Entradas etiquetadas como ‘Quiralidad’

Tres teorías para explicar el origen de la asimetría en los seres vivos

Por Luis Gómez- Hortigüela (CSIC) *

La quiralidad es la propiedad que tienen ciertos objetos de no ser superponibles con su imagen especular. Así, cada una de las imágenes especulares constituyen entidades diferentes. El mundo que nos rodea está lleno de objetos quirales, como el clásico ejemplo de nuestras manos (la izquierda se convertirá en la derecha si la ponemos frente a un espejo), u objetos que posean ejes helicoidales, como tornillos o escaleras de caracol.

La trascendencia más fundamental de la quiralidad tiene lugar en el nanomundo de las moléculas, en particular en las que conforman el funcionamiento de los seres vivos. Esto es así porque, ya desde su más remoto origen, la vida decidió funcionar de manera asimétrica, empleando compuestos quirales para construir las biomoléculas funcionales: aminoácidos para formar proteínas y azúcares para los ácidos nucleicos. En una entrada anterior, ya hablábamos de la asimetría como una propiedad esencial para la vida. Por alguna misteriosa razón, de las dos posibles formas especulares de estos compuestos quirales, la vida decidió comenzar su andadura empleando exclusivamente la forma zurda (L) de los aminoácidos y la forma diestra (D) de los azúcares, fenómeno que se conoce como homoquiralidad.

El pez platija con su extravagante asimetría en la posición de los ojos es un claro ejemplo de quiralidad.

A su vez, consciente de su eficiencia, la evolución trasmitió esta caprichosa selección quiral a todos los seres vivos, al menos en lo que concierne a nuestro planeta. Ahora bien, una vida imagen especular de la existente, con aminoácidos diestros y azúcares zurdos, en principio debería ser igualmente viable. ¿Por qué entonces la naturaleza se decantó por la vida basada en L-aminoácidos y D-azúcares? ¿Fue fruto de una mera casualidad o existe un imperativo cósmico detrás? ¿Podría existir vida imagen especular de la nuestra en otros planetas? Hasta el momento, hay tres posibles teorías que responden esta cuestión.

La homoquiralidad surgió por azar

Al ser las dos formas especulares (enantiómeros) de compuestos quirales igualmente estables, en principio existen en igual proporción (50% de cada uno). La senda hacia la homoquiralidad requiere el establecimiento de ciertos desequilibrios enantioméricos primigenios, una ruptura inicial de esa simetría del 50% que pueda derivar por diversos mecanismos de amplificación hacia la exclusividad quiral requerida para traspasar la barrera de la materia inerte a la viva. Un primer agente que podría haber generado esos desequilibrios es el propio azar.

Imaginemos que lanzamos una moneda al aire 100 veces; la estadística predice que lo más probable es que obtengamos 50 caras y 50 cruces. Sin embargo, si realizamos el experimento varias veces, es muy posible que en alguna ocasión obtengamos 49 caras y 51 cruces (o viceversa), lo que da lugar a una ruptura de la simetría. De manera similar, pequeños desequilibrios estocásticos en la proporción de uno y otro enantiómero de biomoléculas quirales en el caldo prebiótico habrían generado un germen de asimetría que habría derivado en la homoquiralidad. De ser este el mecanismo, la vida terrestre basada en L-aminoácidos y D-azúcares constituiría un mero accidente congelado fruto de un azaroso desequilibrio primigenio, condenado a la eternidad por la selección natural y las ventajas bioquímicas de la homoquiralidad. Esta selección quiral, por tanto, no sería imperativa en el universo, sino que podría encontrarse vida imagen especular en otros rincones del mismo.

El Hibiscus hawaiano, es quiral: los pétalos se montan unos sobre otros de manera helicoidal. / Wikipedia

Imperativo cósmico

No obstante, Einstein encontraba poco espacio en el universo para el azar: “Dios no juega a los dados con el universo” (o en este caso, la selección natural a través de la evolución química). Así, también se han propuesto mecanismos deterministas, donde ciertas influencias asimétricas debieron concurrir para generar esa ruptura inicial de simetría, lo que establecería una causa última para la selección quiral de la vida.

La primera de las teorías deterministas está relacionada con la naturaleza íntima de la materia. Uno de los más desconcertantes descubrimientos científicos del siglo XX fue la llamada caída de la paridad, que se deriva del hecho de que las partículas que conforman nuestro universo de materia son asimétricas. En palabras de Asimov, que el electrón es zurdo (su reverso de antimateria, el positrón, sería su análogo diestro).

Nuestro universo está constituido por partículas de materia, como el electrón, y por tanto es asimétrico. Esta asimetría es debida a un desequilibrio inicial, cuyas causas aún se desconocen, entre la cantidad de materia y antimateria tras el Big Bang, que hizo que la primera prevaleciera en su épica batalla ancestral contra la antimateria, conformando así nuestro universo.

Tal asimetría de la materia que configura las moléculas de nuestro universo implica que existe una ínfima diferencia de estabilidad entre los enantiómeros L y D de los aminoácidos construidos a base de materia, lo cual podría proporcionar la causa para un desequilibrio inicial. De hecho, estudios teóricos sugirieron una ligerísima mayor estabilidad para los L-aminoácidos y los D-azúcares, coincidente con la selección quiral de la vida. Sin embargo, las diferencias de energía calculadas eran extremadamente pequeñas y controvertidas. Así, por muy eficientes mecanismos de amplificación que existieran, resulta difícil predecir que tales mínimos desequilibrios condujeran a la homoquiralidad de la vida. En todo caso, si este fuera el origen, la quiralidad estaría impresa en los mismos entresijos de la materia, y por tanto cualquier vida en nuestro universo de materia debería reflejar la misma selección quiral que la terrestre.

La espiral de las conchas de caracol giran invariablemente hacia la derecha, una muestra de la quiralidad en esta especie.

Origen extraterrestre

En 1969, la llegada de un inesperado visitante en forma de meteorito a Murchison (Australia) proporcionó una nueva pista para otro posible mecanismo de ruptura de simetría quiral. El célebre meteorito contenía aminoácidos de origen extraterrestre. Sorprendentemente, se observaron ciertos desequilibrios enantioméricos en dichos aminoácidos, lo que sugería la provocativa idea de un germen de quiralidad exógeno, forjado en algún rincón del universo donde pudieran darse condiciones que no serían posibles en la Tierra. De esta manera, el desequilibrio quiral inicial habría alcanzado nuestro planeta a bordo de meteoritos.

Para estudiar esta sugerente posibilidad, la Agencia Espacial Europea envió en 2004 la sonda Rosetta al cometa 64P-Churiumov Guerasimenko para analizar in situ la existencia de desequilibrios enantiómericos en compuestos quirales de interés para el origen de la vida, si bien azares del destino impidieron llegar a conclusiones definitivas. En este caso, no existiría una quiralidad universal, sino que su origen sería local asociado a una región particular del universo, y podría por tanto existir vida imagen especular en otros planetas de otras regiones estelares.

Sea como fuere, resulta sobrecogedor pensar que el código quiral que describe la asimetría de la vida pudiera proceder en último término de algún lejano rincón del universo bañado por la luz asimétrica de una estrella de neutrones durante la llamada era química, o bien de lo más recóndito de la existencia, en el más insondable periodo posterior al Big-Bang, cuando la materia venció en su decisiva batalla contra la antimateria durante la era cósmica, salvándose de su desintegración absoluta y permitiendo la formación de las galaxias y el desarrollo de la era biológica que condujo, de la mano de la evolución, a nuestra propia existencia para admirar la asimétrica belleza del Universo… ¿O no fue más que una mera casualidad?

Luis Gómez-Hortigüela es investigador del Instituto de Catálisis y Petroleoquímica del CSIC y autor del libro ‘La quiralidad’ (CSIC-Catarata) de la colección ¿Qué sabemos de?

La asimetría, una propiedad esencial para la vida

Por Luis Gómez-Hortigüela y Mar Gulis (CSIC)*

Los documentos del caso es una novela epistolar de misterio escrita por Dorothy Sayers en 1930. En la trama —atención, spoiler—, Harrison, un marido engañado aficionado a buscar setas, aparece muerto, aparentemente tras haber consumido una seta venenosa por error. Sospechando que podría haber sido asesinado por el amante de su madre, el hijo del fallecido, Paul, decide investigar su muerte. Descubre que la muscarina, el veneno que acabó con la vida de Harrison, es un producto natural procedente del hongo Amanita muscaria, pero también puede ser preparado artificialmente en el laboratorio. Entonces, ¿falleció el padre de Paul por comerse la seta equivocada o alguien acabó con su vida deliberadamente?

La respuesta a esta cuestión está en la quiralidad, una propiedad que compartimos seres vivos, objetos cotidianos como un tornillo o un sacacorchos y compuestos químicos como la muscarina. Un objeto es quiral cuando no es superponible con su imagen especular. El ejemplo clásico son nuestras manos. Si ponemos la mano izquierda frente a un espejo, se convierte en la derecha. Y si hacemos lo mismo con un tornillo, veremos que la rosca parece girar en sentido contrario. A escala humana, se manifiesta entre otros rasgos en que tenemos el corazón desviado a la izquierda y un cerebro que compartimenta las funciones de forma asimétrica en sus dos hemisferios, así como en la mayor habilidad en nuestra mano diestra (o zurda). La quiralidad está pues estrechamente asociada a la asimetría, es decir, a la falta de simetría. Las dos formas especulares no superponibles entre sí de un objeto o de una molécula quiral se denominan enantiómeros. Si retomamos el ejemplo de nuestras manos, la derecha y la izquierda serían los dos enantiómeros. Lo mismo sucede a nivel molecular, donde muchos compuestos son quirales y poseen dos enantiómeros, ambos imágenes especulares que no son superponibles entre sí, constituyendo por tanto diferentes entidades.

Ejemplar de cangrejo violinista (Uca tangeri) con una de sus pinzas claramente mayor que la otra. / Esmeralda Ramos-García Neto. Fundación Aquae

Pero lo que en el mundo macroscópico es fácil de comprobar —podemos observar a simple vista las diferencias entre nuestras manos o pies derechos e izquierdos— ¿cómo se manifiesta en el microscópico? Uno de los principales rasgos de los compuestos quirales es que poseen actividad óptica, es decir, cuando son expuestos a la luz polarizada tienen la propiedad de rotar el plano de luz un cierto ángulo en uno u otro sentido, según el enantiómero de que se trate.

Volvamos a nuestro protagonista fallecido y su hijo con sed de verdad. A estas alturas ya intuirán que la asimetría algo tiene que ver con la resolución del misterio de la muerte de Harrison. Pues sí. La muscarina es un compuesto quiral. Tanto la muscarina natural como la sintética comparten la misma composición y propiedades, salvo una sutil diferencia: la de procedencia natural tiene actividad óptica, mientras que la sintética es ópticamente inactiva, no produce ningún cambio en el plano de la luz. Al analizar la muscarina ingerida por su difunto progenitor con un polarímetro, Paul observa que esta no posee actividad óptica, lo que no deja lugar a dudas sobre su origen artificial. Descartada la procedencia natural de la muscarina que tomó su padre, Paul consigue demostrar que, efectivamente, Harrison había sido deliberadamente envenenado. Fue Louis Pasteur quien descubrió la quiralidad molecular a mediados del siglo XIX en un experimento que ha sido calificado como el más hermoso de la historia de la química, y constituye la clave para explicar qué le ocurrió a Harrison.

‘Homoquiralidad’: la naturaleza es asimétrica

La investigación del asesinato que plantea Sayers pone de manifiesto una diferencia crucial entre los compuestos quirales de origen sintético, preparados en el laboratorio, y los de origen natural, extraídos a partir de algún componente de un ser vivo. Los primeros, al ser preparados a partir de reacciones químicas que implican movimientos de electrones —sometidos a fuerzas electromagnéticas que no distinguen entre derecha e izquierda— se obtienen como mezclas al 50% de ambos enantiómeros, siendo ópticamente inactivos –la rotación de la luz polarizada en un sentido propiciada por un enantiómero se cancela por la rotación en sentido inverso del otro enantiómero. Por el contrario, los de origen natural, que se obtienen a partir de rutas metabólicas reguladas por diversas entidades bioquímicas presentes en todos los seres vivos, constan de un solo enantiómero, siendo por tanto ópticamente activos. Así, en palabras de Pasteur, la actividad óptica es una firma de la vida.

Moléculas quirales que conforman las macromoléculas funcionales de los seres vivos. En la imagen aparece a la izquierda un L-aminoácido y a la derecha un D-aminoácido. Solo los primeros se encuentran en las proteínas de la materia viva. / Wikipedia

La materia inanimada o inerte está asociada a la existencia de simetría, bien por estar constituida por elementos no quirales o por la existencia de ambas formas especulares en igual proporción de elementos quirales, mientras que la materia animada está invariablemente asociada a la quiralidad en su forma enantioméricamente pura. Podríamos decir que la naturaleza en su conjunto es un sistema quiral.

La mayoría de las moléculas que constituyen los organismos vivos son quirales y, en todos los casos, existe una clara preferencia por uno de los dos enantiómeros, lo que se conoce como ‘homoquiralidad’. Esto es lo que ocurre con los ‘ladrillos’ de los que estamos formados todos los seres vivos: los aminoácidos que componen las proteínas y los azúcares que conforman los ácidos nucleicos, el ADN, con sus hélices retorciéndose invariablemente hacia la derecha, y el ARN.

Así, a través de mecanismos aún desconocidos quiso la vida comenzar su andadura usando exclusivamente la forma L de los aminoácidos y exclusivamente la forma D de los azúcares. A su vez, quiso la evolución imprimir esta caprichosa selección quiral en todos y cada uno de los seres vivos existentes, al menos en lo que a nuestro planeta concierne, haciendo de la asimetría una propiedad esencial asociada intrínsecamente a la vida.

Luis Gómez-Hortigüela es investigador del Instituto de Catálisis y Petroleoquímica del CSIC y autor del libro ‘La quiralidad’ (CSIC-Catarata) de la colección ¿Qué sabemos de?

Lecturas fresquitas para un verano de ciencia

Por Mar Gulis (CSIC)

Llegan las vacaciones de verano y en ‘Ciencia para llevar’ queremos invitarte a que hagas un hueco en tu maleta para la divulgación. La colección ¿Qué sabemos de? (CSIC-Catarata) te ofrece más de cien libros con los que podrás disfrutar de la ciencia durante estos días de descanso. Aquí te presentamos algunos de los más recientes.

Lecturas veraniegas

 

Mentiras de la física cuántica

El primero va de los falsos mitos que rodean a la física que estudia las partículas más diminutas, como los átomos o los electrones. En Verdades y mentiras de la física cuántica, Carlos Sabín, investigador del CSIC en el Instituto de Física Fundamental, desmonta creencias erróneas acerca de esta rama de la física y aclara que los gatos no están vivos y muertos a la vez, que no modificamos la realidad solo con observarla o que la información no puede viajar más rápido que la luz. En palabras del autor, el libro trae “malas noticias” para quienes creen que la física cuántica es “una manera de escapar a las leyes de la física y entrar en un mundo nuevo donde todo está permitido, todo es impredecible y la realidad puede modificarse a voluntad”. La buena noticia es que Sabín ofrece la explicación correcta a los fenómenos cuánticos más desconcertantes, y lo hace de forma clara y sencilla, sin renunciar al humor o la ironía.

Asimetrías en la materia, la vida y el universo

Aunque a priori parezca improbable, nuestras manos, un tornillo y la concha de un caracol tienen algo importante en común: todos ellos son objetos quirales. Esto quiere decir que su imagen especular no puede superponerse con la original, por mucho que la giremos. Por eso, en el espejo la mano derecha se convierte en la izquierda, un tornillo cambia la dirección de su rosca y la concha ‘da vueltas’ en sentido contrario. En el libro La quiralidad. El mundo al otro lado del espejo, el químico del CSIC en el Instituto de Catálisis y Petroleoquímica Luis Gómez-Hortigüela nos invita a emular a Alicia, el personaje de Lewis Carroll, y a embarcarnos en un viaje alucinante para descubrir las sorprendentes y variadas expresiones de esta propiedad, que está estrechamente relacionada con la asimetría. La quiralidad, por ejemplo, se manifiesta en el cuerpo humano, con un corazón que se encuentra desviado a la izquierda y un cerebro que compartimenta las funciones de forma asimétrica en sus dos hemisferios. Sin embargo, la relevancia fundamental de este fenómeno se expresa en objetos mucho más pequeños, como el ADN, con sus hélices retorciéndose invariablemente hacia la derecha, o las partículas elementales, entre las que ha prevalecido la materia sobre la antimateria, una asimetría que ha dado forma a nuestro universo.

Algas diatomeas, el otro pulmón de la Tierra

Las diatomeas, algas unicelulares capaces de producir más oxígeno que todos los bosques amazónicos, centroafricanos e indonesios juntos, son ‘el otro pulmón’ de la Tierra. El investigador del Instituto de Ciencias del Mar (CSIC) Pedro Cermeño explica, en Las diatomeas y los bosques invisibles del océano, la importancia de estos microorganismos para los ecosistemas marinos y el conjunto del planeta, y presenta algunas de sus posibles aplicaciones tecnológicas.

Con este libro podrás descubrir que en los océanos también hay bosques y desiertos, y que las diatomeas forman una parte esencial de los primeros, donde sirven de alimento para larvas, moluscos, crustáceos y peces. “Si pudiésemos acumular toda la biomasa que producen las diatomeas, en tan solo dos décadas tendríamos suficiente como para reemplazar todos los bosques tropicales del mundo”, ilustra el autor. Otra de sus cualidades es que incrementan la eficiencia de la bomba biológica, un proceso mediante el cual los ecosistemas marinos absorben dióxido de carbono (CO2) de la atmósfera y lo transfieren hacia las capas más profundas del océano, lo cual contribuye a paliar el efecto invernadero y a enfriar el clima del planeta. Si quieres saber más sobre las denominadas ‘joyas del mar’, no dejes de abrir las páginas de este libro.

Virus ‘buenos’ que combaten bacterias infecciosas

¿Existen los virus ‘buenos’? La respuesta es sí: algunos de ellos pueden usarse para luchar contra bacterias resistentes a los antibióticos, uno de los grandes retos de la biología y la medicina en la actualidad. En Los bacteriófagos. Los virus que combaten infecciones, cuatro investigadoras del CSIC en el Instituto de Productos Lácteos de Asturias (Lucía Fernández, Diana Gutiérrez, Ana Rodríguez y Pilar García) nos presentan a los virus que atacan a las bacterias. Como cualquier otro agente vírico, los bacteriófagos son parásitos que necesitan infectar una célula, en este caso una bacteria, para multiplicarse en su interior; pero, a diferencia de otros virus, resultan totalmente inocuos para los humanos, los animales, las plantas y el medioambiente. El libro presenta las bacterias patógenas que se esconden en el nanomundo y traza la historia de los antibióticos, que hasta ahora en Occidente han relegado a los bacteriófagos. También explica cómo la progresiva pérdida de eficacia de la penicilina y otros compuestos con el mismo efecto están abriendo la puerta al empleo de los bacteriófagos en múltiples campos: desde la terapia fágica para la salud humana y animal, hasta biocidas para la agricultura o productos desinfectantes.

Escritos por personal investigador del CSIC, los libros de la colección ¿Qué sabemos de? son ediciones de bolsillo, por lo que resultarán un práctico compañero de viaje. Pero, si lo prefieres, también podrás leerlos en formato electrónico. ¡Buenas vacaciones y buena lectura!