Entradas etiquetadas como ‘informática’

El ordenador cuántico: cuando el qubit se coma al bit

Por Mar Gulis (CSIC)

Ordenadores, discos duros, memorias, teléfonos inteligentes, tablets… Estamos acostumbrados a que los dispositivos informáticos sean cada vez más pequeños y potentes. Esta evolución ya fue descrita en los años 60 por Gordon Moore, uno de los fundadores de Intel, quien notó que el tamaño de estos dispositivos se reducía a la mitad cada 18 meses. De mantenerse esta tendencia, cosa que hasta ahora ha ocurrido en líneas generales, en pocos años habremos alcanzado la escala de las partículas atómicas.

Quantum machine

Máquina cuántica de un qubit desarrollada por Aaron D. O’Connell. / Wikipedia

El problema es que el comportamiento de estas partículas es muy distinto al que tienen los cuerpos en el mundo macroscópico, el que habitamos los seres humanos. Las poco intuitivas leyes que rigen el mundo de las partículas atómicas, definidas por la mecánica cuántica, nos obligan a transformar el modo en que transmitimos y procesamos la información. En la escala de los nanómetros, los electrones escapan de los canales por los que deben circular (efecto túnel) haciendo que los chips dejen de funcionar.

Sin embargo, lo que en principio se presenta como una desventaja abre un gran abanico de oportunidades, como la posibilidad de desarrollar ordenadores cuánticos con una capacidad de cálculo extraordinaria. La clave reside en utilizar uno de los fenómenos más desconcertantes del mundo cuántico, la superposición de estados, para sustituir la unidad mínima de información de la computación tradicional, el bit, por una nueva unidad con un potencial mucho mayor, el qubit o quantum bit. Aunque las implicaciones de este concepto son muy serias, el término fue acuñado de forma jocosa por su similitud fonética con el cubit inglés: el codo, una unidad de medida en desuso.

Vayamos por partes. Según la mecánica cuántica todas las partículas atómicas pueden estar en varios estados a la vez. Es la acción de medir algún parámetro (velocidad, posición, etc.) la que rompe la superposición y lleva a la manifestación de un estado determinado. Inspirados en la famosa paradoja de Schrödinger, podríamos decir que un gato cuántico encerrado en una habitación hermética junto a una trampa mortal, está vivo y muerto al mismo tiempo hasta que se abre la puerta del recinto. El acto de abrir la habitación –la observación o medida– es lo que hace que el gato asuma uno de los dos estados posibles: vivo o muerto.

Algo similar puede ocurrir con ciertos parámetros de las partículas cuánticas: aunque se encuentran en una superposición de estados, en el momento de la medición solo pueden adoptar uno de entre dos posibles. Esto sucede en ciertas ocasiones con el nivel energético de los átomos, la polarización de los fotones o el espín de los electrones –la dirección en la que ‘giran’ sobre sí mismos–. En el caso del espín, por ejemplo, al medir solo podemos encontrarlo hacia arriba –digamos arbitrariamente que esto significa que gira en el sentido de las agujas del reloj– o hacia abajo –girando en sentido contrario–.

Pues bien, las partículas con estas propiedades se comportan como qubits. El físico del CSIC Salvador Miret explica que, “a diferencia de un bit, que representa un 0 o un 1, un qubit puede transmitir esos dos estados y una variedad ilimitada de estados intermedios o de superposición”. En otras palabras, mientras que con un bit solo podemos decir si el gato está vivo (0) o muerto (1), un qubit puede albergar el dato de que el gato está mitad vivo, mitad muerto; tres cuartos vivo, un cuarto muerto; o un 25,32% vivo y un 74,68% muerto… “Las posibilidades son infinitas porque los qubits no expresan magnitudes discretas, como los bits, sino continuas”, añade el investigador.

Sistema cuántico

Sistema de cuatro qubits desarrollado por IBM. / IBM

En consecuencia, el comportamiento de las combinaciones de bits y qubits también es muy diferente. Si con un bit podemos expresar dos estados (0 y 1), con dos podemos expresar cuatro (00, 01, 10 y 11) y con tres, ocho (000, 001, 010, 011, 100, 101, 110, 111). Por cada bit que añadamos a la cadena el número de posibilidades se incrementará de forma exponencial. Ahora bien, aunque el número de posibilidades puede llegar a ser enorme, siempre será finito.

Los grupos de qubits no solo permiten albergar una infinidad de valores sino que hacen que la capacidad de procesar información de forma simultánea crezca exponencialmente gracias a la superposición y al entrelazamiento cuánticos –también llamado correlación–. Teóricamente con un qubit podríamos hacer al menos dos operaciones paralelas; con dos, cuatro; con tres, ocho; y así sucesivamente. Esto supone una importante novedad con respecto a la informática tradicional, que hasta hace relativamente poco tiempo afrontaba las operaciones de modo lineal y no ofrece la misma capacidad de los qubits para trabajar de forma simultánea.

Imaginemos, por ejemplo, que queremos encontrar la salida a un enorme laberinto. La computación clásica tendría que procesar los distintos caminos uno por uno o en pequeños grupos hasta encontrarla, mientras que la computación cuántica nos permitiría probar miles de caminos en un solo segundo. Así, un ordenador cuántico de 30 qubits equivaldría a un procesador de 10 teraflops (10 millones de millones de operaciones por segundo), cuando los ordenadores actuales trabajan en el orden de los gigaflops (miles de millones de operaciones). Los investigadores estiman que con 60 bits cuánticos podría construirse un ordenador más potente que todos los ordenadores clásicos de la Tierra.

Llegados a este punto, es inevitable preguntarse por qué no existe aún el ordenador cuántico. La principal dificultad es lograr que las partículas interactúen entre ellas sin interferencias del entorno. La interacción no controlada con otras partículas destruye las propiedades cuánticas de las partículas haciendo que se rompa la coherencia (decoherencia) y que, entre otras cosas, abandonen la superposición de estados; por lo que resulta imposible obtener resultados que vayan más allá de lo que se conseguiría operando con bits.

 

Si quieres más ciencia para llevar sobre este tema consulta el libro Mecánica cuántica (CSIC-Catarata), de Salvador Miret, y la revista LYCHNOS, Cuadernos de la Fundación General CSIC.

La manzana de Apple, ¿un homenaje de Steve Jobs a Turing?

Por Mar Gulis

vzvczv

El matemático Alan Turing / Wikipedia

Leyenda o realidad, lo que vamos a contar hoy es una curiosa historia. ¿Cuál es el origen de la manzana de Apple, uno de los logos más conocidos del planeta? ¿En qué se inspiró Steve Jobs, el fundador de la compañía, cuando eligió la famosa manzana mordida como seña de identidad de su empresa? En torno a esta cuestión ha habido diferentes teorías, sin que la respuesta haya llegado nunca a estar clara, en parte por las ambigüedades de Jobs al contestar.

Una de las interpretaciones más extendidas es que la manzana Apple sería una especie de homenaje al gran matemático británico Alan Turing (1912-1954). Conocido por su aportación para desentrañar las claves del funcionamiento de Enigma -la máquina con la que los nazis se enviaban mensajes cifrados-, Turing es considerado uno de los pioneros de la computación moderna. Jobs manifestó en más de una ocasión su admiración hacia este genio de las matemáticas cuya vida tuvo un final trágico. Su destino se torció en 1952, cuando fue detenido acusado de mantener relaciones homosexuales con un joven de 19 años. Previamente, Turing le había denunciado por robo, y en el transcurso de la investigación la policía descubrió la relación que mantenían ambos, tipificada como delito en la conservadora sociedad británica de la época.

Este hecho marcó un punto de inflexión en la vida del matemático, que tuvo que elegir entre ir a prisión o la castración química con estrógenos. Eligió esta segunda opción, pero el impacto emocional fue tal que terminó suicidándose. Quizá inspirado en el cuento de Blancanieves –esta es la hipótesis de David Leavitt, uno de sus biógrafos–, optó por morder una manzana rociada con cianuro para poner fin a su vida. Fue en 1954, cuando tenía 41 años.

bvxcb

Máquina Enigma / Wikipedia

Más de medio siglo después, Reino Unido decidió rehabilitar su figura: primero el Gobierno pidió públicamente perdón por el trato dispensado al matemático; 2012 fue declarado el Año de Alan Turing y ya en 2013 la reina Isabel II exoneró al científico de todos los cargos en su contra.

Hoy existe un consenso a la hora de considerarle alguien clave en la historia de las matemáticas. De su trayectoria vital y también de sus aportaciones más significativas habla el libro Rompiendo códigos. Vida y legado de Turing (CSIC-Catarata), escrito por Manuel de León y Ágata Timón, del Instituto de Ciencias Matemáticas. A lo largo de sus páginas, los autores explican cómo el trabajo de Turing sentó las bases de la informática moderna y fue decisivo para que en la Segunda Guerra Mundial vencieran los aliados, ya que su investigación criptográfica aceleró el final del conflicto al vulnerar las comunicaciones alemanas a través de las máquinas Enigma.