – Pixabay

Pero es el tracto intestinal la región que contiene la comunidad microbiana más numerosa, densa y diversa del cuerpo humano. El colon posee características fisiológicas y un constante aporte de nutrientes que lo convierten en un eficiente reactor biológico donde puede desarrollarse una microbiota que interviene en numerosas funciones fisiológicas del organismo. Solo los Firmicutes y Bacteroidetes, dos de los cinco filos que comentábamos anteriormente, representan el 90% del ecosistema intestinal y son los mayoritarios en los seres humanos, aunque los géneros que los componen aparecen representados de forma diferente entre los individuos.

Se han identificado más de 1.000 especies distintas en la microbiota intestinal humana, aunque no todas están presentes en todos los individuos. Según Rob Knight, de la Universidad de Colorado, la probabilidad de que una bacteria intestinal procedente de un individuo sea de diferente especie que la obtenida de otro es superior al 90%, lo que indica una alta variabilidad interindividual. Por tanto, la diversidad bacteriana intestinal podría representar un carácter distintivo: una huella microbiana identificativa de cada individuo. Esta diversidad de especies dificulta que se pueda establecer un núcleo taxonómico universal compuesto por un conjunto consistente de especies presentes en la microbiota intestinal humana. También dificulta la descripción de lo que llamaríamos una microbiota normal o saludable. Aún más, la microbiota es muy diferente según la etapa de la vida en que nos encontremos. Sin embargo, sí hay evidencias de los beneficios para la salud que conlleva mantener una microbiota abundante y diversa. Nos adentraremos en ello en un próximo texto del blog.

 

* Carmen Peláez y Teresa Requena son investigadoras del CSIC en el Instituto de Investigación en Ciencias de la Alimentación (CIAL) y autoras de La microbiota intestinal, de la colección de divulgación ¿Qué sabemos de?, disponible en la Editorial CSIC y Los Libros de la Catarata.

Zeolitas en Etiopía: una solución ecológica contra la fluorosis

Por Mar Gulis (CSIC)

¿Te has preguntado alguna vez por qué aparecen manchas en los dientes? El tabaco o el vino tinto son algunas de las causas que te vendrán a la cabeza más rápidamente. Entre la multitud de motivos posibles que encontrarás, nos detendremos en uno que va más allá del esmalte dental: la fluorosis. Además de las manchas que produce en los dientes, esta enfermedad ósea causada por el consumo excesivo del ión fluoruro (conocido como flúor) en la dieta, sobre todo a través del agua, puede provocar osteoesclerosis, calcificación de los tendones y ligamentos, deformidades de los huesos, y otras afecciones.

Fuente de agua potabilizada

Fuente de agua potabilizada por la tecnología del CSIC en Etiopía. / César Hernández.

Según estima la Organización Mundial de la Salud (OMS), la fluorosis afecta a unos 300 millones de personas en el mundo. No en vano, la OMS considera que el flúor es una de las diez sustancias químicas que constituyen una preocupación para la salud pública, entre las que también figuran el amianto, el arsénico y el mercurio, entre otras.

A pesar de que el fluoruro tiene efectos beneficiosos para nuestra dentición como la reducción de las caries, la presencia de elevadas cantidades de este elemento en el agua puede convertirlo en un contaminante natural. Consumir agua con una concentración de fluoruro superior a 1,5 miligramos por litro (límite establecido por la OMS) puede provocar problemas de salud asociados a la fluorosis, como los antes citados, y es especialmente perjudicial para mujeres en estado de gestación y niños/as que están formando sus huesos.

La existencia de flúor en el agua tiene un origen geológico, es decir, se debe a que el agua está en contacto con rocas de acuíferos que tienen el ion fluoruro en su composición química. Estas rocas se hallan en terrenos volcánicos, por tanto, más de 25 países en todo el mundo están afectados por la contaminación de fluoruros en el agua, entre los que se encuentran España, China, India, Estados Unidos y Etiopía. En este último país, el 41% de sus fuentes de agua potable tienen una concentración de fluoruro superior a 1,5 mg/l y se calcula que aproximadamente el 15% de la población etíope está afectada por fluorosis.

Zeolitas naturales

Mineral de Estilbita, zeolita natural de Etiopia. / Defluoridation Ethiopia.

Filtros naturales para atrapar el fluoruro

Etiopía es uno de los países pertenecientes al valle del Rift, junto con Kenia, Uganda y Tanzania. En la zona del valle del Rift etíope, “donde se abra un pozo, va a haber contaminación por fluoruro y, por tanto, la enfermedad tiene elevados números”, asegura Isabel Díaz, investigadora del CSIC en el Instituto de Catálisis y Petroleoquímica (ICP). Díaz es además una de las inventoras de una tecnología que permite extraer el fluoruro del agua de una manera barata y sostenible.

Esta tecnología está basada en zeolitas naturales, un mineral abundante en Etiopía, así como en otros lugares del mundo, ya que también es de origen volcánico. “Su principal característica es que es un material muy poroso, lleno de cavidades de tamaño molecular”, explica la científica del CSIC. Gracias a esta estructura, las zeolitas tienen la capacidad de atrapar una amplia variedad de elementos, como sodio, potasio, calcio y magnesio, y son utilizadas como catalizadores y absorbentes en un gran número de procesos químicos industriales, sobre todo en la industria petroquímica.

Estructura zeolita

Estructura atómica de la Estilbita. En azul moléculas de agua, verde cationes calcio y morado cationes sodio. / Defluoridation Ethiopia.

Con la nueva tecnología desarrollada por el grupo del ICP —además de Isabel Díaz como investigadora principal, forman parte del equipo los científicos Joaquín Pérez Pariente y Luis Gómez Hortigüela—, junto con la Universidad de Adís Abeba, se modifica la zeolita para que absorba selectivamente el ion fluoruro. “De esta forma es posible abastecer a la población de agua potable”, afirma Díaz. Esta solución resulta primordial en el valle del Rift en Etiopía, dado que el agua de los pozos en la zona tiene una concentración de fluoruro de 2-3 mg/l, prácticamente el doble del límite que establece la OMS.

Planta potabilizadora

Planta potabilizadora con zeolitas en Etiopía. / César Hernández.

Aunque este tipo de métodos basados en absorbentes generan una gran cantidad de residuos tras su uso, una de las mayores ventajas de la zeolita es que luego puede usarse como fertilizante del suelo. En la actualidad, se han instalado dos plantas potabilizadoras con zeolitas en las localidades etíopes Dida y Obe, gracias al proyecto Defluoridation Ethiopia, del CSIC y la ONG Amigos de Silva. Esta acción supone un primer paso para que empiece a mermar la cifra de 14 millones de personas en riesgo de padecer fluorosis que, según los estudios, viven en el país africano.

 

Lecturas fresquitas para un verano de ciencia

Por Mar Gulis (CSIC)

Llegan las vacaciones de verano y en ‘Ciencia para llevar’ queremos invitarte a que hagas un hueco en tu maleta para la divulgación. La colección ¿Qué sabemos de? (CSIC-Catarata) te ofrece más de cien libros con los que podrás disfrutar de la ciencia durante estos días de descanso. Aquí te presentamos algunos de los más recientes.

Lecturas veraniegas

 

Mentiras de la física cuántica

El primero va de los falsos mitos que rodean a la física que estudia las partículas más diminutas, como los átomos o los electrones. En Verdades y mentiras de la física cuántica, Carlos Sabín, investigador del CSIC en el Instituto de Física Fundamental, desmonta creencias erróneas acerca de esta rama de la física y aclara que los gatos no están vivos y muertos a la vez, que no modificamos la realidad solo con observarla o que la información no puede viajar más rápido que la luz. En palabras del autor, el libro trae “malas noticias” para quienes creen que la física cuántica es “una manera de escapar a las leyes de la física y entrar en un mundo nuevo donde todo está permitido, todo es impredecible y la realidad puede modificarse a voluntad”. La buena noticia es que Sabín ofrece la explicación correcta a los fenómenos cuánticos más desconcertantes, y lo hace de forma clara y sencilla, sin renunciar al humor o la ironía.

Asimetrías en la materia, la vida y el universo

Aunque a priori parezca improbable, nuestras manos, un tornillo y la concha de un caracol tienen algo importante en común: todos ellos son objetos quirales. Esto quiere decir que su imagen especular no puede superponerse con la original, por mucho que la giremos. Por eso, en el espejo la mano derecha se convierte en la izquierda, un tornillo cambia la dirección de su rosca y la concha ‘da vueltas’ en sentido contrario. En el libro La quiralidad. El mundo al otro lado del espejo, el químico del CSIC en el Instituto de Catálisis y Petroleoquímica Luis Gómez-Hortigüela nos invita a emular a Alicia, el personaje de Lewis Carroll, y a embarcarnos en un viaje alucinante para descubrir las sorprendentes y variadas expresiones de esta propiedad, que está estrechamente relacionada con la asimetría. La quiralidad, por ejemplo, se manifiesta en el cuerpo humano, con un corazón que se encuentra desviado a la izquierda y un cerebro que compartimenta las funciones de forma asimétrica en sus dos hemisferios. Sin embargo, la relevancia fundamental de este fenómeno se expresa en objetos mucho más pequeños, como el ADN, con sus hélices retorciéndose invariablemente hacia la derecha, o las partículas elementales, entre las que ha prevalecido la materia sobre la antimateria, una asimetría que ha dado forma a nuestro universo.

Algas diatomeas, el otro pulmón de la Tierra

Las diatomeas, algas unicelulares capaces de producir más oxígeno que todos los bosques amazónicos, centroafricanos e indonesios juntos, son ‘el otro pulmón’ de la Tierra. El investigador del Instituto de Ciencias del Mar (CSIC) Pedro Cermeño explica, en Las diatomeas y los bosques invisibles del océano, la importancia de estos microorganismos para los ecosistemas marinos y el conjunto del planeta, y presenta algunas de sus posibles aplicaciones tecnológicas.

Con este libro podrás descubrir que en los océanos también hay bosques y desiertos, y que las diatomeas forman una parte esencial de los primeros, donde sirven de alimento para larvas, moluscos, crustáceos y peces. “Si pudiésemos acumular toda la biomasa que producen las diatomeas, en tan solo dos décadas tendríamos suficiente como para reemplazar todos los bosques tropicales del mundo”, ilustra el autor. Otra de sus cualidades es que incrementan la eficiencia de la bomba biológica, un proceso mediante el cual los ecosistemas marinos absorben dióxido de carbono (CO2) de la atmósfera y lo transfieren hacia las capas más profundas del océano, lo cual contribuye a paliar el efecto invernadero y a enfriar el clima del planeta. Si quieres saber más sobre las denominadas ‘joyas del mar’, no dejes de abrir las páginas de este libro.

Virus ‘buenos’ que combaten bacterias infecciosas

¿Existen los virus ‘buenos’? La respuesta es sí: algunos de ellos pueden usarse para luchar contra bacterias resistentes a los antibióticos, uno de los grandes retos de la biología y la medicina en la actualidad. En Los bacteriófagos. Los virus que combaten infecciones, cuatro investigadoras del CSIC en el Instituto de Productos Lácteos de Asturias (Lucía Fernández, Diana Gutiérrez, Ana Rodríguez y Pilar García) nos presentan a los virus que atacan a las bacterias. Como cualquier otro agente vírico, los bacteriófagos son parásitos que necesitan infectar una célula, en este caso una bacteria, para multiplicarse en su interior; pero, a diferencia de otros virus, resultan totalmente inocuos para los humanos, los animales, las plantas y el medioambiente. El libro presenta las bacterias patógenas que se esconden en el nanomundo y traza la historia de los antibióticos, que hasta ahora en Occidente han relegado a los bacteriófagos. También explica cómo la progresiva pérdida de eficacia de la penicilina y otros compuestos con el mismo efecto están abriendo la puerta al empleo de los bacteriófagos en múltiples campos: desde la terapia fágica para la salud humana y animal, hasta biocidas para la agricultura o productos desinfectantes.

Escritos por personal investigador del CSIC, los libros de la colección ¿Qué sabemos de? son ediciones de bolsillo, por lo que resultarán un práctico compañero de viaje. Pero, si lo prefieres, también podrás leerlos en formato electrónico. ¡Buenas vacaciones y buena lectura!