Entradas etiquetadas como ‘Fisica cuántica’

Lecturas científicas para días de manta y sofá

Por Mar Gulis (CSIC)

Estas navidades van a ser diferentes. Quizá no podamos hacer todos los planes que nos gustaría, pero a cambio tendremos más tiempo para estar en casa y dedicarnos, por ejemplo, a leer. Desde Ciencia para llevar te proponemos algunos de los últimos títulos de la colección de divulgación ‘¿Qué sabemos de?’ (CSIC-Catarata) para estos días de manta y sofá. Los efectos del ejercicio físico en nuestro cerebro, los últimos avances de la exploración marciana o qué debemos hacer para protegernos de las ciberestafas son algunos de los temas de los que tratan. ¿Te animas a descubrirlos?

¿Cómo se pesa un átomo?

Nuestra primera propuesta te ofrece un viaje al nanomundo sin salir de casa. Pesar objetos diminutos como una bacteria, un virus o incluso un átomo, medir la presión sanguínea en el interior de las venas o posicionar aviones y satélites no sería posible sin las aplicaciones derivadas de la nanomecánica. Daniel Ramos Vega, investigador del CSIC, presenta los métodos con los que podemos visualizar e intervenir sobre la materia en la escala de los nanómetros, es decir, la milmillonésima parte de un metro (0,000000001 m) en el libro Nanomecánica.

En esta escala, las propiedades físicas y químicas de los objetos cambian y estos se comportan de un modo diferente a como lo hacen en el mundo macroscópico. Esto se aprovecha para desarrollar un sinfín de nuevos dispositivos descritos en el texto, como balanzas atómicas, narices electrónicas que dotan de olfato a los robots, sensores para sistemas de posicionamiento, acelerómetros que hacen saltar el airbag de los coches en caso de accidente o giroscopios instalados en teléfonos móviles y mandos de consolas.

Los efectos del ejercicio físico en nuestro cerebro

Todos sabemos que la actividad física resulta beneficiosa para nuestro organismo, incluido el cerebro. Ahora bien, ¿todo tipo de ejercicio genera efectos saludables?, ¿es cierto que el deporte ayuda a retrasar el envejecimiento?, ¿qué cambios se producen en nuestras neuronas cuando lo practicamos? Estas y otras cuestiones tienen respuesta en Cerebro y ejercicio. Los investigadores del CSIC Coral Sanfeliu y José Luis Trejo presentan las evidencias científicas de cómo la actividad física y deportiva moldea el cerebro humano y explican los efectos del ejercicio sobre la cognición, el estado de ánimo y la salud cerebral a todas las edades.

A lo largo del texto los investigadores se adentran en los mecanismos genéticos, moleculares y celulares que sustentan los innumerables beneficios del ejercicio. “Entre otros efectos positivos, produce un incremento de la capacidad cognitiva y de la formación de neuronas nuevas (potencia la capacidad de análisis matemático y la habilidad lingüística); hace crecer el flujo sanguíneo en el cerebro; incrementa la funcionalidad y disponibilidad de neurotransmisores clave e induce neuroprotección en todas las áreas cerebrales analizadas hasta la fecha”, afirman Sanfeliu y Trejo. Aparte de las consecuencias directas, el deporte produce también efectos indirectos, como ocurre con los individuos que se benefician del ejercicio físico que realizaron sus progenitores. Además, el ejercicio físico puede constituir una vía para hacer frente al envejecimiento y contribuye al bienestar psicológico. Después de leer este libro, seguro que te dan ganas de calzarte las zapatillas y ponerte en movimiento.

Enfermedades raras, patologías desconocidas con gran impacto económico y social

Son trastornos o condiciones muy diversos e infrecuentes, en su mayoría tienen origen genético y suelen aparecer en la infancia, por lo que se padecen durante casi toda la vida. Las enfermedades raras, englobadas bajo este término hace tan solo cuatro décadas, solo afectan a menos de 5 individuos por 10.000 habitantes, pero constituyen un problema de salud global. El investigador Francesc Palau hace divulgación sobre el origen, diagnóstico, tratamiento, atención sanitaria e investigación de estas patologías que, en términos globales, tienen incidencia sobre 26 millones de personas en Europa.

El libro Enfermedades raras presenta una realidad muy poco conocida por la ciudadanía. “El contraste entre los bajos datos epidemiológicos de la población afectada y su elevada diversidad y heterogeneidad, nos pone ante la paradoja de la rareza: las enfermedades son raras, pero los pacientes con enfermedades raras son muchos”. La distrofia muscular de Duchenne, la fibrosis quística o la esclerodermia son solo tres de las 6.172 enfermedades raras descritas hasta la fecha. Debido a su cronicidad, complejidad y la necesidad de una mayor atención sanitaria, los recursos que consumen son muy elevados.

La investigación biomédica es el camino para cambiar el futuro de las personas afectadas por una de estas patologías, pero también para esclarecer el complejo modo de enfermar del ser humano. “Actuaciones sobre las enfermedades raras son también acciones que nos ayudan a conocer y enfocar mejor las enfermedades comunes”, apunta Palau.

Del tupperware al teletrabajo: ¿cómo se hace la innovación?

La siguiente propuesta está protagonizada por un término usado hasta la saciedad. No hay ningún ámbito en el que la palabra innovación no aparezca como el talismán que soluciona todos los problemas. Pero, ¿qué se entiende en la actualidad por innovación?, ¿qué hacen Spotify, Zara o Amazon para triunfar innovando? o ¿cuáles son las cualidades de una persona innovadora? Los investigadores Elena Castro e Ignacio Fernández han escrito La innovación y sus protagonistas con la intención de explicar el alcance y dimensiones de este fenómeno y su evolución. “En este mundo globalizado, la supervivencia de las empresas y muchas actividades sociales pasan por la capacidad para desarrollar productos y procesos nuevos o mejorados, pero tratando de que tales innovaciones contribuyan a los objetivos sociales que van a permitir un futuro más sostenible y equitativo y que contribuya al bienestar de las personas”, apuntan los investigadores del CSIC.

La innovación es mucho más que nuevos productos o servicios, ya que también se puede innovar en los procesos de fabricación o en el desarrollo de políticas sociales, por ejemplo. Por otro lado, no solo hace falta una buena idea: “para que las invenciones sean consideradas innovaciones tienen que ser aplicadas en un proceso productivo, o su resultado ha de llegar al mercado o a la sociedad”, señalan Castro y Fernández. El texto ofrece otros muchos ejemplos de innovación, y da pistas de los atributos que han de tener las personas innovadoras. Además, los autores hacen hincapié en que no solo innovan las empresas, sino también otras organizaciones sociales. Una lectura imprescindible si quieres saber el verdadero alcance de la innovación y usar este término con propiedad.

Marte y el enigma de la vida

Lo han llamado dios de la guerra, Horus en el horizonte y estrella de fuego. Marte, ese punto rojo en el firmamento, siempre ha estado ahí, ante nuestros ojos, desafiando nuestra curiosidad. Desde la Antigüedad, el ser humano no ha cesado de observarlo y, lejos de agotar las preguntas, el más habitable de los planetas a nuestro alcance sigue ofreciéndonos un relato apasionante. Juan Ángel Vaquerizo, astrofísico y divulgador del CSIC ha escrito Marte y el enigma de la vida. El número 117 de la colección condensa el conocimiento que tenemos hasta el momento del planeta, explica sus peculiaridades y semejanzas con la Tierra, la historia de su exploración y los retos que se abren ante las nuevas misiones lanzadas hacia territorio marciano.

Marte

“Marte es especial porque ha provocado un profundo impacto en la cultura y ha impulsado de modo decisivo el avance de la ciencia en los últimos siglos. A día de hoy, es el primer objetivo astrobiológico, ya que es el mejor escenario para demostrar la existencia de vida fuera de la Tierra”, señala Vaquerizo. “Estamos viviendo momentos cruciales en la exploración marciana. Tanto es así que el primer ser humano que pise Marte ya ha nacido, y todo apunta a que algunos de los grandes enigmas que aún esconde el planeta rojo podrían ser resueltos durante las próximas décadas”, añade el autor. Si quieres saber más sobre estos enigmas y sus posibles respuestas, no te pierdas esta lectura marciana.

Matemáticas para la pandemia

Desde el inicio de la pandemia ocasionada por el virus SARS-CoV-2 contamos y medimos sin descanso. Cada día recibimos cantidades ingentes de información en forma de gráficos, tablas e infografías, y hemos incorporado a nuestro vocabulario expresiones como ‘ritmo de contagio’, ‘aplanar la curva’ o ‘crecimiento exponencial’. Los investigadores Manuel de León y Antonio Gómez Corral nos ayudan a entender estos términos en el libro Las matemáticas de la pandemia.

El texto recoge las herramientas que se utilizan para comprender el proceso de transmisión de enfermedades como la viruela, la malaria o la COVID-19 y expone cómo esta disciplina ayuda a diseñar medidas para combatirlas. En sus páginas se explica, entre otros, el modelo SIR. Formulado hace casi un siglo, su nombre alude a los tres grupos en los que se clasifican individuos de una población según su estado ante una enfermedad: susceptible (S), infectado (I) y resistente o recuperado (R).

Sobre las lecciones aprendidas durante la pandemia actual, los autores ponen el foco en la rapidez de acceso a los datos y en su calidad para hacer posible un análisis adecuado. “Sean cuales sean las características y peculiaridades que se incorporen al modelo matemático que describa la propagación del SARS-CoV-2, sus virtudes y limitaciones estarán siempre marcadas por los datos que lo soporten, es decir, que permitan su construcción y validación”, explican.

Las amenazas del ciberespacio

¿Qué tiene que ver una web que instala cookies de rastreo sin consentimiento con un programa informático malicioso capaz de sabotear una central nuclear? ¿Y con un correo fraudulento en el que nuestro supuesto jefe nos ordena hacer una transferencia urgente? Todas estas acciones, estén o no vinculadas, suponen una amenaza para la ciberseguridad, una disciplina de reciente cuño a la que está dedicado el último libro de la colección. Escrito por los investigadores del CSIC David Arroyo, Víctor Gayoso y Luis Hernández, el texto aborda un problema, el de la seguridad de la información almacenada o transmitida en el ciberespacio, que no ha dejado de crecer en los últimos años. Un ejemplo de ello es que en 2019 los ciberdelitos aumentaron en España un 35% con respecto al año anterior.

Estas prácticas afectan a particulares, empresas y estados, que sufren sus consecuencias más allá del mundo virtual. “El ciberespacio no es un mero anexo del mundo real, sino uno de los elementos que actualmente lo configuran, por lo que se puede constituir en causa y efecto en el mundo físico”, precisan los autores. En la detallada descripción de amenazas que recoge el libro Ciberseguridad, dos de las que reciben mayor atención son el phishing (homófono inglés de fishing: ‘pesca’), uno de los ataques más extendidos en la actualidad, y las herramientas de teletrabajo, que desde marzo de 2020 han experimentado un crecimiento estimado del 84% y que a juicio de los autores se han adoptado de modo improvisado.

Ciberseguridad

Además de exponer un amplio catálogo de ciberriesgos, los investigadores ofrecen consejos y dan pautas para protegernos de los peligros del ciberespacio.

Todos los libros de la colección ‘¿Qué sabemos de?’ están escritos por el personal investigador del CSIC. Además de los que te hemos contado, la serie te ofrece otros cien títulos para saciar tu curiosidad científica. Si eres ese tipo de personas que disfrutan con el olor y el tacto del papel, los tienes en formato bolsillo, y, si prefieres la pantalla, también los puedes conseguir en formato electrónico. ¡Que la ciencia te acompañe!

Apúntate a la Semana de la Ciencia del CSIC: hay más de 140 actividades para elegir… y muchas son online

Por Mar Gulis (CSIC)

¿Te interesa saber cómo ventilar una habitación para reducir el riesgo de contagiarse de coronavirus? ¿Quieres descubrir cómo las matemáticas están cambiando a los robots? ¿Te animas a participar en un escape room ambientado en un agujero negro, de donde ni siquiera la luz puede salir? Propuestas como estas forman parte de la programación del CSIC para la Semana de la Ciencia y la Tecnología: más de 140 actividades gratuitas, algunas presenciales y otras virtuales, que se desarrollarán a lo largo de noviembre en 12 comunidades autónomas (Andalucía, Aragón, Asturias, Canarias, Cantabria, Castilla y León, Cataluña, Comunidad Valenciana, Galicia, Islas Baleares, Madrid y País Vasco).

SCT en el IEM-CSIC

Taller escolar en el Instituto de Estructura de la Materia durante la Semana de la Ciencia de 2019. / Sandra Diez (CSIC)

En la web www.semanadelaciencia.csic.es encontrarás todas las iniciativas del CSIC para este gran evento de divulgación y podrás informarte de cómo inscribirte en las que más te interesen; pero, atención:  todavía estamos ultimando los preparativos, así que en los próximos días iremos añadiendo nuevas propuestas. ¿Quieres conocer algunas de ellas? Te las contamos a continuación.

Lo que sabemos (hasta ahora) sobre la pandemia

Como es lógico, la pandemia provocada por el SARS-CoV-2 se dejará notar en el contenido de esta Semana de la Ciencia. El estado de desarrollo de las vacunas españolas, las pruebas PCR, o los mecanismos moleculares, celulares y epidemiológicos que contribuyen a la propagación del patógeno serán el eje de varias conferencias que, de forma presencial o virtual, impartirán especialistas del Centro de Investigaciones Biológicas Margarita Salas, el Centro de Biología Molecular Severo Ochoa o el Centro Nacional de Biotecnología.

Otras propuestas abordarán la epidemia desde un enfoque multidisciplinar. Es el caso de dos actividades virtuales del Instituto de Diagnóstico Ambiental y Estudios del Agua: la charla Daños colaterales de la COVID-19: la pandemia del plástico, sobre el aumento en el consumo de este material que ha supuesto la crisis del coronavirus, y el taller Aprende a medir la ventilación de un espacio cerrado, que aportará pautas para reducir el riesgo de contagio. Por su parte el debate presencial Biodiversidad y zoonosis, que tendrá lugar en el Real Jardín Botánico, se centrará en cómo una naturaleza sana puede evitar que nuevos virus salten de los animales a los seres humanos.

Eventos online para todos los públicos

Además, el coronavirus ha traído consigo algunos cambios en el formato de las actividades y muchas se llevarán a cabo de manera virtual, para que cualquiera pueda participar desde casa. Entre ellas figuran un escape room del Instituto de Física de Cantabria, en el que el objetivo será evadirse de donde ninguna partícula logra hacerlo: un agujero negro, o la gymkhana sobre la luz que todos los años organiza el Instituto de Óptica, y que en esta edición se traslada a Youtube. Así mismo, el taller (R)Evoluciona la vida de los océanos del Instituto de Biología Evolutiva desafiará al público a diseñar una nueva especie marina adaptada al calentamiento de los océanos y al aumento de microplásticos en sus aguas.

SCT 2019 en el Instituto de Biologia Funcional y Genomica de Salamanca

Visita al Instituto de Biología Funcional y Genómica de Salamanca durante la pasada edición de la Semana de la Ciencia. / CSIC

Entre las propuestas virtuales no faltan tampoco las dirigidas a niños y niñas. La Delegación del CSIC en las Islas Baleares invita al alumnado de primaria a divertirse y aprender con el juego ¿Qué hacen los científicos y científicas?, unKahoot’ sobre plantas, animales, océanos y el mismo planeta Tierra. Mientras, el Centro de Investigación y Desarrollo Pascual Vila ofrece dos talleres especialmente dirigidos a niñas de 6 a 12 años en el marco de la actividad Las chicas son de ciencias (CSIC4Girls): uno sobre contaminación atmosférica y otro en el que las participantes tendrán que valerse de la química para fabricar camisetas. Otra actividad online para escolares será el concurso de dibujo de la Misión Biológica de Galicia ¿Pueden enfermar las plantas?, abierto a alumnado de primaria de toda España.

Para ESO y Bachillerato también hay planeadas actividades en la red, como una charla sobre el papel de los pingüinos en el funcionamiento ecológico de la Antártida, que podrá verse en el canal de Youtube del Instituto de Ciencias Marinas de Andalucía, o la jornada Acercando los Objetivos de Desarrollo Sostenible a las aulas, en la que científicos y científicas del Instituto de Productos Naturales y Agrobiología presentarán sus investigaciones. Lo harán desde la perspectiva de los retos planteados en la Agenda 2030 de la ONU y tratarán temas como las especies invasoras en Canarias, las vacunas, el cambio climático o la seguridad alimentaria.

Las propuestas virtuales no acaban aquí. El canal de Youtube del Instituto de Física Teórica, que cuenta con más de medio millón de suscripciones, emitirá dos directos: uno sobre lo ‘infinitamente’ pequeño, como la física cuántica o el bosón de Higgs, y otro sobre lo ‘infinitamente’ grande, como el origen y el futuro del universo, la energía oscura o las ondas gravitacionales. También habrá charlas para todos los públicos, como las organizadas por el Instituto de Ciencia y Tecnología del Carbono sobre nanotecnología y energías renovables, o las tituladas Matemáticas y robótica, del Instituto de Ciencias Matemáticas, ¿Qué hay de cierto en que se puedan cultivar patatas en Marte?, del Centro de Investigaciones Biológicas Margarita Salas, o Verdades y mentiras de la física cuántica, del Instituto de Física Fundamental. Además, será posible visitar virtualmente varios centros de investigación, como el Instituto de Recursos Naturales y Agrobiología de Salamanca. En este caso las ideas que la célebre bióloga Rachel Carson transmitió a través de su libro Primavera silenciosa servirán de hilo conductor para hablar de los proyectos que se llevan a cabo en el centro.

Eventos presenciales en tu comunidad autónoma

Visitas a laboratorios, rutas científicas, conferencias danzadas: la Semana de la Ciencia del CSIC sigue contando con un gran número de actividades presenciales. Todas ellas se llevarán a cabo de forma segura, para lo cual se han reducido los aforos habituales y se han establecido medidas de higiene y desinfección especiales. Además, será imprescindible la inscripción previa, lo que permitirá comunicar al público asistente cualquier cambio en la programación motivado por la situación sanitaria. Si esta Semana de la Ciencia te apetece salir de casa, aquí tienes algunos de los eventos que se desarrollarán en tu comunidad autónoma.

SCT 2019 en el Instituto de Ciencia y Tecnología de Alimentos y Nutrición

Taller del Instituto de Ciencia y Tecnología de Alimentos y Nutrición en la anterior edición de la Semana de la Ciencia. / CSIC

En Andalucía, el Museo Casa de la Ciencia de Sevilla te invita a asistir a varias de sus actividades. Una de ellas es el taller Buscando vida en el universo, en el que personal del Centro de Astrobiología explicará, a través de vistosas demostraciones, cómo se extrae el ADN, cómo se han formado los cráteres lunares y por qué no hay agua líquida en Marte. Y si vives en Aragón, la Estación Experimental Aula Dei, el Instituto Pirenaico de Ecología y el Instituto de Carboquímica te animan a acudir a sus jornadas de puertas abiertas.

Los eventos virtuales predominan en Cataluña. Sin embargo, en esta comunidad no faltarán los cursos de formación para el profesorado, como el que ofrece el Instituto de Biología Evolutiva, ni los talleres presenciales para escolares. Es el caso de LabEnClass: La energía del futuro, en el que el Instituto de Ciencia de Materiales de Barcelona presentará sus investigaciones relacionadas con la energía a través de varios experimentos.

En la Comunidad Valenciana la Casa de la Ciencia de Valencia organizará charlas y debates con personal investigador, y en Galicia la Delegación del CSIC presentará Ciencia que alimenta, una obra de teatro sin comunicación verbal que busca despertar el interés por la ciencia en el público de todas las edades. Además, las niñas y los niños de esta comunidad podrán diseñar su propio escudo familiar en un taller del Instituto de Estudios Gallegos Padre Sarmiento para acercarse de forma divertida y amena al mundo de la heráldica.

Ya en Madrid, será posible asistir a una conferencia bailada sobre danza contemporánea en el Instituto de Historia y a un gran número de talleres presenciales, en los que el público de todas las edades tendrá la oportunidad de descubrir si las moscas tienen olfato (Instituto Cajal), si se puede congelar agua a temperatura ambiente (Instituto Cajal) o cuánta vida hay en un ecosistema urbano (Real Jardín Botánico). Además, quien quiera estar al aire libre podrá sumarse a alguna de nuestras rutas científicas, como la que propone el Centro de Ciencias Humanas y Sociales por la historia de la Plaza Mayor, la Puerta del Sol o el Madrid de la Guerra Civil.

Por último, en el País Vasco podrás explorar las escalas macro, micro y nanoscópica por medio de lupas y de un microscopio fabricado con tus propias manos en el taller familiar Escala tu mundo, organizado por el Centro de Física de Materiales (San Sebastián).

Como ves, no faltan opciones, pero no te preocupes si ahora mismo no sabes cuál elegir. En la web de la Semana de la Ciencia del CSIC  puedes encontrar la actividad que más te interese buscando por diferentes criterios, como la comunidad autónoma en la que vives, el formato del evento o el tipo de público al que va dirigido (general o alumnado educación, infantil, primaria, secundaria o universidad). Eso sí, cuando lo tengas claro date prisa para inscribirte, porque otros años el aforo se ha cubierto rápido y en esta edición la pandemia ha hecho necesario reducirlo más. ¡Te esperamos!

Lecturas fresquitas para un verano de ciencia

Por Mar Gulis (CSIC)

Llegan las vacaciones de verano y en ‘Ciencia para llevar’ queremos invitarte a que hagas un hueco en tu maleta para la divulgación. La colección ¿Qué sabemos de? (CSIC-Catarata) te ofrece más de cien libros con los que podrás disfrutar de la ciencia durante estos días de descanso. Aquí te presentamos algunos de los más recientes.

Lecturas veraniegas

 

Mentiras de la física cuántica

El primero va de los falsos mitos que rodean a la física que estudia las partículas más diminutas, como los átomos o los electrones. En Verdades y mentiras de la física cuántica, Carlos Sabín, investigador del CSIC en el Instituto de Física Fundamental, desmonta creencias erróneas acerca de esta rama de la física y aclara que los gatos no están vivos y muertos a la vez, que no modificamos la realidad solo con observarla o que la información no puede viajar más rápido que la luz. En palabras del autor, el libro trae “malas noticias” para quienes creen que la física cuántica es “una manera de escapar a las leyes de la física y entrar en un mundo nuevo donde todo está permitido, todo es impredecible y la realidad puede modificarse a voluntad”. La buena noticia es que Sabín ofrece la explicación correcta a los fenómenos cuánticos más desconcertantes, y lo hace de forma clara y sencilla, sin renunciar al humor o la ironía.

Asimetrías en la materia, la vida y el universo

Aunque a priori parezca improbable, nuestras manos, un tornillo y la concha de un caracol tienen algo importante en común: todos ellos son objetos quirales. Esto quiere decir que su imagen especular no puede superponerse con la original, por mucho que la giremos. Por eso, en el espejo la mano derecha se convierte en la izquierda, un tornillo cambia la dirección de su rosca y la concha ‘da vueltas’ en sentido contrario. En el libro La quiralidad. El mundo al otro lado del espejo, el químico del CSIC en el Instituto de Catálisis y Petroleoquímica Luis Gómez-Hortigüela nos invita a emular a Alicia, el personaje de Lewis Carroll, y a embarcarnos en un viaje alucinante para descubrir las sorprendentes y variadas expresiones de esta propiedad, que está estrechamente relacionada con la asimetría. La quiralidad, por ejemplo, se manifiesta en el cuerpo humano, con un corazón que se encuentra desviado a la izquierda y un cerebro que compartimenta las funciones de forma asimétrica en sus dos hemisferios. Sin embargo, la relevancia fundamental de este fenómeno se expresa en objetos mucho más pequeños, como el ADN, con sus hélices retorciéndose invariablemente hacia la derecha, o las partículas elementales, entre las que ha prevalecido la materia sobre la antimateria, una asimetría que ha dado forma a nuestro universo.

Algas diatomeas, el otro pulmón de la Tierra

Las diatomeas, algas unicelulares capaces de producir más oxígeno que todos los bosques amazónicos, centroafricanos e indonesios juntos, son ‘el otro pulmón’ de la Tierra. El investigador del Instituto de Ciencias del Mar (CSIC) Pedro Cermeño explica, en Las diatomeas y los bosques invisibles del océano, la importancia de estos microorganismos para los ecosistemas marinos y el conjunto del planeta, y presenta algunas de sus posibles aplicaciones tecnológicas.

Con este libro podrás descubrir que en los océanos también hay bosques y desiertos, y que las diatomeas forman una parte esencial de los primeros, donde sirven de alimento para larvas, moluscos, crustáceos y peces. “Si pudiésemos acumular toda la biomasa que producen las diatomeas, en tan solo dos décadas tendríamos suficiente como para reemplazar todos los bosques tropicales del mundo”, ilustra el autor. Otra de sus cualidades es que incrementan la eficiencia de la bomba biológica, un proceso mediante el cual los ecosistemas marinos absorben dióxido de carbono (CO2) de la atmósfera y lo transfieren hacia las capas más profundas del océano, lo cual contribuye a paliar el efecto invernadero y a enfriar el clima del planeta. Si quieres saber más sobre las denominadas ‘joyas del mar’, no dejes de abrir las páginas de este libro.

Virus ‘buenos’ que combaten bacterias infecciosas

¿Existen los virus ‘buenos’? La respuesta es sí: algunos de ellos pueden usarse para luchar contra bacterias resistentes a los antibióticos, uno de los grandes retos de la biología y la medicina en la actualidad. En Los bacteriófagos. Los virus que combaten infecciones, cuatro investigadoras del CSIC en el Instituto de Productos Lácteos de Asturias (Lucía Fernández, Diana Gutiérrez, Ana Rodríguez y Pilar García) nos presentan a los virus que atacan a las bacterias. Como cualquier otro agente vírico, los bacteriófagos son parásitos que necesitan infectar una célula, en este caso una bacteria, para multiplicarse en su interior; pero, a diferencia de otros virus, resultan totalmente inocuos para los humanos, los animales, las plantas y el medioambiente. El libro presenta las bacterias patógenas que se esconden en el nanomundo y traza la historia de los antibióticos, que hasta ahora en Occidente han relegado a los bacteriófagos. También explica cómo la progresiva pérdida de eficacia de la penicilina y otros compuestos con el mismo efecto están abriendo la puerta al empleo de los bacteriófagos en múltiples campos: desde la terapia fágica para la salud humana y animal, hasta biocidas para la agricultura o productos desinfectantes.

Escritos por personal investigador del CSIC, los libros de la colección ¿Qué sabemos de? son ediciones de bolsillo, por lo que resultarán un práctico compañero de viaje. Pero, si lo prefieres, también podrás leerlos en formato electrónico. ¡Buenas vacaciones y buena lectura!

¿Es posible el suicidio cuántico?

Por Mar Gulis (CSIC)

Revólver de 6 balas/ Simon Poter vía Flickr

Revólver de 6 balas. / Simon Poter vía Flickr.

La inmortalidad ha sido siempre una de las metas científicas más investigadas y una fuente de innumerables leyendas y mitos. A pesar de los descubrimientos en genética sobre el envejecimiento o del progreso de la computación cuántica –que según ciertas hipótesis podría ayudar a transferir nuestra mente a un ordenador y adquirir así existencia eterna–, la muerte sigue siendo una barrera para el ser humano. Esto que podría parecer una verdad universal no lo es si asumimos determinadas interpretaciones de la física cuántica. En este caso, lo imposible no es escapar de la muerte sino, al contrario, dejar de existir por completo en un universo cuántico.

La física cuántica ha generado varias de las paradojas más famosas de la historia, como la paradoja del viajero en el tiempo, según la cual una persona no podría viajar atrás en el tiempo y matar a su abuelo ya que eso impediría el propio viaje. O la paradoja del gato de Schrödinger, en la que un gato dentro de una caja con un veneno radiactivo provoca la existencia compartida de dos universos en los que el gato está a la vez muerto y vivo. Toda la mitología y las diferentes variantes de estas dos teorías han dado lugar a extensos y longevos debates sobre física. La que traemos hoy a este blog también tiene su miga para el debate.

La teoría del llamado suicidio cuántico, no muy conocida pero planteada en términos similares a las anteriores, vendría a ser una versión del gato de Schrödinger pero aplicada a la teoría de los universos paralelos o multiverso, desarrollada por el físico estadounidense Hugh Everett. El multiverso estaría formado por todos los universos paralelos creados cada vez que una persona toma una decisión, de lo que se deduce un número de universos paralelos infinito coexistiendo al mismo tiempo en realidades diferentes.

La hipótesis del suicidio cuántico, planteada por el físico teórico sueco Max Tegmark en el año 1997, podría resumirse de la siguiente manera: un individuo está sentado en una silla con un revólver cargado apuntando a su cabeza. El arma es controlada por una máquina que mide la rotación de una partícula subatómica. Cada vez que el sujeto aprieta el gatillo el revólver se accionará dependiendo del sentido en el que rota la partícula: si gira en sentido de las agujas del reloj, el arma dispara; si gira en sentido contrario, falla. Esto hace que en cada disparo el universo se divida en dos: uno en el que el sujeto muere y otro en el que vive para seguir disparando. Así, si el sujeto aprieta el gatillo seis veces consecutivas, se  habrán generado seis universos en los que muere –uno por disparo– y uno en el que sobrevive –el universo en el que el arma falló las seis veces–. La cuestión es que, por más que el sujeto siga disparando, siempre habrá un universo en el que sobrevivirá –al menos  no morirá por un disparo de bala–. Por lo tanto, el suicidio, a nivel cuántico jamás llegaría a ser total debido a la existencia de nuestra ‘versión alternativa’ inmortal.

Billete de lotería nacional/ Álvaro Ibañez vía Flickr

Billete de lotería nacional. / Álvaro Ibañez vía Flickr.

Este mismo planteamiento tiene otra versión, algo más lúdica, en la que un sujeto compra un billete de lotería. Después, se conecta a un ordenador programado para que, en caso de que el billete no resulte premiado, este le inyecte una sustancia letal. La teoría de los universos paralelos explica que surgirán tantos universos paralelos como combinaciones de billete haya en nuestra lotería: si suponemos que nuestro cupón tiene cinco cifras, en total habrá 100.000 universos diferentes. Aunque en todos menos uno el sujeto recibirá la inyección, en ese uno el sujeto seguirá vivo y además será millonario. Desde este punto de vista, no solo la inmortalidad parece inevitable sino también la posibilidad de ganar una inmensa fortuna.

Estas paradojas son una forma de representar la contradicción entre la teoría del multiverso y la llamada interpretación de Copenhague. Mientras la primera establece que cada resultado posible de una decisión o acción da lugar a universos paralelos, la ortodoxia cuántica nos dice que una vez observado el resultado este colapsa en un solo universo. El sujeto, como el gato de Schrödinger, estará vivo y muerto a la vez solo hasta que otro sujeto compruebe si ha disparado o no.

¿Quién tiene razón? El físico del CSIC Salvador Miret, autor del libro Mecánica cuántica considera que el debate resulta casi imposible de zanjar: “el problema de la teoría del multiverso es que no es falsable, es decir, no puede ser sometida a una prueba que la confirme o desmienta”. En el planteamiento de Everett, prosigue Miret, “se quiere mantener la linealidad de la teoría cuántica incluso al realizar una medida, y el precio a pagar es la creación de universos paralelos”. Parece por tanto que para seguir avanzando en el conocimiento y en nuestra vida cotidiana la mejor idea sería conformarse con  las decisiones que tomamos y dejar el multiverso para nuestro alter ego inmortal.

El experimento físico más hermoso de todos los tiempos: la doble rendija

Por Mar Gulis (CSIC)

En 2003 la revista Physics World preguntó a sus lectores cuál era en su opinión el experimento más bello de la historia de la física. Ganó el célebre experimento de la doble rendija, una prueba diseñada en 1801 para probar la naturaleza ondulatoria de la luz que no ha dejado de repetirse, en diversos formatos y con distintos objetivos, hasta la actualidad.

Láser difractado usando rendija doble. Foto tomada en el laboratorio de óptica de la facultad de ciencias de la UNAM. / Lienzocian (CC-BY-SA)

Láser difractado usando rendija doble. Foto tomada en el laboratorio de óptica de la facultad de ciencias de la UNAM. / Lienzocian (CC-BY-SA)

La fascinación que sigue produciendo este experimento tiene que ver con que, como dijo el físico Richard Feynmann (1918-1988), contiene en sí mismo el corazón y todo el misterio de la física cuántica, la disciplina que estudia el comportamiento de la materia a escala microscópica.

En el mundo cuántico –el de las partículas subatómicas como los electrones– las ‘cosas’ actúan de una forma muy distinta a como sucede en la escala macroscópica, en la que nos movemos los seres humanos. El experimento de la doble rendija pone de manifiesto dos características desconcertantes de ese mundo. La primera es que, a escala micro, los objetos físicos tienen una naturaleza dual: según las circunstancias, pueden comportarse como un conjunto de partículas o como una onda. Y la segunda consiste en que el hecho de observarlos hace que actúen de una manera o de otra.

Para entender algo más del mundo cuántico, vamos a presentar una formulación ideal del experimento prescindiendo de los detalles técnicos.

Situémonos primero en la escala macro, en nuestro mundo. Vamos a lanzar, una a una y en distintas direcciones, miles de canicas contra una placa atravesada por dos finas rendijas verticales. En otra placa más alejada vamos a recoger el impacto de las canicas. ¿Qué ‘dibujo’ habrá producido este impacto?

La respuesta es: dos franjas verticales, correspondientes a las canicas que han logrado atravesar la placa anterior a través de las ranuras.

Imprimir

Ahora, introduzcamos todos los elementos del experimento en una piscina llena de agua. Desde el mismo punto desde el que hemos lanzado las canicas comenzaremos a generar olas. Una vez que las olas atraviesen las dos ranuras y lleguen a la última placa, ¿dónde impactarán con más intensidad? ¿Qué ‘dibujo’ provocará ese impacto?

La respuesta es: una serie de franjas verticales de diferente intensidad que los físicos llaman “patrón de interferencia”. Este dibujo se produce porque el oleaje inicial, como cualquier onda, se difracta al atravesar las ranuras, dando lugar a dos oleajes que interfieren entre sí. En algunos puntos las olas se potencian y en otros se anulan, lo que provoca un impacto con desigual intensidad sobre la última placa.

Ondas

Pues bien, descendamos ahora al mundo cuántico y, en lugar de canicas, lancemos electrones uno a uno a través de la doble ranura. ¿Qué se ‘dibujará’ en la segunda placa? Con la lógica que utilizamos en el mundo macro, lo esperable es que el electrón, que es una partícula, impacte igual que una canica y dibuje dos franjas verticales.

Sin embargo, el resultado que obtenemos es… ¡un “patrón de interferencia”!

 

Dualidad onda-partícula

¿Cómo se entiende todo esto? En el libro Mecánica cuántica (CSIC-Catarata), el investigador del CSIC Salvador Miret ofrece algunas explicaciones.

La interpretación estándar nos dice que el electrón se lanza y se recoge como una partícula, pero se propaga como una onda. Es decir, que durante su recorrido el electrón está distribuido o superpuesto en toda el área que ocupa su onda, por lo que atraviesa las dos rendijas a la vez e interfiere consigo mismo hasta impactar contra la segunda placa. En ese momento, como consecuencia del impacto, el electrón vuelve adoptar la naturaleza de partícula –en términos más precisos diríamos que colapsa su función de onda– situándose en uno de los múltiples puntos atravesados por la onda. Al comenzar el experimento los electrones se distribuirán por la segunda placa de una forma aparentemente aleatoria, pero al incrementar el número de impactos veremos cómo va formándose el “patrón de interferencia”. Es decir, que la posibilidad de impactar en uno u otro punto está determinada por la onda. En este vídeo puede verse cómo se reproduce un patrón de interferencia en tiempo real, aunque no con electrones sino con moléculas de ftalocinanina:

Interpretaciones de la mecánica cuántica más recientes, como la propuesta por David Bohm (1917-1992), nos dirían que el electrón sigue una trayectoria (no se superpone en varios sitios a la vez) pero que esta está guiada por una onda. En este modelo las ondas son como corrientes de ríos que ‘transportan’ a las partículas: las primeras trazan los numerosos caminos que pueden seguir las segundas pero cada partícula recorre solo uno de ellos. En cualquier caso, esta interpretación no cuestiona la naturaleza dual del mundo cuántico: no podemos considerar las partículas como independientes de su onda.

 

La importancia del observador

Sin embargo, esta es solo una de las aportaciones de nuestro experimento. ¿Qué pasa cuando colocamos un detector para averiguar por qué rendija pasa nuestro electrón?

Pues que el “patrón de interferencia” desaparece y los electrones impactan en la segunda placa como si fuesen canicas. Es decir, que al tratar de observar el sistema, hemos actuado sobre él, obligando a nuestro electrón a comportarse como una partícula. Los fotones que hemos enviado para detectarlo han interaccionado con él y alterado el resultado del experimento.

Evidencias como estas llevaron a Niels Bohr (1885-1962), uno de los ‘padres’ de la mecánica cuántica, a decir, en los años 20 del siglo pasado, que ya no somos meramente observadores de lo que medimos sino también actores. De repente, una ciencia dura como la física comenzaba a cuestionar el paradigma de la objetividad: ¿podemos conocer la realidad sin interferir en ella y sin que ella interfiera en nosotros?

La ortodoxia cuántica, de la que Bohr fue uno de los principales paladines, plantea que la presencia del observador introduce una incertidumbre insoslayable. De acuerdo con Werner Heisenberg (1901-1976) y su principio de incertidumbre, es imposible conocer al mismo tiempo todas las propiedades de nuestra partícula porque, al observar una, estamos alterando el resto. Al querer conocer la posición exacta de un electrón, por ejemplo, su velocidad queda muy indeterminada. Por eso, desde este punto de vista no podemos ir más allá de calcular las potencialidades que nos ofrece su denominada función de onda.

Sin embargo, en los últimos años, la física no ha dejado de buscar formas de medición débiles, que no alteren el sistema observado, y de proponer modelos abiertos, que integran en su formulación al observador. El objetivo: precisar qué hacen las partículas cuando no las observamos… Si realmente estas propuestas llegan a buen puerto es posible que, como afirma Miret, vivamos una auténtica revolución de la mecánica cuántica. De todas formas, parece difícil que cualquiera de los nuevos planteamientos pueda dejar completamente de lado al observador, aunque solo sea para tratar de neutralizar sus efectos sobre el mundo observado.

Pero entonces… ¿qué es la luz?

José Vicente García Ramos (CSIC)*JV García Ramos

2015 es el Año Internacional de la Luz y las Tecnologías basadas en la Luz, proclamado por la ONU con el objetivo de comunicar a la sociedad la importancia de la luz y sus tecnologías asociadas, en áreas como la energía, la educación, la salud, las comunicaciones, etc.

Pero… ¿Qué es exactamente la luz? Se atribuye a Euclides, alrededor del año 300 a.C., el descubrimiento de las leyes de la reflexión de la luz, aunque no fue hasta el siglo XVII cuando, por una parte, el genial científico inglés Isaac Newton (1642-1727) y, por otra, el matemático holandés Cristian Huygens (1629-1695), desarrollaron dos teorías contrapuestas sobre la naturaleza de la luz. Newton propu­so una teoría corpuscular, mientras que Huygens suponía que era un fenómeno ondulatorio.

Jhong Dizon / Flickr

Jhong Dizon / Flickr

Para Newton la luz estaba formada por un haz de par­tículas microscópicas que denominó corpúsculos. La idea no era mala. De hecho, los rayos de luz viajan velozmente en línea recta como lo hacen los proyectiles, y cuando se encuentran un objeto, se comportan de forma no muy di­ferente a como lo hace una bala cuando rebota. Incluso lle­gó a explicar el fenómeno de la refracción, ya que la luz se refractaría, es decir, cambiaría de dirección al pasar de un medio a otro por la diferencia de velocidad de transmisión en los dos medios, como le ocurre a una pelota cuando se hunde en un hipotético tarro gigante de mermelada.

No obstante, lo realmente difícil era explicar, desde el punto de vista de los corpúsculos, otras propiedades de la luz como la difracción y las interferencias, característi­cas ambas de las ondas. De hecho, después de Newton, la consideración de la luz como una onda comenzó a abrirse camino, ya que parecía tener mucho en común con las on­das del sonido en el aire o las olas del agua del mar o de los lagos.

En realidad, la teoría más consistente era la que supo­nía Huygens, pero el gran prestigio del que gozaba Newton mantuvo la teoría ondulatoria arrinconada durante más de un siglo, hasta que los experimentos de Thomas Young (1773-1829) y Auguste Jean Fresnel (1788-1827) la co­rroboraron ya en el siglo XIX. Esto ha sucedido en bas­tantes ocasiones; las grandes figuras científicas consiguen importantes avances, pero pueden actuar como rémoras en nuevos descubrimientos. Aunque, en este caso, el tiem­po y el desarrollo de la mecánica cuántica le devolvieron a Newton parte de la razón: la luz es un fenómeno ondula­torio, está formada por ondas electromagnéticas, pero a su vez puede considerarse formada por pequeñas partículas de luz (cuantos) llamadas fotones. De esta doble naturale­za corpuscular y ondulatoria gozan todas las partículas y ondas.

Actividad en el Instituto de Óptica del CSIC durante la Semana de la Ciencia 2014.

Actividad del IOSA en el Instituto de Óptica (IO) del CSIC en la Semana de la Ciencia 2014. Juan Aballe/CSIC

Pero esto no es verdad del todo. Tanto las ondas en el agua como las ondas del sonido necesitan un material para formarse. Los físicos de la época asumieron que había un medio invisible y delgado, al que llamaron “éter luminífe­ro”, que impregnaba el universo, por lo que consideraban que las ondas luminosas eran oscilaciones dentro de esta sustancia. Pero, en 1887, Albert Michelson (1852-1931) y Edward Morley (1838-1923) montaron un experimento que no llegó a buen fin porque la hipótesis de partida era falsa, ya que no exis­tía ningún éter. Sin embargo, hay que pensar que la cosa no fue tan mal, pues existen algunas ondas que no necesitan un medio para propagarse, como aseguró Einstein en su teo­ría de la relatividad especial. En efecto, la velocidad de la luz siempre se puede medir sea cual sea el marco de refe­rencia que se elija, incluso en el vacío. De hecho, la veloci­dad de la luz en el vacío, c, es una constante universal, lo cual nos lleva a la conclusión de que la luz es una onda, pero tan especial que no necesita un medio para propagarse.

Al mismo tiempo, durante esos mismos años, los cien­tíficos comenzaban a estudiar el efecto fotoeléctrico que consiste en que, cuando la luz incide sobre ciertos obje­tos, estos liberan electrones. En principio, la teoría ondu­latoria de la luz podía explicar muy bien este efecto, ya que entre las características de las ondas está su capacidad para transportar y transferir energía. Pero los problemas comienzan cuando entramos en detalles. Si aumentamos la intensidad de la luz, se emiten más electrones, pero no cambia la energía de cada electrón. Por el contrario, si lo que aumentamos es la energía de la luz utilizada, esto es, utilizamos una luz más azul, la energía de cada electrón liberado aumenta, y aunque la intensidad de dicha luz sea baja, los electrones emitidos no tienen menos energía, lo único que ocurre es que se van liberando más lentamente.

Otra actividad del IO-CSIC

Otra actividad del IOSA en el IO-CSIC. Juan Aballe/CSIC

Estos resultados hicieron que Einstein pensara que la teoría ondulatoria no era lo bastante acertada como para describir la luz. Su propuesta fue que la luz está formada por fotones, cada uno de ellos con una energía específica que depende de la frecuencia de la luz. Los fotones chocan con los electrones de un material y los expulsan mientras les transfieren una energía igual a la energía del fotón me­nos la energía necesaria para liberarlos del material.

Esta teoría explicaba perfectamente el efecto fotoeléc­trico: una mayor intensidad de la luz significa más fotones, no más energía por fotón, que liberan más electrones, pero no con más energía por electrón. De hecho, Einstein fue galardonado con el Premio Nobel de Física en 1921 por su trabajo sobre el efecto fotoeléctrico, no por la teoría de la relatividad.

Entonces, después de todo, ¿la teoría de los fotones es la buena? Y, si es así, ¿qué pasa con el comportamiento ondulatorio de la luz? La respuesta, quizá inesperada, es que la teoría de los fotones todavía es errónea. A pesar de la descripción de los fotones como partículas que arrancan electrones de un material, los fotones no son partículas. No tienen funciones de onda mecano-cuánticas ni tampo­co tienen asignadas posiciones, ni siquiera en el cambiante sentido mecano-cuántico que dice que, por ejemplo, un protón tiene asignada en cada momento una posición.

Lo adecuado es decir que un fotón es un objeto mecano-cuántico que no es una onda ni una partícula. Evidentemente, esta conclusión no es del todo satisfactoria. Es mu­cho más fácil explicar la naturaleza de la luz en términos que nos resulten familiares, con experiencias cotidianas de ondas y de partículas, pero, al hacerlo, perderemos muchas de sus propiedades. A modo de resumen, podemos decir que la consideración de la luz como una onda puede expli­car en general sus propiedades macroscópicas, mientras que los fotones como partículas componentes de la luz explican muchas de sus propiedades microscópicas. Lo que no tene­mos que olvidar, cuando oigamos hablar a alguien de la luz como onda o como partícula, es que se trata de una aproxi­mación. La naturaleza es mucho más sutil…

* José Vicente García Ramos es investigador del Instituto de Estructura de la Materia (CSIC) y este texto es un extracto de su libro Las moléculas: cuando la luz te ayuda a vibrar (CSIC-Catarata).

Física cuántica en Navidad

Por Ángel S. Sanz (CSIC)*

Ciencia en Navidad 2014

‘Ciencia en Navidad’ es un proyecto del CSIC inspirado en las ‘Christmas Lectures’ y desarrollado con el apoyo de la FECYT.

Últimamente, y cada vez más, los medios de comunicación hablan de física (o mecánica) cuántica. Y cuando se escucha este término, no podemos por menos que echarnos las manos a la cabeza pensando que se trata de una teoría altamente compleja e ininteligible, sólo apta para unos pocos, capaces de entender su lenguaje matemático y los misterios que encierra.

Hace un par de años, a raíz del descubrimiento del bosón de Higgs (pieza clave en el puzle de partículas elementales que es el modelo estándar), la física cuántica saltó a primera línea y, desde entonces, las conferencias en torno a esta temática comenzaron a popularizarse. La física cuántica está de moda. Pero, ¿qué sabemos en realidad de esta teoría? ¿Es tan compleja e ininteligible como se nos presenta o, por el contrario, nos resulta simplemente absurda? ¿Cómo es posible esta situación de incertidumbre si una gran parte del producto interior bruto de los países industrializados está directa o indirectamente basado en la física cuántica?

El bosón de Higgs ha sido la última partícula que se ha descubierto, pero ése es un viaje que ha trazado la Humanidad desde los tiempos de Demócrito, cuando se debatía si la materia era continua o, por el contrario, estaba constituida de pequeñas partes, los átomos. Precisamente, una vez se comprendió que la materia parecía estar constituida por átomos, el siguiente paso fue intentar entender cómo eran posibles, es decir, atacar lo que se conoce como el problema de la estabilidad de la materia, que engloba además una serie de cuestiones inabordables con las teorías físicas del siglo XIX. Este sería el germen de la mecánica cuántica, que comenzó explicando el átomo de hidrógeno y la tabla periódica, y finalizó con el bosón de Higgs. Aunque hay que tener en cuenta que la física cuántica es mucho más, porque al mismo tiempo que nos explica la estabilidad de la materia, también nos dice que el mundo es mucho más rico en matices de lo que estamos habituados a percibir en la vida cotidiana. Esto es, un sistema cuántico puede ser localizado en varios lugares al mismo tiempo, lo que el físico austríaco Erwin Schrödinger ilustró con la vívida idea de que un gato metido dentro de una caja, y cuya vida está sometida al capricho de la desintegración de un pedazo de sustancia radiactiva, estará vivo y muerto al mismo tiempo.

Ciencia en Navidad 2014

‘¿Qué tienen que ver los gatos con el bosón de Higgs?’, el 22 de diciembre a las 18h.

En la Navidad de 1825, el físico autodidacta inglés Michael Faraday lanzó desde la Royal Institution una serie de conferencias anuales, las Christmas Lectures®, en las que se presentaba y explicaba al gran público avances en las diferentes disciplinas científicas de interés de la época. Salvo por la interrupción de cuatro ediciones debida a los bombardeos de Londres durante la Segunda Guerra Mundial, esta tradición se ha mantenido vigente hasta la actualidad.

¿Y por qué les cuento todo esto? Recogiendo ahora el guante de Faraday, por un lado, y ese interés por el misterioso mundo cuántico, por otro, este año se pretende lanzar desde el CSIC la primera experiencia en esa línea, un proyecto ilusionante e ilusionador, que ayude a acercar la ciencia a la sociedad de una manera muy amena, sencilla y, sobre todo, humana.

El propósito de la primera conferencia (¡no al uso!) de ‘Ciencia en Navidad’ es introducir la física cuántica al público general. Se trata de que el público comprenda que la base de la física cuántica es relativamente simple y que, cuando mire a la pantalla de su televisor, toque la pantalla de su móvil, encienda sus leds navideños o simplemente se mire al espejo, recuerde que en todo ello hay un gato que está vivo y muerto a la vez, o que los electrones que hay en esos dispositivos alguna vez, en el pasado, adquirieron su diminuta masa gracias a un bosón de Higgs.

* Ángel S. Sanz es investigador en el Instituto de Física Fundamental (CSIC) y va a inaugurar ‘Ciencia en Navidad’ con la sesión “¿Qué tienen que ver los gatos con el bosón de Higgs?”, que se celebrará el lunes 22 de diciembre a las 18h en el Salón de actos del CSIC (c/ Serrano, 117, Madrid). Entrada libre y gratuita.

La perturbadora teoría de los mundos paralelos

Alberto_Casas_cuadradaPor Alberto Casas (CSIC)*

En este mismo blog, en la pasada entrada, veíamos cómo la física cuántica, una teoría probada hasta la saciedad, nos enseña que un electrón (o cualquier objeto) puede estar en una superposición de estados. Esto significa, por ejemplo, que puede estar en dos posiciones a la vez; y que es al ser observado cuando se materializa en una de ellas. Por muy poco sentido común que parezca tener esta idea, es un hecho verificado experimentalmente.

Pues bien, existe una perspectiva alternativa (y científicamente sensata) de la física cuántica, la llamada Hipótesis de los Muchos Mundos o Universos Paralelos, que ofrece una interpretación distinta de lo que realmente sucede en el proceso de observación; una interpretación aún más extraña y sugerente.

Para entenderla, volvamos a considerar dos posiciones separadas por una distancia, A y B. Recordemos que un objeto cualquiera, por ejemplo un electrón, puede encontrarse en la posición A o en la posición B. Al primer estado lo llamamos ЕA y al segundo ЕB. Pero la física cuántica nos dice que el objeto puede estar también en una superposición de estados: ЕA + ЕB.

Superposición de estados

Esto significa que, en cierto modo, el electrón está en las dos posiciones a la vez. Según la interpretación ‘ortodoxa’ de la física cuántica, cuando una persona contempla al electrón anterior, este último aparecerá en una de las dos posiciones, A o B, con una probabilidad del 50% para cada una. Por el hecho de ser observado, el estado del electrón pasa de ser  ЕA + ЕB a ser  ЕA o ЕB, dependiendo de la posición en la que se materialice. A este fenómeno, producido por el mero hecho de observar, se le llama ‘colapso’.

Sin embargo, según la Teoría de los Muchos Mundos, el estado del sistema no cambia al ser observado, no hay ningún colapso: nuestro electrón anterior continúa en el estado de superposición: ЕA + ЕB, aun después de ser observado. Entonces, parece que la persona que observa debería ver el electrón en las dos posiciones a la vez. ¿Por qué no sucede así?

En realidad no hay nada contradictorio en ello. Pensemos que nuestra observadora también tiene un estado, llamémoslo Еobs.

Observadora

Si consideramos el sistema conjunto formado por la observadora y el electrón, su estado global es el producto de los estados de ambos:

Observadora y superposición de estados

Usando una igualdad matemática simple, este estado lo podemos expresar así (con su ‘traducción’ gráfica):

Igualdad matemática

Es decir, que, por el hecho de observar, la propia observadora está ahora en una superposición de estados: su ‘yo’ se ha desdoblado en dos ‘ramas cuánticas’.

Cada ‘yo’ observa cosas distintas. En una rama cuántica, la observadora ve la partícula en la posición A. En otra, la ve en la posición B. Naturalmente, las historias posteriores en cada una de las ramas serán también diferentes. Las dos realidades coexisten de forma simultánea.

Esta Hipótesis de los Muchos Mundos de la física puede parecer delirante… Lo cual la hace también apasionante. Con el tiempo, la interpretación de los Muchos Mundos ha ido ganando adeptos, y hoy en día se considera una perspectiva perfectamente seria de la física cuántica, aunque no está comprobada (y es difícil diseñar experimentos que puedan decidir entre ella y la ortodoxa).

Pensemos un momento sobre sus fascinantes implicaciones. Si se acepta la Hipótesis de los Muchos Mundos, el ‘yo’ que sentimos sería sólo una de nuestras versiones: el ‘yo’ de una cierta rama cuántica. Y de forma permanente se siguen creando desdoblamientos de nuestro ‘yo’, puesto que continuamente estamos realizando observaciones de uno u otro tipo. Los nuevos ‘yos’ que se crean a cada momento comparten un pasado común, pero tienen ante sí un futuro diferente. Esencialmente, todas las posibilidades potenciales se realizan en una rama u otra de nuestro complicado estado cuántico. Por ejemplo, si apostamos a un número en la ruleta de un casino, la mayor parte de los ‘yos’ que se crean en ese momento verán fallar la apuesta, pero en algunas afortunadas ramas nuestros ‘yos’ resultarán agraciados.

Múltiples observadoras

Esta perspectiva relativiza nuestra propia existencia. El valor de nuestras propias decisiones queda relativizado, dado que en otras ramas las decisiones tomadas pueden haber sido otras. Se trata de un panorama perturbador, aunque tal vez pueda ofrecer algún consuelo. Por ejemplo, los seres queridos que hemos perdido podrían continuar viviendo en otras ramas cuánticas, y nosotros disfrutando de su compañía en ellas. No podemos saltar de una rama a otra, ni comunicarnos con ellas; pero puede reconfortar el hecho de que ‘en otros mundos’ las cosas son distintas y quizá mejores.

*Este texto forma parte de una conferencia que Alberto Casas, investigador del CSIC en el Instituto de Física Teórica (CSIC-UAM), impartió en la edición de TEDxMadrid de 2014. Imágenes elaboradas por el equipo de TEDxMadrid.

 

La ‘insensatez’ de la física cuántica

Alberto_Casas_cuadradaPor Alberto Casas (CSIC)*

El sentido común se basa en los juicios que realizamos sobre las cosas basándonos en nuestra propia experiencia. El problema es que nuestra experiencia es muy limitada. Esto es así probablemente en muchos aspectos (economía, derecho, psicología, etc.), pero lo es sin duda en lo que concierne a la realidad física: nuestra experiencia abarca un rango muy limitado de escalas físicas (escalas de distancia, tiempo, energía…). Los modelos mentales que utilizamos para describir la naturaleza en esos rangos suelen fracasar cuando se extrapolan a otros más amplios. El sentido común no siempre es una guía fiable.

Gracias al método científico podemos investigar el mundo más allá de nuestra experiencia directa, revelando la naturaleza más profunda de las cosas. Y, efectivamente, a menudo encontramos que esa naturaleza contradice nuestro sentido común.

Por ejemplo, cuando en la Antigüedad se creía que la Tierra era plana, simplemente se extrapolaba (erróneamente) la experiencia cotidiana a escalas más grandes. Los científicos pioneros de la antigua Grecia fueron capaces de comprender que la Tierra era realmente redonda y que su aparente ‘planitud’ era una ilusión óptica producida por nuestras limitaciones para percibir la realidad.

Desde entonces la ciencia ha avanzado enormemente y nos ha revelado muchos otros rasgos sorprendentes de la naturaleza. Ahora sabemos que, al igual que pasó en su momento con la ‘planitud’ de la Tierra, la forma en la que percibimos la realidad es en gran medida una ilusión óptica, una falsa apariencia de la realidad profunda de las cosas. Y seguramente la teoría científica que nos revela aspectos más insólitos de la realidad es la física cuántica.

Cuando se habla de física cuántica hay que tener en cuenta que no se trata de una mera especulación. De hecho, es posiblemente la teoría científica más exitosa de la historia. Sus predicciones han sido comprobadas con una precisión fantástica en los ámbitos más variados. Y nunca se le ha encontrado un fallo. Se trata, por tanto, de una teoría extraordinariamente robusta, tanto desde el punto de vista teórico como desde el experimental.

Sin embargo, cuando se estudia la física cuántica parece casi una locura, ya que choca frontalmente con nuestro sentido común más básico. Ésta es una de las razones por las que cuesta tanto entenderla, y también por la que resulta tan fascinante. Entre las causas de esta dificultad de comprensión, está la superposición de estados físicos.

Imaginemos dos posiciones A y B separadas por una distancia, que podría ser de un milímetro o de 1.000 kilómetros, eso da igual.

Dos posiciones

Consideremos ahora un objeto, por ejemplo una partícula elemental, digamos un electrón. Intuitivamente, el electrón podrá encontrarse en la posición A o en la posición B. Al primer estado lo llamamos EA y al segundo ЕB:

Estados A y B

La idea intuitiva, o clásica, es que el electrón estará en A o en B, o sea su estado será EA o EB.

Sin embargo, la física cuántica nos enseña que el estado del electrón puede ser una superposición de ambos: EA + EB:

ambos estados a la vez

¿Significa esto que el electrón puede estar en las dos posiciones, A y B, a la vez? En cierto modo sí, por extraño que parezca. Y se trata de un hecho verificado experimentalmente hasta la saciedad. Hemos puesto el ejemplo con un electrón, pero podríamos hacer lo mismo con una pelota o un planeta: cualquier sistema físico puede estar en una superposición de estados.

Entonces, ¿cómo es que nunca vemos objetos en dos posiciones a la vez? Esto tiene que ver con el papel especial que la física cuántica reserva a los observadores. Cuando un observador contempla el electrón anterior, este último aparecerá en una de las dos posiciones, A o B,  con una probabilidad del 50% para cada una. Es como si la persona que observa hiciera que el electrón se manifestase de repente en una de las dos posiciones.

Esto tiene una implicación extraordinaria: los observadores son capaces de cambiar el estado de los sistemas físicos sólo con observarlos. En nuestro caso, si hemos encontrado el electrón en la posición A, su estado ha pasado de ser EA + EB a ser simplemente EA.

estados y observadora

Este cambio del estado de un sistema, solo por el hecho de observarlo, se conoce con el nombre de ‘colapso’.

Pensemos un poco más sobre el significado de todo esto. En la vida ordinaria usamos muchas veces el concepto de probabilidad (a menudo de forma inconsciente), pero siempre como un reflejo de nuestra ignorancia, no como algo esencial. Por ejemplo: es un juego típico con niños y niñas mostrarles los dos puños cerrados para que adivinen en cuál se oculta un caramelo. Cuando eligen una mano, saben intuitivamente que la probabilidad de que el caramelo esté ahí es del 50%. Pero esta probabilidad no es real. El caramelo no se ‘materializa’ al azar en una de las dos manos cuando las abrimos, sino que estaba en ella desde el principio. Pensar lo contrario sería absurdo. Pero este ‘absurdo’ es lo que sucede con el electrón anterior según la física cuántica. El electrón en el estado EA + EB  no tiene una posición definida. No es que la tenga y nosotros la desconozcamos, es que no la tiene. Y es al medir su posición (el equivalente a abrir las manos) cuando efectivamente se manifiesta en una de ellas de forma aleatoria.

Hay que decir que la física cuántica no aclara qué seres están cualificados como observadores, es decir, son capaces de cambiar los estados al observarlos: ¿solo los humanos?, ¿cualquier ser con conciencia, como un perro?, ¿cualquier objeto de un cierto tamaño, como una cámara fotográfica? La respuesta a estas preguntas no se conoce. Es un problema abierto…

problema abierto

En cualquier caso, se interprete como se interprete, la física cuántica nos ofrece un ejemplo extremo de que la realidad profunda de las cosas es enormemente más antiintuitiva, compleja, perturbadora de lo que creíamos; pero también enormemente más rica y fascinante que la imagen de rasgos bien definidos que, engañosamente, nos ofrecen nuestros limitados sentidos, experiencia y sentido común.

 

*Este texto forma parte de una conferencia que Alberto Casas, investigador del CSIC en el Instituto de Física Teórica (CSIC-UAM), impartió en la edición de TEDxMadrid de 2014. Imágenes elaboradas por el equipo de TEDxMadrid.