Archivo de la categoría ‘Química’

Ciencia online: más de 100 conferencias de divulgación del CSIC para ver en casa

Por Mar Gulis (CSIC)

¿Por qué el cambio climático es un problema urgente? ¿De qué está hecho el universo? ¿Cómo se extinguieron los Neandertales? ¿Tiene la vida un origen extraterrestre? Estos días de confinamiento suponen una excelente oportunidad para saciar tu curiosidad científica. Las más de 100 charlas para todos los públicos que el Consejo Superior de Investigaciones Científicas (CSIC) ofrece en sus canales online te ayudarán a buscar respuestas a estas y otras muchas preguntas. Además, te permitirán conocer los últimos avances de la ciencia por boca de investigadores e investigadoras que trabajan en una gran variedad de campos, como la demografía, la biología, la geología o la física teórica.

Fernando Valladares

Fernando Valladares, investigador del Museo Nacional de Ciencias Naturales (MNCN-CSIC), en una de sus charlas sobre cambio climático.

Del universo a las partículas elementales

Si lo que te interesa son los meteoritos, las estrellas o la vida extraterrestre, puedes asomarte al impresionante catálogo de conferencias del Ciclo Lucas Lara, organizado por el Instituto de Astrofísica de Andalucía (IAA-CSIC). En ellas no solo oirás hablar de astronomía, sino también de asuntos como la inteligencia artificial, el dolor o los mosaicos de La Alhambra.

En caso de que te vaya más la física ‘pura y dura’, las conferencias del Instituto de Física Teórica (IFT-CSIC/UAM) no te defraudarán. El bosón de Higgs y el misterio de la masa, el fin del espacio-tiempo o las misteriosas propiedades de los neutrinos son solo algunas de las muchísimas cuestiones tratadas en ellas. De todas formas, la física del CSIC no se agota aquí. En esta misma área del conocimiento, tampoco puedes perderte las charlas del Instituto de Física Fundamental (IFF-CSIC), que se ocupan de temas como la antimateria, los mitos de la física cuántica o la computación cuántica.

La investigadora Laura López-Mascaraque, del Instituto Cajal (IC-CSIC), habla de la ruta de los aromas de la nariz al cerebro en el ciclo ‘¿Qué sabemos de?’.

Para saber de todo

Para quienes no tengan tan definida una temática de interés, el ciclo Jam Science ofrece la oportunidad de ver a investigadores e investigadores de perfil muy diverso hablando de su trabajo en un ambiente muy distendido: nada más y nada menos que un bar. Organizada por la científica del CSIC Carmen Fernández, esta iniciativa ha abordado cuestiones como el enigma de los Neandertales, el posible origen extraterrestre de la vida en nuestro planeta, la exploración antártica o la importancia de las vacunas. Los vídeos de estas charlas están disponibles en los canales de Youtube DC SciCommAgora Mundi Ciencia.

Otro ciclo de contenido científico amplio que te permitirá aumentar tus conocimientos son las Friday Talks. ‘Música y neurociencia’, ‘Un nuevo océano en la era del plástico’ o ‘Gatos y tigres… ¿bajo el mar?’ son títulos de algunas de las intervenciones recogidas por esta propuesta del Instituto de Ciencias del Mar (ICM-CSIC).

Y aún hay más. ¿Qué somos capaces de hacer editando genes? ¿Cómo sabe el cerebro lo que la nariz huele? ¿Se va a convertir la Comunidad Valenciana en un desierto? Estos interrogantes sirven de partida a tres de las conferencias del ciclo ‘¿Qué sabemos de?’ con el que la Delegación del CSIC en Valencia te propone indagar en las claves científicas del bienestar.

Los Neandertales son el eje de esta charla de Antonio Rosas, del MNCN-CSIC, en el ciclo Jam Science.

Cambio climático y geología

Volviendo a temáticas más específicas, el investigador del Museo Nacional de Ciencias Naturales (MNCN-CSIC) Fernando Valladares te invita a reflexionar sobre el cambio climático y los desafíos que plantea en su serie de vídeos La salud de la humanidad, en la que intercala conferencias con varias piezas informativas de elaboración propia. Y en una línea similar, Daniel García-Castellanos, del Instituto de Ciencias de la Tierra Jaume Almera (ICTJA-CSIC), comparte su pasión por la geología en sus charlas sobre megainundaciones, tectónica de placas y erosión del suelo.

Y para terminar, puedes darte una vuelta por los ciclos Demografía hoy y ¿Qué sabemos del arte rupestre?, así como los seminarios de la Estación Biológica de Doñana. Estos vídeos, de contenido algo más especializado que los anteriores, te permitirán profundizar en las cuestiones que tratan.

Como ves, tienes muchas conferencias para elegir. ¿Por cuál quieres empezar?

Si quieres conocer más recursos del CSIC para aprender ciencia desde casa, pincha aquí.

Ciencia en casa: 10 sencillas propuestas para hacer experimentos con agua

Por Mar Gulis (CSIC)

¿Te atreves a construir tu propio acuífero? ¿Quieres coger un hielo sin tocarlo? ¿Te animas a ‘fabricar’ escarcha? Estos son solo algunos de los 10 experimentos que complementan la exposición La esfera del agua (CSIC-Aqualogy) y cuyas fichas, disponibles online de forma gratuita, te lo pondrán muy fácil para convertir tu casa en un entretenido laboratorio.

Todos ellos pueden realizarse con materiales económicos y de uso cotidiano, y se adaptan al público de diferentes edades. Si estos días de confinamiento quieres que tus hijos e hijas a partir de tres años conozcan las peculiares propiedades del agua mientras pasan un buen rato o eres una persona adulta que no ha perdido la curiosidad científica, no lo dudes y ponte manos a la obra.

Huevo en un vaso de agua

Hacerlo es tan sencillo como coger un vaso con agua, un huevo y un puñado de sal. Con estos elementos y la ficha ‘El huevo que flota’ podrás entender de manera muy sencilla y explicar a quienes te rodean conceptos complejos como la densidad, el peso o el volumen. El objetivo del experimento es precisamente que cualquiera pueda comprender estos fenómenos y tratar de dar sentido a sus definiciones abstractas –por ejemplo, la que establece que la densidad es “una magnitud escalar referida a la cantidad de masa en un determinado volumen de una sustancia o un objeto sólido” –.

Veamos otro caso. Coge una moneda y echa, poco a poco, gotas de agua sobre ella con un gotero, una jeringuilla o algo similar. ¿Eres capaz de adivinar cuántas gotas se quedarán sostenidas sobre la moneda? Si lo pruebas, te sorprenderás y seguramente lograrás familiarizarte con otro concepto: el de tensión superficial. ¿Y qué pasaría si añadimos un poco de detergente al agua y volvemos a contar cuántas gotas caben? Solo tienes que probar para descubrirlo.

Gotas de lluvia horneadas

Gotas de lluvia horneadas en el experimento de la ficha nº 5.

También encontrarás propuestas para recordar estos días de cuarentena, como la que te invita a guardar gotas de lluvia de un día concreto. Basta con sacar por la ventana un recipiente con harina mientras llueve y dejar que varias gotas caigan sobre él. Si las horneas un poco como si de un bizcocho se tratase, podrás guardarlas como testimonio de estos días tan especiales. ¿Te apetece luego pintarlas o realizar con ellas un cuadro?

Poner a prueba tu habilidad es otro de los desafíos que te esperan. ¿Crees que puedes coger un hielo sin tocarlo? Pues con agua, hielo, un vaso, sal y un hilo o una cuerda, lo lograrás. Esta experiencia te permitirá conocer en qué consiste el denominado descenso crioscópico, es decir, el descenso de la temperatura por debajo de los cero grados centígrados, y cómo cambia la temperatura del agua o el hielo cuando añadimos un poco de sal.

Las fichas te ayudarán a llevar a cabo todos los experimentos con éxito. Cada una recoge los materiales necesarios, el procedimiento que debes seguir dividido en sencillos y concisos pasos y una explicación adaptada a distintas edades (Educación Infantil y Primaria, por un lado; y Educación Secundaria y público adulto, por otro). También incluye un apartado final de curiosidades e imágenes que te servirán para entender mejor todo el proceso.

La exposición La esfera del agua y sus fichas de experimentos son recursos elaborados por el Consejo Superior de Investigaciones Científicas (CSIC) y Aqualogy en el marco del Año internacional de la cooperación en la esfera del Agua 2013. La muestra, cuyos paneles también pueden descargarse, introduce al público en el mundo del agua, desde sus propiedades químicas hasta su papel en la historia y la civilización humana.

Si quieres conocer más recursos del CSIC para aprender ciencia desde casa, pincha aquí.

Ciencia para la cuarentena: pon a prueba tus conocimientos con Hi Score Science

Por Mar Gulis (CSIC)

¿A qué temperatura hierve el agua en lo alto del Everest? ¿Qué es la energía según la física? ¿De qué color es el grafeno? Estas son algunas de las casi 1.000 preguntas que incluye Hi Score Science, un juego para dispositivos móviles y ordenadores con el que podrás poner a prueba tus conocimientos científicos mientras pasas un buen rato.

Desarrollado por dos centros de investigación del CSIC y la Universidad de Zaragoza –el Instituto de Ciencias de Materiales de Aragón y el Instituto de Síntesis Química y Catálisis Homogénea–, Hi Score Science lanza ahora un torneo nacional online para quienes busquen planes alternativos durante la cuarentena.

Hi Score Science

Como en torneos anteriores, en esta ocasión también pueden participar personas de cualquier edad de todas las localidades de España. El ganador o ganadora obtendrá un premio especial: el juego escape room ‘Exit: el laboratorio secreto’. Las tres primeras personas clasificadas recibirán, además, un lote de libros de divulgación de la colección ‘¿Qué sabemos de?’ (CSIC-Catarata) y una chapa Hi Score Science, y las 10 primeras, un certificado.

Si te apetece participar o simplemente sientes curiosidad, lánzate sin prejuicios. La participación es anónima y gratuita, y los perfiles de quienes han ganado concursos precedentes son muy variados: hay docentes y personal investigador, pero también estudiantes de entre 11 y 17 años.

Quien quiera aligerar la cuarentena con un poco de ciencia, que tome nota de las coordenadas: el torneo permanecerá abierto desde el próximo jueves 26 de marzo a las 11 horas hasta el lunes 30 a la misma hora. Concursar es muy sencillo: simplemente hay que descargarse Hi Score Science en un móvil Android o iOS o en un ordenador PC o Mac, y jugar, con nombre de usuario y contraseña, en modo multijugador online en el torneo Curie.

Hi Score Science cuenta con apoyo económico de la Fundación Española para la Ciencia y la Tecnología (FECYT), adscrita al Ministerio de Ciencia e Innovación.

Si quieres conocer más recursos del CSIC para aprender ciencia desde casa, pincha aquí.

Las dos medallas del Nobel que escaparon a los nazis

Por Mar Gulis (CSIC)*

9 de abril de 1940: el químico húngaro George Hevesy, conocido por haber descubierto el hafnio, acude como cada mañana a su trabajo en el Instituto de Física Teórica de la Universidad de Copenhague, Dinamarca. No es un día como cualquier otro: Alemania está invadiendo el país. Los ataques han comenzado durante la madrugada y el gobierno danés, consciente del desequilibrio de fuerzas, no ha tardado en presentar la rendición.

A su llegada, Hevesy encuentra a Niels Bohr, premio Nobel de Física en 1922 y director del instituto. El ‘padre’ de la mecánica cuántica está preocupado. No es ser hijo de madre judía lo que le inquieta en ese momento –al fin y al cabo, al nacer fue bautizado en el catolicismo–, sino que los ocupantes encuentren lo que obra en su poder. Bohr esconde las medallas del premio Nobel de dos físicos alemanes que, de una u otra forma, se han significado como opositores al régimen nazi: Max Von Laue, galardonado en 1914 por sus trabajos en cristalografía de rayos X, y James Franck, premiado en 1925 por sus investigaciones sobre el comportamiento de los electrones. Ambos han depositado sus condecoraciones en el instituto precisamente para evitar que caigan en manos de las autoridades de su país.

Se trata de un legado demasiado comprometedor. La Alemania de Hitler castiga incluso con la pena de muerte sacar oro del país; y las medallas están hechas con 200 gramos de oro de 23 quilates cada una. Franck, de origen judío, vive exiliado en Estados Unidos, pero Von Laue permanece en Alemania. “El nombre de Laue estaba grabado en la medalla, su descubrimiento por las fuerzas invasoras habría tenido muy serias consecuencias para él”, escribe Hevesy acabada la Segunda Guerra Mundial.

De izquierda a derecha: James Franck, Max Von Laue, George Hevesy y Niels Bohr.

Hay que darse prisa. El húngaro propone enterrar los metales, pero Bohr teme que alguien pueda descubrirlos. Entonces, echan mano de sus conocimientos sobre química. El oro es inalterable por el aire, el calor, la humedad y la mayoría de los elementos químicos, pero puede disolverse con agua regia, una combinación de una parte de ácido clorhídrico y tres de ácido nítrico.

Hevesy se pone manos a la obra y pasa la jornada encerrado en el laboratorio disolviendo las medallas. No es un trabajo fácil: “El oro es extremadamente no reactivo y difícil de disolver”, cuenta años después a Von Laue. Mientras tanto, en las calles de Copenhague ya desfilan las tropas invasoras.

Hasta 1980 todas las medallas del premio Nobel fueron acuñadas en oro de 23 quilates.

Cuando los nazis ocupan el instituto no advierten nada sospechoso. En 1943, Bohr y Hevesy, que acaba de recibir el Nobel por el estudio de organismos vivos mediante trazas radioactivas, parten al exilio. Temeroso de que Alemania se adelante en la carrera armamentística, el primero acaba en Estados Unidos colaborando con el proyecto Manhattan, que da lugar a la primera bomba atómica.

El oro permanece disuelto en agua regia hasta el fin de la guerra. Tras su regreso a Dinamarca, Bohr lo recupera y en 1950 lo envía a la Real Academia Sueca de Ciencias junto con una carta en la que explica lo sucedido. La Fundación Nobel refunde el metal y acuña con él nuevas medallas similares a las originales. Frank recibe el galardón en 1952 en una ceremonia celebrada en la Universidad Chicago. El relato más extendido sostiene que Von Laue también ‘recupera’ su medalla, aunque de esto no queda registro oficial.

 

* Si quieres descubrir más historias sorprendentes relacionadas con la química, consulta la web de la Yincana Virtual Entre Matraces, organizada por el Instituto de Química Médica del CSIC en colaboración con la FECYT. 

Te mostramos en un minuto las mejores imágenes científicas de FOTCIENCIA17

Por Mar Gulis (CSIC)

La extraordinaria anatomía de los caballitos de mar retratada a través de cuatro técnicas lumínicas, una imagen de microscopio que nos muestra los grandes ojos compuestos de los mosquitos o los surcos geométricos de un cultivo sostenible de cebada observados desde un dron. Estas son algunas de las siete propuestas seleccionadas en la 17ª edición de FOTCIENCIA, una iniciativa del Consejo Superior de Investigaciones Científicas (CSIC) y la Fundación Española para la Ciencia y la Tecnología (FECYT), con apoyo de la Fundación Jesús Serra, que trata de acercar la ciencia a la sociedad mediante la fotografía.

Las enormes antenas en forma de abanico que algunas luciérnagas de Brasil utilizan para detectar las feromonas del sexo opuesto o la asombrosa estructura del nanoplancton marino amenazado por el cambio climático en el Mediterráneo son otros de los fenómenos reflejados en las imágenes, que han sido escogidas por un comité compuesto por profesionales relacionados con la fotografía, la microscopía y la comunicación científica.

Las dos fotografías restantes llaman nuestra atención sobre los microplásticos que se encuentran en los organismos que constituyen la base de la cadena trófica marina y que llegan a los consumidores finales, los seres humanos, así como sobre el hecho de que la naturaleza es química y que la química está en la naturaleza. Puedes ver todas ellas en el vídeo que acompaña a este post.

Con estas imágenes y una selección más amplia de entre las cerca de 450 presentadas, próximamente se realizará una exposición itinerante y un catálogo.

Para saber más sobre las imágenes escogidas, pincha aquí.

En esta 17ª edición, FOTCIENCIA se ha sumado a los 17 Objetivos de Desarrollo Sostenible declarados por Naciones Unidas.

¿Nos encaminamos hacia la sexta extinción?

Por Mar Gulis (CSIC)

“El 25% de las especies de la Tierra desaparecerá en las próximas décadas si el cambio climático persiste. Es decir, en función de las emisiones y del grado de calentamiento global, perderemos de 500.000 a un millón de especies de animales y plantas”. Esta es la respuesta de la bióloga evolutiva Isabel Sanmartín, investigadora en el Real Jardín Botánico (RJB-CSIC), a la pregunta de si hay evidencias científicas suficientes para predecir el impacto del aumento de las temperaturas sobre la biodiversidad.

Invernadero del Real Jardín Botánico del CSIC / Irene Lapuerta

A partir del análisis de fósiles y de reconstrucciones de ADN, Sanmartín investiga cómo se adaptaron las plantas en el pasado a las variaciones climatológicas. Esas indagaciones le dan pistas para entender lo que sucede en el presente y vislumbrar qué sucederá en el futuro. Y las evidencias se acumulan: “El calentamiento global se está produciendo tan rápido que es muy difícil que las especies consigan adaptarse”, señala. Ahí están los datos: “Por ejemplo, en los bosques tropicales, donde vive el 50% de los organismos de la Tierra, calculamos que desaparecerá el 45% de las plantas”.

El aumento de la temperatura y la destrucción de hábitat, en gran medida provocados por la actividad humana, son las principales causas de esta pérdida de biodiversidad que ya se denomina “sexta extinción masiva”, afirma la bióloga.

Las variaciones del clima no son algo nuevo. A lo largo de la historia de la Tierra, factores geológicos como la tectónica de placas han generado cambios climáticos. Las reconstrucciones paleoclimáticas realizadas permiten afirmar que “cuando los continentes estaban juntos, en Pangea, el clima era árido y frío; en cambio, cuando se separaron el clima se hizo tropical. Eso se ve a lo largo de los últimos 600 millones de años”, explica Sanmartin.

¿Qué es entonces lo que hace que el actual calentamiento global dispare las alarmas en la comunidad científica? Básicamente, la velocidad a la que se producen estos cambios y lo que ello implica. “Quizá lo más relevante de esta era del Antropoceno es precisamente lo distinta que es de otras extinciones masivas que se han producido antes. En los cambios climáticos producidos por el movimiento de los continentes, los tiempos son geológicos; estamos hablando de varios de millones de años. El Antropoceno son [como mucho] 10.000 años, desde la aparición de la agricultura, y sin embargo la tasa de extinción de fondo –el número de extinciones por millón de especies por año (background extinction)– ha aumentado entre 100 y 10.000 veces”, detalla Sanmartin.

Más allá del impacto ambiental, la desaparición de tantas especies afectará directamente a la agricultura y por tanto a la obtención de alimentos para el sustento humano, pero también a la economía o incluso a la aparición de conflictos entre comunidades. La Plataforma Intergubernamental de Ciencia y Política sobre Biodiversidad y Servicios de los Ecosistemas (IPBES) de la ONU advierte que estamos ante la primera gran extinción causada por el ser humano, y desde distintos foros científicos, personal investigador de todo el mundo acumula conocimiento y plantea soluciones a este problema.

La pérdida de biodiversidad es uno de los grandes desafíos asociados al cambio global, entendido este como el conjunto de impactos medioambientales provocados por la actividad humana. En el CSIC queremos divulgar lo que dice la ciencia respecto a esta cuestión. Con ese objetivo hemos creado el espacio ‘Científicas y Cambio Global’, donde entrevistamos a Isabel Sanmartin y otras investigadoras que, desde muy diversas disciplinas, tratan de comprender el alcance de este fenómeno, sus causas, sus efectos y qué podemos hacer para afrontarlo.

Científicas y Cambio Global cuenta con la colaboración de la Fundación Española para la Ciencia y la Tecnología – Ministerio de Ciencia, Innovación y Universidades.

¿Para qué sirve un láser?

Por José Vicente García Ramos (CSIC)*

Cuando se inventó, en 1960, el láser no servía para nada. De hecho, en aquellos tiempos algunos científicos se referían a él como “una solución en busca de problema”. Entonces, ¿para qué lo inventaron? Parece que querían probar, experimentalmente, que el mecanismo de amplificación de la luz por emisión estimulada, predicho por Einstein en 1917 y demostrado con microondas en 1954, podía extenderse a la luz visible.

Hoy, sin embargo, la situación es muy diferente y el láser ha encontrado tantas aplicaciones que nos resulta casi imposible enumerarlas. Las tres características que diferencian la luz de un láser de la luz del Sol o de la generada por una bombilla son que, en el caso del láser, se trata de un haz de luz monodireccional, monocromático y coherente.

Hoy día los láseres tienen numerosas y variadas aplicaciones. / Wikimedia Commons

Hoy día los láseres tienen numerosas y variadas aplicaciones. / Wikimedia Commons

Cualquier láser contiene al menos tres elementos fundamentales: un medio activo, un sistema de bombeo y una cavidad resonante. El medio activo es el material (sólido, líquido o gaseoso) que emite la luz. Para que este medio activo emita luz hay que excitarlo de alguna manera, del mismo modo que el filamento de una bombilla necesita una corriente eléctrica que pase por él. En el caso de un láser se trata del sistema de bombeo, que puede consistir en otro láser, una lámpara convencional o una corriente o descarga eléctrica. El medio activo se coloca entre dos espejos que forman una cavidad resonante donde la luz rebota entre ellos y ayuda a la amplificación, como lo que ocurre en la caja de resonancia de una guitarra que amplifica las ondas acústicas. Uno de los espejos es semirreflectante, por lo que parte de la luz amplificada sale de la cavidad resonante en forma de haz.

El volumen de información que transmite una onda electromagnética depende de su frecuencia; en este sentido, la luz de un rayo láser resulta idónea para la transmisión de señales. Por eso, entre sus aplicaciones más usadas está la lectura de discos compactos, la fabricación de circuitos integrados y la lectura de códigos de barras. En el ámbito de la medicina, la tecnología láser se aplica a los bisturís cauterizantes, ya que permite realizar cortes muy finos de gran precisión, evitar cualquier riesgo de contagio y cauterizar de manera inmediata, alejando el peligro de hemorragias.

Fibra óptica, impresoras o espionaje

Sin embargo, muchas de las aplicaciones del láser no dependen tanto de su capacidad para generar un rayo de luz como del hecho de que representa una concentración extremadamente intensa de energía. Basándonos en esta propiedad, podemos enumerar tres aplicaciones sumamente importantes en el terreno de la óptica. Una de ellas son las telecomunicaciones mediante fibra óptica. En este caso, las señales eléctricas que hasta hace poco tiempo se desplazaban a través de conductores metálicos han sido reemplazadas por pulsos ópticos que se transmiten a través de fibra de vidrio del grosor de un cabello. Como potente fuente de luz, el láser confiere a estas fibras una elevada capacidad de transmisión.

Espectáculo de luces con láseres. / kpr2 - Pixabay

Espectáculo de luces con láseres. / kpr2 – Pixabay

La segunda aplicación óptica importante está en la holografía, que es una técnica para crear imágenes tridimensionales, inventada en 1947 por el ingeniero eléctrico húngaro Dennis Gabor (1900-1979), que obtuvo por ello el Premio Nobel en 1971. Esta técnica se basa en la interferencia entre dos rayos de luz. Uno de los aspectos básicos del sistema es la necesidad de utilizar luz coherente, y cuando se inventó solo se disponía de fuentes relativamente débiles de este tipo de luz. La llegada del láser transformó la situación, porque la generación de una poderosa fuente de luz coherente es su esencia. Con el tiempo, la holografía llegó a hacerse muy familiar en una variedad de formas, como en la marca de seguridad de las tarjetas de crédito y en publicidad.

La tercera aplicación importante está en las impresoras de los ordenadores, donde, controlando un haz láser, se dibujan las palabras que se quieren imprimir.

También podemos destacar las aplicaciones que dependen de su capacidad para concentrar una gran cantidad de energía sobre una superficie muy pequeña (alrededor de un millón de vatios por centímetro cuadrado) durante un periodo de tiempo extremadamente breve. Algunas de las más importantes aplicaciones industriales de los láseres son fruto de esta capacidad: la perforación, la soldadura y el corte de distintos materiales.

Además, puesto que un rayo láser es muy fino y prácticamente no sufre divergencias, se puede usar para medir largas distancias con gran precisión. La técnica (semejante a la del radar) consiste en captar el rayo reflejado por el objeto distante y medir el tiempo transcurrido desde el envío de la señal hasta la recepción de su reflejo. Conociendo la velocidad de la luz, resulta fácil calcular la distancia. En los años setenta, este método se empleó para determinar con precisión la distancia de la Luna, utilizando los reflectores que habían instalado allí los astronautas norteamericanos.

Pero eso no es todo, también se han empleado láseres hasta para temas relacionados con el espionaje. En 1968 se descubrió que un láser puede detectar perfectamente desde el exterior las vibraciones del cristal de las ventanas producidas por las conversaciones en el interior de una casa. Vemos cómo el láser, que en un principio era como “un invento en busca de un empleo”, tiene en la actualidad un sinfín de variadas aplicaciones.

 

* José Vicente García Ramos es Vocal del Comité de Ética del CSIC y autor del libro Las moléculas: cuando la luz te ayuda a vibrar (Editorial CSIC-Los Libros de la Catarata). Hasta su jubilación en 2016 fue investigador en el Instituto de Estructura de la Materia del CSIC.

Anfetaminas legales: ¿Qué fue del Katovit y otros medicamentos retirados?

Por Mar Gulis (CSIC)

¿Recuerdas el Bustaid, el Optalidón o el Katovit? “Te hacía sentir bien, servía para el malestar general y te ayudaba a comenzar el día con energía”, comentaba sobre el Optalidón un asistente al club de lectura sobre Cómo se fabrica un medicamento (Editorial CSIC – Los Libros de la Catarata), una publicación de Carmen Fernández y Nuria Campillo*. En este evento, celebrado en el marco del proyecto Ciencia en el Barrio con mayores y adolescentes, se habló, entre otras muchas cuestiones, sobre la retirada de este popular medicamento que en los ochenta se podía adquirir en farmacias sin receta médica.

Medicamentos derramados de una botella

En el caso del Bustaid o el Katovit, el principal motivo de su retirada fue el mecanismo de acción de las anfetaminas que contenían. / jcomp – Freepik

¿Un superventas que, de la noche a la mañana, deja de comercializarse? No solo ocurrió con el Optalidón (ahora distribuido con una composición diferente, en la que se ha eliminado el ácido barbitúrico). El Bustaid o el Katovit fueron otros medicamentos muy populares en los setenta y noventa respectivamente que terminaron por desaparecer de las farmacias, y no fueron los únicos. El denominador común de muchos de ellos era que en su composición contenían derivados de las anfetaminas.

Hace ya más de cien años que las anfetaminas llegaron a nuestras vidas. A lo largo de su historia, desde que, en 1887, el químico Lazăr Edeleanu sintetizara por primera vez la anfetamina y se comenzara a estudiar en los años treinta, este grupo de sustancias y sus usos han evolucionado. Las anfetaminas son aminas simpatomiméticas, una clase de droga con una fórmula química estructural semejante a la adrenalina que produce estimulación del sistema nervioso central (SNC). Pero, ¿por qué se retiraron ciertos medicamentos que las contenían?

La investigadora y directora del Instituto de Química Médica (IQM) del CSIC Ana Castro insiste en la importancia del mecanismo por el que los fármacos ejercen su acción terapéutica. Es fundamental conocer el mecanismo de acción de un fármaco para controlar los efectos colaterales de su uso. “Todo nuestro cuerpo está interconectado y en él se producen numerosos y complejos procesos biológicos”, explica la científica. Por ejemplo, un fármaco diseñado para actuar sobre una determinada diana terapéutica, probablemente tendrá implicaciones en otros sistemas biológicos relacionados con ella. Es por este motivo que hay que valorar los efectos secundarios de todos los medicamentos, sopesar los beneficios y riesgos de su puesta en el mercado, señala Castro. En el caso del Bustaid o el Katovit, fue el mecanismo de acción de las anfetaminas que contenían el principal motivo de su retirada.

Patricia Robledo, investigadora en la Universidad Pompeu Fabra y el Institut Hospital del Mar d’Investigacions Mèdiques, analiza en profundidad en su trabajo de investigación sobre las anfetaminas el mecanismo de acción de estas sustancias psicotrópicas que involucra a varios neurotransmisores como la dopamina, la serotonina, la adrenalina y la noradrenalina. Al consumir anfetaminas aumentan la dopamina y la serotonina, que regulan la sensación de apetito, provocando el efecto anorexígeno (supresión del apetito). También se libera noradrenalina, cuyos efectos son el incremento de la actividad motora y la disminución del cansancio, así como la taquicardia, la sudoración y la dificultad para orinar.

Las anfetaminas, además, originan un aumento de la presión arterial y la frecuencia cardiaca y, a nivel del SNC, este tipo de estupefacientes produce sensación de alerta, estimulación y mejoría del rendimiento intelectual, entre otros efectos. Sin embargo, tiene gran potencial de abuso, es decir, puede causar dependencia y, a medida que aumenta su consumo, aparece la tolerancia y la necesidad irresistible de consumo. También “es frecuente la aparición de cuadros psicóticos”, como apunta Robledo en su estudio.

Farmacovigilancia: el control de los medicamentos en el mercado

Si tomamos como ejemplo el Katovit de los años noventa, asociado a un complejo vitamínico, vemos que cada gragea contenía 10 miligramos de clorhidrato de prolintano. El prolintano, un estimulante central derivado de la dexanfetamina, fue uno de los principios activos que la Agencia Española de Medicamentos y Productos Sanitarios (AEMPS) prohibió en 2005 por diferentes problemas de seguridad.

Este organismo público es el encargado de garantizar a la sociedad la calidad, seguridad, eficacia y correcta información de los medicamentos y productos sanitarios. Por ello, el trabajo no finaliza tras el éxito de unos ensayos clínicos y la colocación del producto en el mercado. Para Castro, “los medicamentos son proyectos vivos y al ponerlos en las farmacias, la aventura no termina. De su uso en el contexto global podrán surgir nuevas observaciones clínicas que merezcan ser analizadas”. Así, la fase de la farmacovigilancia adquiere mucha importancia. De ella no es solo responsable la AEMPS, todas las compañías farmacéuticas cuentan con unidades de farmacovigilancia que controlan la eficiencia y la seguridad del fármaco.

Además de emitir notas informativas, de seguridad y alertas, la AEMPS también difunde informes de posicionamiento terapéutico. En 2017, publicó uno sobre el tratamiento de la narcolepsia donde recomendaba la utilización de un fármaco no anfetamínico, tan efectivo como los estimulantes del SNC en la reducción del sueño diurno, pero con menos efectos adversos y con bajo potencial de abuso.

En la actualidad, los productos derivados de las anfetaminas tienen dos vertientes: la de uso terapéutico y la de uso ilegal. Nos quedaremos con la primera, cuyas dos únicas indicaciones son el tratamiento de la narcolepsia y del déficit de atención infantil. “No nos podemos saltar los pasos y olvidar a los profesionales de la sanidad”, recuerda Castro, que apela a la responsabilidad del uso de cualquier medicamento.

 

*Carmen Fernández y Nuria Campillo son investigadoras del Centro de Investigaciones Biológicas (CIB), del CSIC, y autoras del libro Cómo se fabrica un medicamento (Editorial CSIC – Los Libros de la Catarata), de la colección ¿Qué sabemos de?

¿Qué son las “enzimas promiscuas”?

Por Francisco J. Plou (CSIC)*

Las enzimas son catalizadores biológicos, o biocatalizadores, responsables de regular y acelerar de forma sustancial la velocidad de las reacciones químicas en los seres vivos. Trabajos de los químicos estadounidenses Sumner y Northrop (ambos compartieron Premio Nobel de Química en 1946, junto con Stanley) permitieron determinar que las enzimas eran proteínas. Por tanto, al igual que estas últimas, las enzimas están formadas por aminoácidos y juegan un papel crucial en casi todos los procesos biológicos. El potencial químico de un ser vivo queda definido por su información genética, y las enzimas son las entidades biológicas que convierten dicha información en acción. Dicho de otro modo, las enzimas son proteínas que incrementan la velocidad de una reacción química sin consumirse y recuperándose sin cambios esenciales. Así, las enzimas son muy eficaces y específicas, ya que cada una está especializada en procesar una reacción concreta.

En esta imagen de microscopía electrónica de barrido se pueden observar tres enzimas distintas formando complejos cristalinos con fosfato de cobre. Los complejos de proteína y sal crecen formando estructuras semejantes a algunas flores. / David Talens Perales (IATA-CSIC). FOTCIENCIA16

En esta imagen de microscopía electrónica de barrido se pueden observar tres enzimas distintas formando complejos cristalinos con fosfato de cobre. Los complejos de proteína y sal crecen creando estructuras semejantes a algunas flores. / David Talens Perales (IATA-CSIC). FOTCIENCIA16

En los últimos años, un nuevo concepto, que se contrapone a esta especificidad de las enzimas, ha adquirido un notable protagonismo: la promiscuidad. Este término nos puede evocar a relaciones poco estables o “de flor en flor” entre personas, pero también se ha he­cho un hueco en el ámbito de la bioquímica, si bien suele utilizarse en su lugar el concepto más académico de “amplia especificidad”. En el metabolis­mo cada enzima se ha especializado, a través de la evolución, en una determinada reacción química, para lo que es necesa­rio que la enzima reconozca un sustrato muy concreto. Este es el caso de la glucosa oxidasa, una enzima que solo reconoce a la glucosa y se muestra indiferente con azúcares muy similares como la galactosa o la fructosa. Por ello tiene múltiples aplicaciones en biotecnología, entre las que destaca el poder cuantificar la glucosa libre en los fluidos biológicos (sangre y orina), base de los biosensores de las personas diabéticas. Sin embargo, cada año se publican nuevos artículos en los que se reseña cómo una enzima es capaz de aceptar sustratos alternativos al original (lo que se denomina “promiscuidad de sustrato”) o, lo que resulta mucho más rompedor, catali­zar otro tipo de transformaciones químicas (lo que se conoce como “promiscuidad catalítica”). La mayoría de enzimas, entonces, son promiscuas.

¿De dónde proviene esta propiedad? Se cree que las enzimas actuales han evolucionado a partir de enzimas ancestrales que mostraban una gran promiscuidad, esto es, las primeras enzimas eran generalistas y realizaban por tanto funciones muy diversas. Así, las células no podían gastar energía en producir enzimas especializadas y preferían en­zimas multifunción, como esos sacacorchos que, además de permitirnos abrir una botella de vino, incluyen una pequeña navaja y un sinfín de accesorios. Pero con el tiempo fue nece­sario dotar a las enzimas de mayor actividad catalítica y espe­cificidad, como laboriosa “mano de obra” cada vez más especializada y eficaz. Parece ser una consecuencia evidente de la divergencia evolutiva.

Estos conceptos chocan de frente con los descritos en uno de los libros más vendidos sobre estas cuestiones en los últimos años, La enzi­ma prodigiosa, del médico Hiromi Shinya. El autor señala, con poca base científica, que en nuestro organismo “hay una enzima madre, una enzima prototipo, sin especialización. Hasta que esta enzima madre se convierte en una enzima específica como respuesta a una necesidad particular, tiene el potencial de convertirse en cual­quier enzima”.

La Mata Hari de las enzimas

Pero sigamos con nuestras enzimas promiscuas. Desde el punto de vista aplicado, la promiscuidad de sustrato presenta connotaciones de gran interés. Por un lado, para ciertos usos es deseable que las enzimas sean poco es­pecíficas. Nos referimos, por ejemplo, a su empleo en deter­gentes, donde una lipasa debe atacar cuantos más tipos de manchas de grasa, mejor, o a su utilización en descontaminación, en la que una oxidorreductasa es preferible que oxide el mayor número posible de compuestos recalcitrantes.

En cuanto a la promiscuidad catalítica, que implica que una misma enzima es funcional en reacciones que pertenecen a varias de las seis clases descritas en el cuadro de la imagen (tabla 1), es notorio el caso de la lipasa B de la levadura Candida an­tarctica. Esta enzima, a la que podríamos denominar la Mata Hari de la enzimología, se ha convertido en uno de los bio­catalizadores con mayores aplicaciones industriales. Por citar algunas: cataliza reaccio­nes diversas que incluyen la hidrólisis e interesterificación de grasas, la obtención de poliésteres, la síntesis de amidas, reso­luciones racémicas, condensaciones aldólicas, epoxidaciones y la reacción de Mannich, que se usa por ejemplo para sintetizar fármacos, entre otras cosas. Como señalan algunos científicos, “es el momento de investigar nuevas re­acciones para viejas enzimas”. Con ello aumentarán las posibilidades catalizadoras de las enzimas.

 

* Francisco J. Plou es investigador en el Instituto de Catálisis y Petroleoquímica del CSIC y autor del libro ‘Las enzimas’ (Editorial CSIC  Los Libros de la Catarata).

Crímenes con rigor químico: los venenos de Agatha Christie

Por Pilar Goya (CSIC), José Elguero (CSIC) y Pascual Román (UPV/EHU)*

Agatha Christie, veneno, talio, arsénico

La escritora británica Agatha Mary Clarissa Miller, más conocida como Agatha Christie, en una imagen de archivo. / Wikipedia

En las novelas de Agatha Christie (1890-1976) se puede morir de muy diversas formas, pero el veneno era sin duda su arma preferida, ya fuese un solo elemento químico o complejas sustancias naturales. La escritora plasmó en su obra los conocimientos de química que había adquirido en las dos guerras mundiales, al trabajar como enfermera en los dispensarios de los hospitales de Torquay y del University College de Londres, una experiencia que ayudó a que los protagonistas de sus historias fueran asesinados con mucho rigor químico.

En un libro sobre ella escrito por Kathryn Harkup, titulado A is for arsenic: the poisons of Agatha Christie, su autora analiza las novelas en las que el agente homicida es un veneno.

Agatha Christie se basaba generalmente en datos lo más exactos posibles en términos de disponibilidad y trazabilidad de sus venenos, que conocía bien por su trabajo en la farmacia. Hay que recordar que algunos elementos tóxicos como el arsénico y el talio estaban presentes en determinadas for­mulaciones médicas en los primeros años del siglo XX.

El elemento que más aparece en sus novelas es el arsénico, “el veneno de los reyes y el rey de los venenos”. Ocho personajes de cuatro novelas y de cuatro cuen­tos cortos mueren por ingerirlo. El arsénico es conocido como veneno desde la Antigüedad, aunque en realidad el agente letal no es el elemento puro, sino el trióxido de arsénico, que se absorbe más fácilmente por el organismo. Este compuesto no se disuelve en agua fría, pero sí en agua caliente, lo que lo hace muy apto para ser camuflado en infusiones.

Diversas traduccciones de obras de Agatha Christie. / Jour~commonswiki

Diversas traduccciones de obras de Agatha Christie. / Jour~commonswiki

Cuenta la leyenda que cuando Cleopatra decidió acabar con su vida ensayó distin­tos venenos en sus sirvientas, entre ellos el arsénico, pero al final optó por la mordedura de áspid (una especie de víbora) porque le pareció una muerte menos desagradable. El en­venenamiento por arsénico fue popular durante el Renacimiento, en particular entre los Borgia. Parece ser que añadían arsénico a las entrañas de un cerdo sacrificado y lo dejaban pudrir. Esa masa se secaba y el polvo resultante, llamado “la cantarella”, se incorporaba a la comida o bebida, de forma que lo que no hacía el veneno lo remataban las toxinas del animal. Entre las ventajas de esta sustancia estaba que, sorprendentemente, era bastante insípida y que los síntomas se confundían con los del cólera o la disentería. En general, el envenenamiento por ar­sénico puede identificarse erróneamente con causas naturales. Además, en la época en la que transcurren las primeras novelas de Agatha Christie era fácil comprar compuestos de ar­sénico en el Reino Unido, como herbicidas, matarratas e incluso tónicos que contenían este elemento.

Otro elemento venenoso al que hace referencia la autora británica es el talio, que aparece en su novela El misterio de Pale Horse. El talio es conocido como el “veneno de los envenena­dores” y también produce síntomas que pueden atribuirse a causas naturales. Christie solo utiliza el talio como veneno en esta novela, que trata de una organización criminal que ofrece ase­sinatos “a demanda”. El libro dio cierta notoriedad al talio, ya que en la fecha de su publicación, 1961, esta forma de enve­nenamiento era poco conocida, si bien en la novela de Ngaio Marsh, Final Curtain, escrita en 1947, ya aparece este elemento como veneno. El misterio de Pale Horse suscitó cierta polémica, ya que se sugirió que podía haber inspirado algunos asesinatos en la vida real pero, sin embargo, su minuciosa descripción de los síntomas del envenenamiento con talio fue útil para salvar algunas vidas.

El primer caso de un envenenamiento real con talio fue el de Molly Young, ocurrido en el Reino Unido en 1962, solo unos meses después de que se publicara la novela. Graham Young, autor de este crimen y otros más, negó haber leído la novela, lo que probablemente fuera cierto, ya que Young era un verdadero experto en venenos.

A favor de la novelista está otro caso real. En 1977, después de que ella hubiera fallecido, una niña de 19 meses fue llevada a un hospital de Londres con síntomas de una enfermedad extraña. La enferme­ra Marsha Maitland, que había leído El misterio de Pale Horse, sugirió que podía tratarse de un envenenamiento con talio. Se analizaron muestras en el laboratorio forense de Scotland Yard y se encontró efectivamente la presencia de este elemento. El ori­gen parecía ser un producto utilizado por los padres para aca­bar con cucarachas y ratas, al que la niña de alguna forma había tenido acceso y había ingerido. Finalmente, la pequeña se recuperó y en el artículo que apareció en el British Journal of Hospital Medicine los autores agradecen a “Agatha Christie sus excelentes descripciones clínicas y a la enfermera por mantenerles al día con la bibliografía”.

 

* Este post se basa en varios fragmentos del libro La tabla periódica (Editorial CSIC-Los libros de la Catarata), escrito por José Elguero Bertolini, Pilar Goya Laza (ambos, investigadores del Instituto de Química Médica del CSIC) y Pascual Román Polo (Universidad del País Vasco).