BLOGS
Ciencia para llevar Ciencia para llevar

CURIOSIDADES CIENTÍFICAS PARA COMPARTIR

Entradas etiquetadas como ‘CSIC’

Llega Arbolapp Canarias, la app del CSIC para descubrir los árboles de las islas

Por Mar Gulis (CSIC)

El drago es una de las especies descritas en Arbolapp Canarias / Magui Olangua

Tal y como prometimos hace un año, os presentamos Arbolapp Canarias. Dragos, lentiscos, adernos, palmeras y demás especies de los bosques canarios son los protagonistas de esta aplicación para dispositivos móviles que os podéis descargar hoy mismo. De carácter gratuito, la nueva app permite a cualquier usuario identificar los árboles silvestres del archipiélago. Para los habitantes de las islas, Arbolapp Canarias puede ser la herramienta perfecta para conocer un poquito mejor su particular botánica. Para el resto de los habitantes del planeta –la app puede consultarse tanto en castellano como en inglés–, quizá sea la excusa perfecta para planear una escapada a las islas en la próxima Semana Santa o cuando se tercie.

Esta aplicación incluye información sobre 92 especies de árboles que pueblan los hábitats naturales canarios. Cada árbol tiene una ficha que incluye fotografías, mapas, un texto descriptivo y varias curiosidades. Por ejemplo: ¿Sabíais que el último drago descrito en el mundo solo vive en los riscos más inaccesibles de Gran Canaria? ¿O que la resina del lentisco se ha mascado como chicle desde la época de la Grecia clásica? ¿O que los aborígenes canarios usaban varas de acebuche para fabricar sus armas defensivas? Al utilizar Arbolapp Canarias, que además de estar lista para su descarga en móviles Android e iOS cuenta con una versión web, encontraréis estas y otras muchas anécdotas.

La nueva app –hoy se presenta en Gran Canaria– es un complemento de Arbolapp, la aplicación dedicada a los árboles silvestres de la Península Ibérica que fue creada por el CSIC en 2014 y que hoy supera las 350.000 descargas. Como sucede con su antecesora, Arbolapp Canarias se ha diseñado para que cualquiera puede utilizarla; no es necesario tener conocimientos de botánica para identificar las especies mediante los dos tipos de búsqueda que contiene: una guiada, en la que hay que escoger en sucesivas pantallas la alternativa que mejor describe el ejemplar que se quiere identificar; y otra abierta, que permite encontrar árboles por provincia, tipo de hoja, fruto, flor u otros criterios.

La app permite identificar 92 árboles silvestres canarios a través de dos tipos de búsqueda: una guiada y otra abierta / Jonathan Rueda

Eso sí, el lugar idóneo para utilizar la aplicación es el medio natural. La app funciona de manera autónoma sin conexión a internet; al centrarse en árboles silvestres –aquellos que crecen espontáneamente sin intervención humana–, Arbolapp Canarias no incluye especies que solo se encuentran en parques, jardines, calles o terrenos forestales. Así que os recomendamos que planifiquéis excursiones por los exuberantes parajes naturales canarios para disfrutar de la naturaleza y aprender botánica de una manera divertida.

Esta iniciativa del Consejo Superior de Investigaciones Científicas (CSIC) ha sido desarrollada por su Área de Cultura Científica, el Real Jardín Botánico y el Jardín Botánico Canario ‘Viera y Clavijo’, unidad asociada al CSIC y adscrita al Cabildo de Gran Canaria. Además, Arbolapp Canarias ha recibido financiación de la Fundación Española para la Ciencia y la Tecnología (FECYT).

Para descargarla debéis acceder a Play Store o Apple Store. Después ya solo tendréis que buscar una buena ruta para descubrir cientos de detalles y curiosidades sobre los árboles canarios.

Cinco mentiras científicas sobre las mujeres

Por Mar Gulis (CSIC)

Estereotipos victorianos como que los machos son por naturaleza activos, competitivos y promiscuos, mientras que las hembras son pasivas, tímidas, criadoras y cuidadoras, se han basado en falsas tesis científicas. Algo que no ha impedido que estas ideas lleguen a nuestros días asumidas como verdades basadas en la evidencia.

En el libro Las ‘mentiras’ científicas sobre las mujeres, las autoras S. García Dauder (Universidad Rey Juan Carlos) y Eulalia Pérez Sedeño (Consejo Superior de Investigaciones Científicas) han analizado afirmaciones y teorías sobre mujeres a lo largo de la historia, que en muchas ocasiones se han considerado el ‘conocimiento autorizado’. En la obra sacan a la luz falsedades manifiestas, invisibilizaciones y ocultaciones (más o menos intencionadas) o directamente invenciones. Veamos algunas de ellas aprovechando que hoy celebramos el Día Internacional de la Mujer.

  1. Mujer = hombre no evolucionado

El recurso a la ‘naturaleza’ de la mujer ha sido uno de los más asentados para defender las teorías sobre las limitaciones intelectuales y sociopolíticas de las féminas. Aunque en los siglos XVIII y XIX la biología comenzó a buscar las diferencias sexuales, fueron los darwinistas sociales quienes proclamaron que la mujer era un hombre que, ni física ni mentalmente, había evolucionado. En Darwin se encuentran citas sin base científica que ahondan en esta falsedad como que ellos las superan en coraje, energía y agresividad, así como en las facultades intelectuales de abstracción, razón e imaginación. Ellas, en cambio, serían más intuitivas, de percepción más rápida y más imitativas. Darwin también continuó la hipótesis aristotélica de que las mujeres tenían el cerebro menos evolucionado porque debían dedicar parte de sus energías a la procreación (desde la creación de óvulos hasta la gestación y la crianza), mientras que el macho sólo necesita un poco de energía para generar su semen. Darwin no se quedó ahí y añadió una perspectiva racista a sus planteamientos machistas: en su teoría de la evolución lineal los hombres blancos estaban por encima de las mujeres blancas y estas, por encima de los hombres negros y de las mujeres negras.

  1. Mujeres fieles y hombres promiscuos

Otras de las falsedades científicas más extendidas son las que se construyen sobre supuestos universales aplicables tanto a animales como a humanos, como el que establece la existencia de una promiscuidad masculina frente a una fidelidad femenina. Este planteamiento se basa en la idea de que el macho reparte su semen a través de una variedad de relaciones, mientras que las hembras dejan de interesarse por el apareamiento una vez que han sido fertilizadas. Esto lleva a los biodeterministas a afirmar otro supuesto: que las hembras sólo están interesadas en el sexo por la reproducción.

The Book of Fortune published in 1935

Imagen de The Book of Fortune, publicado en 1935, que siguen las teorías frenológicas. / Paul Walker/Flickr

El primer planteamiento, el de la varianza reproductiva mayor en hombres que en mujeres, fue supuestamente ‘probado’ con un experimento sobre moscas de la fruta. Sin embargo, estudios posteriores sobre otras especies y sobre las sociedades humanas desmontaron esta tesis. Con respecto al supuesto relacionado con el interés de las hembras por el sexo, las primeras en demostrar su falsedad fueron las primatólogas. Cuando las mujeres comenzaron a estudiar el comportamiento de los primates, descubrieron la falsa fidelidad de las hembras: vieron que la hembra podía aparearse con distintos machos para tener a varios proveyéndola y cuidando de su progenie. También aportaron otras teorías que alejan aún más la idea de la mujer fiel, como que múltiples apareamientos con orgasmos benefician fisiológicamente a las hembras.

  1. La violación de hembras como estrategia reproductiva evolutiva

En el extremo de estas teorías biológicas están las tesis que afirman que la violación es una estrategia reproductiva evolutiva entre los machos humanos y no humanos, mediante la cual machos que de otro modo no podrían tener éxito reproductivo propagan sus genes. Así lo afirmaban el biólogo Randy Thornill y el antropólogo Craig Palmer en su obra A Natural History of Rape, publicada en el año 2000. Sin embargo, García Dauder y Pérez Sedeño señalan que “en el caso de los animales no humanos, el sexo forzado siempre tiene lugar con hembras fértiles, pero no sucede así con las violaciones humanas, pues en muchos casos las víctimas son demasiado jóvenes o demasiado mayores para ser fértiles”. Por tanto no se podría hablar de estrategia reproductiva en estos casos, ni tampoco cuando en la violación se utiliza preservativo, va seguida del asesinato o cuando se produce entre varones, añaden.

  1. Capacidad innata para las matemáticas de los hombres

Otra falsedad muy sonada es aquella que busca explicar supuestas diferencias cognitivas entre los sexos basándose en una capacidad ‘innata’ para las matemáticas de los hombres. Es habitual oír que los hombres son más espaciales y las mujeres más verbales y que ellos tienen más aptitudes para las matemáticas. Esta afirmaciones suelen basarse en estudios que analizan por ejemplo las pruebas matemáticas como la que realizan los estudiantes en Estados Unidos para el acceso a la Universidad, examen conocido como SAT (Scholastic Aptitude Test). En dicha prueba los hombres puntúan más alto de media que las chicas. También hay más chicos entre las puntuaciones más altas (casi el doble que chicas), pero también hay más chicos entre las más bajas (aunque de esto se suela hablar menos). Según un análisis más pormenorizado, parece ser que las diferencias no se deben a una situación ‘innata’ de partida, sino a otras razones. Para empezar, hay más chicas que chicos que realizan esa prueba. Además, ellos proceden de media de familias con mayores ingresos y de escuelas privadas de Estados Unidos, algo que en ese país es sinónimo de mejores estudios. De hecho, en pruebas similares realizadas sólo con estudiantes de escuelas privadas apenas hay diferencias entre chicos y chicas.

Además, también incide cómo se plantea el enunciado del problema, generalmente vinculado a situaciones o contextos más masculinizados como negocios, deportes o actividades militares. Por lo visto también hay una cuestión cultural, ya que pruebas similares hechas en Japón o Singapur no arrojan diferencias (incluso, en Islandia ellas obtienen mejores puntuaciones). En definitiva, afirman las autoras, “esas pruebas no miden algo innato o inmutable, sino algo sobre la enseñanza que han tenido los estudiantes”. Es más, tampoco predicen los resultados futuros académicos o profesionales.

  1. El cerebro masculino es mayor que el femenino

Seguro que a más de una y a más de uno les suena haber escuchado que el cerebro de los hombres es más grande que el de las mujeres. En efecto, con ayuda de diferentes tecnologías para la toma de imágenes, se ha afirmado que existen algunas disparidades, como que los hombres tienen una amígdala mayor y que su cerebro es un 11% mayor que el de las mujeres, mientras que estas presentan más materia gris. “Sin embargo, las diferencias cerebrales entre los miembros del mismo sexo suelen ser superiores a las que hay entre los dos sexos”, desmontan Pérez Sedeño y García Dauder.

PORTADA LAS MENTIRAS CIENTIFICAS DE LAS MUJERES

Imagen de la cubierta de Marina Núñez, Sin título (Locura), de 1995

Un estudio de 2015 publicado en la revista científica Proceedings of the National Academy of Science pone en cuestión las diferencias. A través de imágenes cerebrales por resonancia magnética de más de 1.400 personas, el equipo liderado por Daphna Joel, investigadora de la Universidad de Tel Aviv, midió el volumen de materia gris (el tejido oscuro que contiene el núcleo de las células nerviosas) y el de materia blanca (los haces de fibras nerviosas que transmiten las señales por el sistema nervioso). Aunque encontraron ligeras diferencias entre hombres y mujeres, había un solapamiento importante entre ambos sexos. Sólo entre el 0 y el 8% tenían estructuras cerebrales completamente femeninas o masculinas, es decir, con los rasgos más comunes o más repetidos en mujeres o en hombres. Compararon estos datos con conductas estereotipadas como jugar a la videoconsola o ver telenovelas.  “Solo el 0,1% de las personas con cerebro ‘plenamente masculino’ o ‘plenamente femenino’ mostraron una conducta estereotípicamente masculina o femenina”. Conclusión: no se puede hablar de dos clases de cerebro humano según el sexo.

Para más mentiras, ocultaciones e invisibilizaciones sobre las mujeres: Las ‘mentiras’ científicas sobre las mujeres, de S. García Dauder y Eulalia Pérez Sedeño (Catarata).

La Isla de Pascua y los misterios más remotos del planeta

Por Valentí Rull (CSIC)*

2.000 kilómetros separan a la Isla de Pascua del lugar habitado más cercano, y más de 3.600 la aíslan del continente más próximo, Sudamérica. Situada en pleno océano Pacífico, cerca del Trópico de Capricornio, es el lugar de origen de las misteriosas figuras de piedra conocidas como moai que habitan toda la isla y que, con el paso de los años, se han convertido en su símbolo. No obstante, éste no es su único enigma.

La diminuta Isla de Pascua, llamada así por el día en que los europeos llegaron a ella en 1722, pertenece a la región chilena de Valparaíso desde 1888 y cuenta con una población no superior a los 6.000 habitantes. Sin embargo, su historia comenzó muchos siglos atrás. El aislamiento de este territorio ha sido, en gran parte, el catalizador de una historia ambiental y cultural muy peculiar y controvertida que todavía requiere de años de investigación.

‘Moai’ en fila en la Isla de Pascua. / Valentí Rull

Como decíamos, el primer gran enigma científico de la Isla de Pascua (‘Rapa Nui’ en idioma aborigen), desconocida por la civilización occidental hasta la llegada de los holandeses en el siglo XVIII, fue la presencia de los imponentes moai, más de 900 estatuas gigantes de piedra que pueblan la isla y le confieren su imagen más emblemática. Dado que los moai no forman parte de las manifestaciones culturales actuales, se ha supuesto que fueron erigidos por una civilización anterior prácticamente desconocida. Además, las dimensiones de estas esculturas (algunas alcanzan 20 m de altura y más de 250 toneladas de peso) plantean un problema tecnológico importante relacionado con su transporte y emplazamiento. Por otra parte, dada la posición intermedia de la isla entre América y Polinesia, se han propuesto estos dos posibles orígenes para la civilización ancestral de la isla. El momento de esta colonización inicial también sigue siendo una incógnita, igual que la fecha y el porqué de la desaparición de aquella civilización original.

Hasta finales del siglo XX, las evidencias utilizadas para descifrar el pasado cultural de la Isla de Pascua procedían principalmente de la Arqueología, con aportes procedentes de la Antropología física, la tradición oral y la Lingüística. A partir de 1980, se inició una nueva etapa en la investigación científica de Rapa Nui, caracterizada por la posibilidad de reconstruir los climas y ecosistemas del pasado a través de la Paleoecología. El resultado más espectacular de estos estudios fue el descubrimiento de que la isla, actualmente tapizada por praderas de gramíneas, había estado totalmente cubierta de bosques dominados por palmeras desde, por lo menos, 40 milenios atrás. Pero el otro hallazgo sorprendente fue la desaparición súbita de estos bosques hacia el siglo XV, algo que produjo un cambio radical en la historia ecológica y cultural de la isla. A partir de ese momento, el gran reto científico fue explicar la supuesta deforestación masiva y repentina de la isla.

Distribución de los ‘moai’ en la isla. / Eric Gaba.

Hasta ahora se han planteado dos teorías principales que explicarían este suceso. En la primera, la coincidencia aproximada de la deforestación con el fin de la cultura de los moai se interpretó como una evidencia de que los antiguos habitantes de Rapa Nui habían sobreexplotado los recursos naturales de la isla hasta deforestarla, lo cual provocó no sólo un colapso ecológico sino también cultural, en otras palabras, un ‘ecocidio’. La segunda teoría sugiere la posibilidad de que el colapso ecológico no fuera la causa directa de la desaparición de la sociedad ancestral, que habría permanecido más o menos estable a pesar de la deforestación. Sin embargo, a principios del siglo XIX, esta sociedad habría sido víctima del contacto prolongado con la civilización occidental, y desembocaría en la desaparición casi total de la población insular por la introducción de enfermedades infecciosas desconocidas en la isla (viruela, sífilis…) y la práctica del esclavismo, hipótesis que se conoce como del ‘genocidio’. Estudios recientes han podido constatar que la deforestación no fue súbita, sino gradual, y que no ocurrió en toda la isla al mismo tiempo. Hasta hace un par de décadas, la deforestación de Rapa Nui se asociaba exclusivamente con actividades humanas, bien sea directa o indirectamente, pero nuevas evidencias corroboran que en esa época también se produjeron cambios climáticos relevantes en forma de sequías pronunciadas, que podrían haber jugado un papel importante en la deforestación y en la sociedad insular.

‘Moai’ al atardecer en el costa de Rapa Nui. / Valentí Rull

La historia de la Isla de Pascua trasciende el interés local, ya que puede considerarse un modelo a pequeña escala, un experimento natural en un sistema prácticamente cerrado, aplicable a muchos otros lugares del planeta y posiblemente también a nivel global. Los grandes cambios experimentados por el clima, los ecosistemas y la sociedad de la isla a través de milenios pueden servir de modelo para pronosticar nuestro posible destino y el de nuestro planeta frente a las alteraciones ambientales y culturales que se avecinan en un futuro cercano. Este remoto territorio nos proporciona información básica para optimizar nuestras predicciones, pues nos permite conocer de primera mano las respuestas ecológicas y culturales a los cambios ambientales, así como diferenciar los factores naturales de los antrópicos (producidos por el ser humano) como causas de cambios socioecológicos. Esto es posible gracias a disciplinas como la Paleoecología o la Arqueología, que ayudan a reconstruir fenómenos ecológicos y culturales imposibles de estudiar de otra manera, sin cometer ecocidios o genocidios experimentales. Además, estas paleociencias, al ser empíricas, contribuyen a evitar la proliferación de especulaciones infundadas que a veces se utilizan para defender posiciones extremas, como el catastrofismo o la pasividad interesadas, en temas ambientales y de conservación.

 

*Valentí Rull es investigador del Instituto de Ciencias de la Tierra Jaume Almera (ICTJA – CSIC)
** Este post ha sido extraído del libro ‘La isla de Pascua’, disponible en la editorial CSIC y La Catarata.

Un viaje espacial de 20 años para descubrir si hay vida en Próxima b

Por Miguel Abril (CSIC)*

Hace solo unos meses se anunció oficialmente uno de los hitos más importantes de la astronomía de los últimos años: el descubrimiento de Próxima b, un exoplaneta parecido al nuestro con condiciones que podrían hacerlo habitable. Aunque no es, ni mucho menos, el primero descubierto con estas características, lo que hace tan especial a Próxima b es que orbita en torno a la estrella más cercana a nosotros, Próxima Centauri, a solo 4,2 años luz. La noticia hizo que el proyecto Breakthrough Starshot –una iniciativa que pretende mandar la primera sonda en viaje interestelar– cobrara un interés especial al fijar sus ojos en el exoplaneta recién descubierto como potencial objetivo.

Portada de Nature sobre el descubrimiento de Próxima b.

Pero vayamos por partes: ¿tan cerca está este nuevo exoplaneta? ¿Cuánto son cuatro años luz? Podemos visualizarlo de forma muy gráfica realizando un sencillo experimento mental: supongamos que reducimos el Sol al tamaño de un garbanzo y lo colocamos en el punto central de un campo de fútbol. En ese caso, la Tierra sería del tamaño de un grano de arena y orbitaría a un metro de distancia. Y Próxima Centauri, ¿dónde quedaría? Pues ni en el banderín de córner, ni en la portería, ni siquiera en las gradas, como podríamos pensar. Incluso en este modelo reducido Próxima Centauri queda muy lejos: no solo fuera del estadio, sino incluso de la ciudad, de la provincia y muy probablemente de la comunidad autónoma. Concretamente, a unos 270 kilómetros de distancia del garbanzo. Conclusión: no, Próxima b no está próxima (lo siento, me lo han puesto a huevo).

Entonces… ¿Qué pasa, que nadie les ha explicado esto a los responsables de Starshot? ¿Cómo pretenden mandar una sonda hasta allí si está tan lejos? Y, aunque lo consiguieran, ¿cuánto tardaría en llegar? Empecemos diciendo que la misión no enviaría una única sonda, sino un enjambre de ingenios de pequeño tamaño, bajo consumo y coste reducido, para así aumentar las posibilidades de éxito. Estas minisondas tendrían el tamaño de un chip electrónico (similar a un sello postal), aunque para impulsarlas se usarían velas de unos 2 x 2 metros, que se propulsarían usando un láser de gran potencia situado en la superficie terrestre. Según los expertos, mediante esta técnica se conseguirían velocidades del orden de… ¡un 20% de la velocidad de la luz! Así el viaje hasta Próxima b duraría algo más de veinte años y apenas cuatro después se podrían tener datos e imágenes del planetita.

Representación de cómo serían las minisondas enviadas por Breakthrough Starshot hasta Próxima b. / Wikimedia Commons.

¿Y qué pasa si lo conseguimos? ¿Encontraríamos vida en Próxima b? Pues esto es objeto de intenso debate. Hay quien dice que las enanas M como Próxima Centauri son demasiado activas para permitir que se desarrolle la vida, y que además los planetas en su zona de habitabilidad están tan cerca que presentan lo que se conoce como anclaje por marea. Es decir, que ofrecerían siempre la misma cara a la estrella (como sucede con nuestra Luna), por lo que un hemisferio tendría temperaturas abrasadoras y el otro sería un desierto congelado. Sin embargo, los defensores de la posibilidad de vida argumentan que bajo ciertas condiciones el anclaje puede no ser total, como es el caso de Mercurio, que gira sobre sí mismo tres veces por cada dos vueltas al Sol. Y que incluso con anclaje total, tal vez en la zona de transición entre el día y la noche podría haber una estrecha franja con temperaturas templadas que permitirían al menos el desarrollo de formas de vida simple… (¿En serio? ¿Vida simple en una franja estrecha? ¡Venga, Dios, que has creado cosas tan chulas como el tiranosaurio o el tigre de dientes de sable! ¡Puedes hacerlo mejor!).

Un reciente estudio de la Universidad de Cornell sugiere la biofluorescencia como posible mecanismo de defensa ante las súbitas liberaciones de radiación de alta energía que se producen en las enanas M. La biofluorescencia es un fenómeno mediante el cual determinados corales y otros organismos de nuestro planeta absorben las radiaciones ultravioleta y las transforman en longitudes de onda dentro del espectro visible. Vale, no es un tigre de dientes de sable, pero brilla por la noche. Como en Avatar. Mola.

 

*Miguel Abril es ingeniero electrónico en el Instituto de Astrofísica de Andalucía del CSIC, en Granada, y miembro del grupo de divulgación científica Big Van.

Día Internacional de la Mujer y la Niña en la Ciencia. ¡Empiezan dos semanas de actividades!

leni basconesPor Leni Bascones (CSIC)*

Solo una de cada cinco chicas de 15 años quiere dedicarse a profesiones técnicas, según datos de la OCDE. En España, esta media se sitúa en un 7%, algo que posteriormente se refleja en la elección de estudios universitarios. Las estadísticas revelan que, aunque las mujeres obtienen más del 50% de los títulos universitarios, su presencia en carreras como física o ingeniería no llega al 30%. Estas cifras no responden a la tardía incorporación de la mujer al mundo laboral. Por ejemplo, el porcentaje de mujeres en el área de Ciencia y Tecnologías Físicas en el CSIC, que se sitúa en torno al 20%, no ha variado en los últimos 15 años.

Cartel 11 febrero

Datos como estos explican que Naciones Unidas haya declarado el 11 de febrero como Día Internacional de la Mujer y la Niña en la Ciencia. El objetivo es lograr el acceso y la participación plena y equitativa en la ciencia para las mujeres y las niñas. En nuestro país, un grupo de investigadoras y comunicadoras científicas lanzamos hace unos meses la Iniciativa 11 de Febrero, un llamamiento para organizar actividades que se sumen a esta celebración y visibilicen el papel de la mujer en la ciencia. Numerosos colectivos e instituciones, entre los que se incluyen muchos centros del CSIC, han respondido a la convocatoria organizando más de 200 actividades en 40 provincias españolas y en algunas ciudades extranjeras que cuentan con una importante presencia de nuestra comunidad científica. 

Talleres, charlas, actuaciones, concursos, exposiciones, editatones de Wikipedia y mesas redondas, entre otras propuestas, nos acercarán a los grandes descubrimientos de científicas pioneras y a la ciencia que realizan las investigadoras de hoy, contada en muchos casos en primera persona. Así, desde hoy hasta el 19 de febrero las ciudades españolas van a llenarse de actividades en multitud de lugares: museos, centros culturales, universidades y centros de investigación, librerías, centros educativos, e incluso algunos bares. Dentro del CSIC, el Real Jardín Botánico de Madrid (CSIC), el Museo Nacional de Ciencias Naturales (MNCN) y el Instituto de Ciencia de Materiales de Madrid, entre otros, se sumarán a la celebración con diferentes charlas y talleres. El objetivo: dar a conocer la labor investigadora de las mujeres y ayudar a fomentar vocaciones entre las más jóvenes.

A pesar de que muchas científicas han estado involucradas en grandes descubrimientos, pocas personas podrían nombrar a una investigadora que no fuera Marie Curie. Niños y niñas tienen una imagen de los científicos prioritariamente masculina; las niñas no se ven a sí mismas como científicas; y las expectativas de los padres de que sus hijas se dediquen a la ciencia son mucho menores que para sus hijos varones.

La reducida presencia de la mujer en la ciencia en nuestro país responde a diferentes razones sociales que se suman y retroalimentan. La poca visibilidad de las científicas, la falta de roles femeninos y la existencia de estereotipos producen sesgos involuntarios en la evaluación de los méritos de las mujeres y poco interés en las ciencias por parte de las jóvenes. La Iniciativa 11 de Febrero pretende involucrar tanto al profesorado como al alumnado mediante presentaciones, videos, biografías y otros materiales que están disponibles online. Esperamos que todos estos recursos y actividades ayuden a fomentar las vocaciones y eliminar estereotipos.

Podéis consultar aquí las actividades que hay en vuestra provincia.

Más información en www.11defebrero.org, #DíaMujeryCiencia

 

 *Leni Bascones es física teórica de la materia condensada en el Instituto de Ciencia de Materiales de Madrid (CSIC). Investiga las propiedades de materiales cuánticos. Divulga sobre superconductividad.

FOTCIENCIA14: estas son las mejores imágenes de 2016

Por Mar Gulis (CSIC)

Un chorro de agua que cambia su trayectoria y curvatura al entrar en contacto con un dedo, resina fosilizada de conífera, una imagen microscópica de un medallón del siglo XIV, esferas de carbono que parecen una ciudad futurista… Estos son algunos de los temas abordados en las propuestas que han resultado elegidas en la 14 edición de FOTCIENCIA.

Si quieres verlas, mira este vídeo:

Estas imágenes, junto a otras que se elegirán entre las 666 presentadas, serán incluidas en un catálogo y formarán parte de una exposición que recorrerá diferentes museos y centros de España durante 2017. Dos copias de la muestra itinerante estarán disponibles para su préstamo gratuito.

FOTCIENCIA es una iniciativa de ámbito nacional organizada por el Consejo Superior de Investigaciones Científicas (CSIC) y la Fundación Española para la Ciencia y la Tecnología (FECYT), con la colaboración de la Fundación Jesús Serra. El objetivo es acercar la ciencia a la ciudadanía a través de fotografías que abordan cuestiones científicas desde una visión artística y estética. Cada imagen va acompañada de un comentario escrito por su autor/a en el que explica el interés científico de lo que ilustra.

Toda la información relativa a FOTCIENCIA está disponible en la web www.fotciencia.es

 

Gemelos y epigenética:  diferencias entre ‘clones’

Por Carlos Romá Mateo*

Uno de los recursos más utilizados en el cine de ciencia ficción, desde que la genética es una disciplina con cierta popularidad, es el de los clones. Para cualquier persona de a pie, un clon es un ser exactamente igual a otro, creado de manera artificial utilizando una muestra de su material genético. El cine nos muestra complejos procesos, laboratorios asombrosos y tanques llenos de líquido donde flotan, desnudos, los cuerpos de los escalofriantes clones. Pero realmente no hace falta tanto; la naturaleza está repleta de clones. Cuando una célula sufre un proceso de mitosis, se divide en dos células con idéntico material genético, de modo que todas las bacterias que ‘nacen’ a partir de una única bacteria fundadora son clones de esta última. Hasta que el efecto del azar, la selección natural o mecanismos de intercambio genético entre individuos terminen por variar significativamente la secuencia del genoma, podemos seguir hablando de clones.

Gemelos

/Eddy Van 3000. Wikimedia Commons.

Por lo tanto, clonar un humano no sería tan difícil como lo pintan en las películas: solo necesitaríamos echar mano de la primera célula en la generación del organismo (el cigoto recién fecundado), y a continuación forzar una división para separar las células subsiguientes, permitiéndoles desarrollar embriones independientes. Algo más lento y menos espectacular que los tanques de las películas, pero más factible. De hecho, lo que hemos descrito es algo tan común como lo que sucede en el desarrollo de los gemelos monocigóticos. Mismo genoma, desarrollo independiente. No debería sorprendernos que sean tan parecidos.

No obstante, desde que los científicos son capaces de indagar en las profundidades de los núcleos celulares y de leer los genomas (o porciones de ellos) de manera relativamente rápida y eficiente, las pequeñas diferencias –como diría el famoso Jules de Pulp Fiction (Quentin Tarantino, 1994)– saltan a la vista. Fenómenos intrínsecos a la sucesión de divisiones que se producen durante el desarrollo, o microcambios en el ambiente alrededor de cada feto, van sumando diferencias que a simple vista no suelen apreciarse al contemplar a los individuos una vez nacidos.

Starwars epigenética

/Carlos Pazos (molasaber.org).

Entre todos estos mecanismos diferenciadores, destaca por su tremenda actualidad el que relaciona precisamente el ambiente con la expresión génica, lo que conocemos como epigenética. Esta disciplina, que estudia la forma en que fenómenos externos a las células (y en ocasiones incluso al organismo completo) condicionan el funcionamiento de los genes en su interior, es capaz de explicar hitos críticos en el desarrollo embrionario. Además, las denominadas marcas epigenéticas, que silencian o activan segmentos génicos completos en respuesta a señales ambientales, se hallan en la base de multitud de diferencias entre individuos sanos y enfermos. Para entender mejor esto, podríamos imaginar los genes como gruesos volúmenes de información: algunos de los cuales pueden sencillamente abrirse y ser leídos y otros se encuentran cerrados por un candado que impide su lectura. En otras ocasiones, más que un candado encontramos una notita que aporta información extra, relevante para la lectura del contenido del libro. Estos candados y notitas serían las marcas epigenéticas, que modulan el efecto de los genes sobre las funciones celulares, lo que se conoce como expresión génica.

Por lo tanto, entender la epigenética está resultando una pieza clave para completar el complejo puzle que desvela la interacción entre agentes externos, modos de vida y fisiología celular. En este sentido, los gemelos casi idénticos, estos ‘clones’ naturales, suponen una magnífica oportunidad para estudiarlo.

¿Cuánto condiciona el genoma por sí mismo y cuánto aporta el ambiente para dar lugar a las diferencias observables a simple vista? Esta pregunta resume la relación entre la información contenida en los genes y su efecto final sobre el organismo; lo que los científicos llaman genotipo frente a fenotipo.

¿Por qué los gemelos sufren distintas enfermedades?

Uno de los grupos más experimentados en el estudio de los gemelos, en el contexto de la investigación sobre el cáncer, es el de Manel Esteller. Sus trabajos han desgranado el genoma de parejas de gemelos, buscando diferencias a nivel de marcas epigenéticas (lo que se viene a llamar epigenoma) que desvelen diferente predisposición a sufrir algún tipo de cáncer. O que arrojen algo de luz sobre por qué el envejecimiento acentúa las diferencias. Es una de las únicas formas de constatar si realmente hay una importante contribución de los hábitos de vida (fumar o hacer ejercicio, por ejemplo) en la regulación epigenética, algo que todavía se debate acaloradamente. A fecha de hoy, siguen presentándose resultados que se centran en analizar las marcas epigenéticas en genes implicados en enfermedades como el Parkinson o la artritis reumatoide, utilizando como sujetos de estudio hermanos gemelos. Aun presentando la misma probabilidad genética de desarrollar la enfermedad (puesto que la versión de los genes relacionados con la patología es la misma en ambos individuos), los investigadores encuentran que algunos la padecen y otros no, y esta situación coincide precisamente con una distribución de marcas epigenéticas diferente entre ambos.

Sin embargo, experimentar con humanos no suele estar bien visto, y tampoco hay tantos gemelos monocigóticos disponibles y prestos a participar en estudios de esta índole. Una cosa es correlacionar el estado patológico con alteraciones epigenéticas, y otra, encontrar la relación causal entre el ambiente y la redistribución de estas marcas en los genes. Pero las pistas están ahí. Mientras tanto, seguiremos obteniendo información muy valiosa gracias a los animales modelo. Estudios en ratones de laboratorio genéticamente idénticos permiten afinar el tiro mucho más. gattaca-cartel-lecoolvalencia

Algunos resultados parecen indicar que incluso la generación de nuevas neuronas y la estimulación de las conexiones entre ellas se ven influidas por el comportamiento. Cuando ratones genéticamente idénticos fueron criados en diferentes condiciones de enriquecimiento ambiental, aquellos en los que se promovió la exploración, la identificación de objetos nuevos y el ejercicio mental, por decirlo de alguna manera, mostraron un mayor crecimiento neuronal. La posibilidad de que la actividad cerebral, incluso en el individuo adulto, altere la regulación génica hasta el punto de potenciar el crecimiento de nuevas células, surge como una posible explicación para las diferencias cognitivas en individuos que, genéticamente, podrían considerarse clones. La base de la individualidad, la personalidad o el esquivo componente ambiental de muchas enfermedades mentales podrían estar muy influidos por los cambios epigenéticos. Aunque falta atar muchos cabos para poder aseverar esto con rotundidad, muchos estudios en materia de neurobiología van también en esta dirección y seguro que el futuro nos depara interesantes sorpresas.

Cuando se acercaba el final del Proyecto Genoma Humano, al comienzo del presente milenio, el determinismo genético poblaba la mayoría de titulares y preocupaba enormemente a la sociedad. La magnífica película Gattaca (Andrew Niccol, 1997) se hacía eco de estas preocupaciones y lanzaba la pregunta sobre cuánto influye realmente el libro de instrucciones celular en nuestro destino, y cuánto depende de cómo nos acerquemos a dicho destino a lo largo de la vida. En la actualidad, los descubrimientos epigenéticos nos llevan hacia el otro extremo. Hoy día parece que nos preocupa cómo manejamos nuestros genes, a qué agresiones los sometemos siendo adultos, y qué  influencia puede tener esto sobre la genética de nuestros descendientes. Es más que probable, como suele suceder, que las respuestas se hallen a medio camino entre ambas posturas

*Carlos Romá Mateo es el autor del libro La epigenética, de la colección de divulgación del CSIC y Los Libros de la Catarata ‘¿Qué sabemos de?’. Es investigador en la Plataforma de Investigación en Epigenética del CIBERer y la Facultad de Medicina y Odontología de la Universitat de València, y profesor en la Universidad Europea de Valencia. Además es co-creador y guionista del cómic de divulgación The OOBIK proteo-type.

¿Cómo reconocer un buen aceite de oliva?

Por Raquel Mateos* y Mar Gulis (CSIC)img_20161123_110724-1x1

Si es picante y amargo, lo más probable es que estés degustando un aceite de oliva especialmente beneficioso para tu salud. Los responsables de estas propiedades son un grupo de compuestos presentes de forma casi exclusiva en el aceite de oliva virgen y virgen extra que centran el interés de la comunidad científica: el hidroxitirosol y sus derivados.

Pero empecemos por el principio: ¿son todos los aceites de oliva igual de beneficiosos? Cuando se habla de las características saludables de este ingrediente básico de la dieta mediterránea, el aceite que se suele tomar como referencia es el virgen o el virgen extra, que se obtienen directamente de la oliva mediante procedimientos mecánicos como la presión y la centrifugación. El aceite de oliva ‘a secas’ es en realidad aceite lampante refinado y mezclado con un pequeño porcentaje de aceite de oliva virgen para dar sabor y color al producto. Por eso su composición y propiedades no son las mismas que las del aceite de oliva virgen o el virgen extra.

Aceite de oliva virgen extra. / USDA vía Flickr

Aceite de oliva virgen extra. / USDA vía Flickr.

Todas las categorías de aceite de oliva tienen en común una composición rica en ácidos grasos monoinsaturados, que son considerados beneficiosos para la salud. Así, la Administración de Alimentos y Medicamentos de Estados Unidos (FDA, por sus siglas en inglés) reconoce que el consumo de dos cucharadas (25 mililitros) de aceite de oliva al día en sustitución de la misma cantidad de grasa saturada ayuda a prevenir el riesgo coronario.

Sin embargo, los aceites de oliva virgen y virgen extra contienen además compuestos fenólicos que los protegen de la oxidación y tienen reconocidos efectos sobre nuestra salud; el hidroxitirosol y sus derivados constituyen el grupo más emblemático de estos antioxidantes. Recientemente, la Autoridad Europea de Seguridad Alimentaria (EFSA) ha señalado que la ingesta de 5 miligramos al día de fenoles de aceite de oliva previene la oxidación del ‘colesterol malo’ (las lipoproteínas de baja densidad o LDL), que es un proceso clave en el depósito de grasa en las arterias. Ello se debe al contenido en hidroxitirosol y derivados de dichos fenoles. Para ingerirlos en la cantidad adecuada hay que consumir entre una y dos cucharadas de aceite, siempre que se trate de un aceite bien amargo y picante.

Además, el estudio PREDIMED sobre la dieta mediterránea ha asociado parte de los beneficios de esta a la fuente de grasa utilizada, el aceite de oliva virgen extra, y más concretamente a su contenido en hidroxitirosol y derivados. Según este estudio, la dieta mediterránea contribuye a mejorar la salud cardiovascular y reducir el riesgo de padecer diabetes tipo II, cáncer de mama y enfermedades neurodegenerativas, además de prevenir el aumento de peso. Estos beneficios se observaron tras la ingesta diaria de 50 mililitros de aceite de oliva virgen extra, equivalente a cuatro cucharadas soperas.

Así pues, no todos los aceites de oliva son iguales. Si queremos aprovecharnos de una grasa monoinsaturada de calidad y de los beneficios del hidroxitirosol, tendremos que consumir preferentemente aceite de oliva virgen extra. Por suerte para los consumidores, podemos recurrir a la etiqueta del producto para identificar el tipo de aceite y a nuestro sentido del gusto para hacernos una idea de la cantidad de fenoles que contiene un aceite de oliva, ya que estos compuestos son amargos y picantes. Por eso, cuanto más intensos sean estos atributos en un aceite, mayores serán sus propiedades saludables.

Pero, ¿son el aceite de oliva virgen y virgen extra las únicas fuentes de hidroxitirosol? No necesariamente. Este compuesto también es abundante en el alperujo, un subproducto generado durante la producción del aceite, que en los próximos años puede convertirse en un ingrediente atractivo para la elaboración de nuevos productos dietéticos. En un estudio reciente que hemos realizado en el Instituto de Ciencia y Tecnología de Alimentos y Nutrición del CSIC con galletas suplementadas con este ingrediente reveló que el hidroxitirosol que contienen es muy biodisponible –es decir, resulta de fácil y rápida absorción por nuestro organismo– y reduce el nivel de las partículas oxidadas del ‘colesterol malo’. Así pues, parece que en el futuro será posible encontrar hidroxitirosol en una gama variada de alimentos.

 

* Raquel Mateos es investigadora del CSIC en el Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN).

Los ‘puzles’ nanométricos que cambiarán tu ordenador

AutorPor Manuel Souto (CSIC)*

Imaginad el popular juego de construcciones de Lego reducido a una escala nanométrica, es decir, a la billonésima parte de un metro. Suponed que sus minúsculas piezas, constituidas individualmente por una molécula orgánica, encajan de un modo determinado para formar así un diminuto rompecabezas. Este nanoscópico puzle exhibiría a su vez unas propiedades físicas (por ejemplo, ópticas, magnéticas o eléctricas) definidas en función de la forma en que interaccionan sus piezas.

Imaginad ahora que podemos moldear y pulir todas estas ‘nanopiezas’ a nuestro antojo para que encajen de una manera prestablecida y que, como consecuencia, seamos capaces de modificar las propiedades físicas de este material. Pues bien, todo ello es posible gracias a la nanociencia molecular.

Gracias a la nanociencia molecular podemos crear rompecabezas de diminutas piezas ‘a la carta’ para emplearlos en nuevas aplicaciones.

Gracias a la nanociencia molecular podemos crear rompecabezas de diminutas piezas ‘a la carta’ para emplearlos en nuevas aplicaciones.

En el Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC), concretamente en su departamento de Nanociencia Molecular y Materiales Orgánicos (Nanomol), se están investigando nuevos materiales orgánicos que presentan distintas aplicaciones en el área de la electrónica molecular. Una de ellas es su uso como interruptores moleculares que podrían tener aplicación como dispositivos de memoria con más densidad de información. En este caso, el dedo que presiona el interruptor consiste en un estímulo físico externo –como la variación de la temperatura o presión– que es capaz de hacer pasar al dispositivo de un estado apagado (OFF) a uno encendido (ON) de forma reversible. Por ejemplo, simplemente con calentar la solución de uno de estos compuestos orgánicos podremos pasar de un estado magnéticamente apagado a uno encendido y, al mismo tiempo, observar a simple vista un cambio de color de violeta a marrón que indique visualmente el estado encendido. Al enfriar de nuevo la solución, el sistema volverá al estado apagado.

Estos compuestos orgánicos pueden emplearse también como materiales conductores de electricidad si logramos que las moléculas interaccionen de una forma adecuada. Además presentan numerosas ventajas –una mayor versatilidad, ligereza y menor coste de manufactura– respecto a los materiales tradicionales empleados en la fabricación de dispositivos electrónicos, como el silicio. En un trabajo reciente, en el ICMAB hemos diseñado y sintetizado una de estas ‘nanopiezas’ (moléculas) orgánicas que encajan una con otra de un modo determinado consiguiendo que el puzle obtenido conduzca electricidad. En este caso, el material puede pasar de aislante a conductor simplemente con la variación de la presión, ya que de esta forma alteramos la distancia y la forma en la que interaccionan las piezas.

En resumen, gracias a la nanociencia molecular podemos diseñar y crear diminutas piezas ‘a la carta’ para obtener rompecabezas que presenten unas propiedades físicas determinadas y, de esta forma, emplearlos en nuevas aplicaciones, como dispositivos electrónicos y memorias con una mayor densidad de información.

 

* Manuel Souto Salom (@SoutoManel) es investigador posdoctoral en el ICMAB-CSIC y colaborador del blog ‘Reaccionando. Una bitácora para una generación no tan perdida’, El Periódico de Catalunya y El Huffington Post. También es autor del ensayo Sí es país para jóvenes, en el que se aborda la actualidad desde una perspectiva crítica y se proponen alternativas dirigidas a concienciar sobre la necesidad de un cambio fundamentalmente ético.

Los demonios del queso: la sal y la grasa. ¿Seguro?

Tomás GarcíaPor Tomás García Cayuela (CSIC)*

El queso ha sido y es una parte muy importante de nuestra alimentación. Si bien no es imprescindible, es un alimento muy completo, rico en proteínas, lípidos, minerales como el calcio, y vitaminas. Sin embargo, dos de sus componentes, la sal y la grasa, han estado siempre en el punto de mira por su relación con la hipertensión y la obesidad, respectivamente. ¿Qué hay de cierto en todo esto? ¿Es tan mala la grasa del queso? ¿Habría que elegir quesos bajos en sal? Vayamos por partes.

<c<xzcx Myrabella

Un consumo de 60 gramos diarios de queso Camembert no tendría efecto en los lípidos sanguíneos ni en la presión arterial. / Myrabella.

Efectivamente, el consumo de elevadas cantidades de sal puede ser muy peligroso para nuestra salud. Puesto que muchos quesos presentan altos niveles, la tendencia actual en la industria quesera es la de reducir este componente. Sin embargo, según la mayoría de estudios observacionales y clínicos realizados hasta el momento, no existe relación directa entre el consumo moderado de queso y el riesgo de incidencia de hipertensión. Por tanto, la única precaución que se debe seguir es controlar las raciones que se toman, sobre todo con determinados tipos, como los curados, que pueden llegar a aportar casi 1 gramo de sal por cada porción de 80 gramos. En cambio, sí sería imprescindible reducir al máximo el consumo de alimentos precocinados, ya que muchos de los aditivos que contienen están formados por sales de sodio (la denominada ‘sal invisible’).

Veamos qué sucede con el segundo ‘demonio’ del queso. Durante los últimos 30 años, la grasa del queso y demás productos lácteos enteros ha sido considerada como la mala de la película, por aportar muchas calorías y ser una fuente de grasa saturada innecesaria en nuestra dieta. Además, se asumía que esa grasa estaba relacionada con la obesidad y que aumentaba el riesgo de enfermedad cardiovascular. En este sentido, en las guías alimentarias lo que se aconsejaba –y se sigue aconsejando, de hecho– era tomar productos bajos en grasa o desnatados, en lugar de los productos enteros. Con los nuevos estudios científicos, estas creencias han sido cuestionadas de la siguiente manera:

  • La grasa láctea no es una fuente innecesaria de grasa saturada. Hay que tener en cuenta que esta grasa puede llegar a tener más de 400 tipos de ácidos grasos. Además, es muy compleja y contiene ácidos grasos que presentan actividades biológicas muy importantes: el ácido mirístico interviene en la síntesis de proteínas; los ácidos grasos de cadena media y corta previenen la oxidación de otros ácidos grasos de cadena más larga, y favorecen su bioconversión a ácidos grasos esenciales para el desarrollo del cerebro y el sistema nervioso; asimismo, los ácidos grasos de cadena ramificada ayudan a mantener la estabilidad de las membranas celulares.
  • El queso y los productos lácteos en sí mismos no provocan un aumento del colesterol malo (LDL) ni incrementan el riesgo de enfermedad cardiovascular. En muchos de los estudios en los que se ha sustituido la grasa insaturada por saturada en una dieta, no se observan cambios significativos en los niveles de colesterol de los individuos.
  • El consumo de lácteos enteros no contribuye a la obesidad y a la aparición de enfermedades metabólicas. La grasa láctea no solo es saciante, lo que ayuda a comer menos, sino que también tiene un papel regulador en el metabolismo de la glucosa y la aparición de diabetes tipo 2.
 La grasa de los lácteos en general es saciante y tiene un papel regulador en el metabolismo de la glucosa / Dorina Andress

La grasa de los lácteos en general es saciante y tiene un papel regulador en el metabolismo de la glucosa. / Dorina Andress.

Además de no tener un impacto negativo en la salud, el consumo de queso (también de yogur natural o leche entera) puede tener un efecto protector sobre nuestro metabolismo. Así lo confirmó un estudio de la Universidad de Dinamarca en el que los participantes consumían 80 gramos de queso Gouda (27% de grasa) al día y algunos que tenían síndrome metabólico redujeron sus niveles de colesterol. En otra investigación, publicada en el International Journal of Food Sciences and Nutrition, se comprobó que el consumo diario de 60 gramos de queso Camembert no tenía efecto en los lípidos sanguíneos ni en la presión arterial.

¿Este efecto protector se debe solo a la grasa? En un estudio de la misma publicación, se comparó el consumo de queso con el de mantequilla (a igualdad de contenido en grasa) y los resultados obtenidos fueron muy distintos, pues solo con el queso se observó una disminución del colesterol sanguíneo LDL. Por tanto, una hipótesis es que, además de la grasa, otros factores de la matriz del queso están actuando en el organismo, como el calcio, las caseínas o las propias bacterias fermentadoras.

En definitiva, los últimos metanálisis indican que el queso, consumido como parte de una dieta equilibrada, no está relacionado con el riesgo de obesidad, síndrome metabólico, diabetes tipo 2 o enfermedad cardiovascular. Tampoco influye en los niveles de lípidos sanguíneos o de presión arterial, como siempre se había dicho, por su contenido en grasa o sal. Pensemos mejor en el queso como un alimento completo donde todos sus componentes están relacionados entre sí y no como un conjunto de nutrientes aislados.

 

*Tomás García Cayuela es investigador en el Instituto de Investigación en Ciencias de la Alimentación (CIAL), centro mixto del CSIC  y la Universidad Autónoma de Madrid, y en el Tecnológico de Monterrey (México). Además, es creador del blog de divulgación sobre gastronomía y ciencia El Saber Culinario.