Entradas etiquetadas como ‘mutaciones’

Barbara McClintock, la descubridora de los genes saltarines

Por Sònia Garcia (CSIC)*

A principios del siglo XX, antes del descubrimiento de la estructura del ADN, los genes no eran mucho más que entidades abstractas para la mayoría de la comunidad científica. En la Universidad de Cornell (Nueva York), una joven Barbara McClintock (1902-1992) empezaba a estudiar los genes del maíz. Aunque en aquella época aún no se permitía a las mujeres la especialización en Genética, McClintock, que se doctoró en Botánica en 1927, se convirtió en un miembro fundamental del grupo de trabajo en citogenética del maíz. La investigadora quería resolver lo que para ella era un misterio: el porqué de la diversidad de colores que se pueden encontrar en una sola mazorca de maíz, incluso dentro del mismo grano. ¿Cómo podía ser que, desarrollándose únicamente a partir del tejido de la planta maternal y por lo tanto compartiendo el mismo material genético, existiera tal variedad cromática en una mazorca?

Barbara McClintock en su laboratorio en 1947. / Smithsonian Institution Archives.

A través de la observación de los cromosomas de esta especie en el microscopio (para lo que ideó nuevos métodos de tinción), Barbara se dio cuenta de que determinados fragmentos de ADN poseían la habilidad de ‘saltar’ de un cromosoma a otro. Con este movimiento, denominado transposición, los genes responsables del color de los granos se activaban o desactivaban de una célula a otra. Estos procesos de transposición de los genes, que se dan al azar –es decir, afectando a unas semillas sí, a otras no y a otras parcialmente–, son los responsables del patrón multicolor de las mazorcas de algunas variedades de maíz.

Precursora de la revolución molecular

Con la investigación de McClintock, el mecanismo de transposición y los fundamentos de la regulación de la expresión génica se habían puesto sobre la mesa. Pero sus nuevas hipótesis chocaban con la concepción estática que se tenía de los genes en aquella época. La idea dominante era que estos se ubicaban en los cromosomas como si fueran las perlas de un collar, cada uno con una posición determinada e inalterable.

Granos de maíz de diferentes colores

Mazorcas de maíz en las que se observa el patrón de color ocasionado por los genes saltarines.

A pesar de la importancia de su descubrimiento, este fue acogido con escepticismo entre la comunidad científica, quizás porque su trabajo era conceptualmente complejo y demasiado rompedor. Ella misma interpretó hostilidad y perplejidad en las reacciones de sus colegas, pero siguió fiel a su línea de investigación. A finales de los años 70 y principios de los 80, la ‘revolución molecular’ reivindicaría las ideas de McClintock sobre los genes saltarines, denominados también transposones o elementos transponibles. Además, con posterioridad al planteamiento de su hipótesis sobre la transposición, otros investigadores demostraron su existencia en la mosca del vinagre (Drosophila melanogaster), en bacterias, levaduras o virus.

Incluso varios años después, en la década de los 90, se demostró que el carácter rugoso de los famosos guisantes de Mendel, con los que este sentó las bases de la genética, era causado por la inserción permanente de un transposón en el gen que codifica la enzima de ramificación del almidón, inactivándolo. Si esta enzima no está presente, los guisantes aumentan su contenido en azúcar. Esto promueve la acumulación de agua y su hinchamiento en una etapa temprana de su desarrollo, lo que, con la posterior deshidratación, acaba dándoles un aspecto rugoso. Al secuenciar este gen en las semillas rugosas se vio que era algo más largo que el de las semillas lisas. El fragmento adicional tenía una estructura similar a los elementos detectados en el maíz.

Guisantes

Guisantes verdes o amarillos, lisos o rugosos, como los que utilizó Mendel en sus experimentos. / Rafael Navajas.

Los elementos transponibles, claves para la evolución

Los elementos transponibles constituyen el componente más abundante de la mayoría de los genomas eucariotas. En el caso del maíz llegan al 80% y en el ser humano se estima que hasta un 45% estaría formado por este tipo de elementos. En muchas ocasiones estos genes saltarines están en realidad ya fijados en el genoma y han perdido la capacidad de moverse. Actualmente se conoce una enorme diversidad de elementos transponibles, y cada vez se comprenden mejor sus efectos.

Aunque normalmente las mutaciones aleatorias que inducen son inocuas, en algunos casos pueden generar beneficios para el organismo, mientras que en otros pueden ser perjudiciales. Existe el fenómeno de la ‘domesticación’ de elementos transponibles, en el que el genoma huésped aprovecha ciertas inserciones en su favor: por ejemplo, la presencia del transposón Alu en el gen de la enzima convertidora de la angiotensina (ECA) tiene un rol preventivo del infarto de miocardio al inactivar esta enzima, que aumentaría la presión arterial y estimularía la aparición de trombos plaquetarios. No obstante, los elementos transponibles también pueden alterar negativamente la expresión de ciertos genes y dar lugar a enfermedades como leucemias, esclerosis múltiple, lupus, psoriasis, esquizofrenia o autismo, entre otras. Se considera que más de 50 enfermedades genéticas estarían relacionadas con este tipo de secuencias, y probablemente este número irá en aumento conforme avance la investigación. Por otro lado, y aunque algunas de  las mutaciones al azar provocadas por los elementos transponibles puedan ser letales o deletéreas, han contribuido indudablemente a la evolución de las especies a lo largo de millones de años y son probablemente uno de sus principales motores.

Los trabajos de Barbara McClintock con el maíz, hace ya más de 60 años, han permitido comprender las bases de muchas enfermedades, lo que puede redundar en posibles tratamientos. Este es un excelente ejemplo de la necesidad de proteger la ciencia básica. Igual que la investigación en virus de pangolines o murciélagos, que hasta hace poco tiempo podía considerarse irrelevante para la sociedad, puede desembocar en un tratamiento efectivo de la COVID19.

Premio Nobel

Barbara McClintock, en la ceremonia de entrega de su Premio Nobel (1983). / Cold Spring Harbor Laboratory.

McClintock fue una investigadora prolífica e incansable y, aunque inicialmente sus ideas fueron cuestionadas, tuvo numerosos reconocimientos durante su trayectoria. Fue la primera mujer en convertirse en presidenta de la Sociedad de Genética de America (1944), obtuvo cuantiosas becas de la National Science Foundation y de la Rockefeller Foundation (1957), recibió la National Science Medal, entregada por el presidente de los EEUU (1971), y la MacArthur Foundation Grant, una prestigiosa y vitalicia beca de investigación. En 1983 logró el Premio Nobel en Fisiología y Medicina por su trabajo sobre los elementos transponibles, lo que la convirtió en la primera persona en obtener el galardón en solitario en esta categoría. Trabajó en su laboratorio de Cold Spring Harbor (Nueva York) hasta poco antes de morir, el 2 de septiembre de 1992, a los 90 años.

* Sònia Garcia es investigadora del Institut Botànic de Barcelona (CSIC, Ajuntament de Barcelona).

Virus y bacterias para estudiar en directo la evolución

Por Ester Lázaro (CSIC)*

Todos sabemos que en nuestra vida cotidiana hay actos que son perjudiciales para nuestra salud, como tomar el sol sin protector solar, hacerse radiografías innecesarias o ingerir alimentos con ciertos aditivos. Esto es así por la capacidad que la radiación y algunas sustancias químicas tienen para alterar nuestro ADN, la molécula que porta las instrucciones para que nuestras células y nuestro cuerpo sean como son y puedan realizar todas las actividades necesarias para mantenerse vivos.

Los cambios en el ADN se denominan mutaciones y pueden, desde no tener efecto, hasta ser responsables de la aparición de muchos tipos de cáncer. Sin embargo, a pesar de su mala fama, las mutaciones son absolutamente necesarias para que los seres vivos puedan adaptarse a los cambios que continuamente ocurren en el ambiente. Vivimos en un entorno tan dinámico que, sin esta capacidad, la vida se habría extinguido al poco tiempo de iniciar su andadura por nuestro planeta. En lugar de eso, se ha diversificado en un grado tal que cuesta creer que toda la vida tenga el mismo origen.

Virus infectando bacteria

La ilustración muestra un conjunto de bacterias que están siendo infectadas por sus virus característicos, los bacteriófagos. Los experimentos detallados en este artículo se llevan a cabo utilizando un bacteriófago que infecta la bacteria Escherichia coli./ María Lamprecht Grandío

Gran parte de las mutaciones ocurren de forma espontánea, debido a los errores que se producen cada vez que la molécula de ADN es copiada, algo que tiene que suceder siempre antes de que cualquier célula se divida. Las mutaciones son responsables de que los individuos que componen las poblaciones no sean iguales, sino que posean diferencias que les dotan de diferente éxito reproductivo. De este modo, y gracias a la selección natural –de la que ya nos hablaba Darwin hace más de un siglo–, los individuos más aptos acabarán siendo más frecuentes, hasta que lleguen a ser mayoritarios en la población. A lo largo de la historia, esta acción combinada de las mutaciones y la selección natural es lo que ha conducido a la evolución y diversificación de la vida a partir de un ancestro común que vivió hace 3.800 o 4.000 millones de años.

La gran capacidad evolutiva de los microrganismos

Estudiar la evolución no es tarea fácil. No solo por los largos tiempos que normalmente son necesarios para observar sus resultados; también porque su causa primera –la generación de mutaciones– ocurre por azar y porque el efecto de estas depende del ambiente. Para reducir el desconocimiento que todavía existe sobre los principios que gobiernan la evolución sería deseable poder realizar experimentos en el laboratorio que nos permitieran aplicar el método científico.

Las poblaciones experimentales tendrían que satisfacer dos requisitos: evolucionar rápido y ser fáciles de manipular y de analizar, algo que donde mejor se cumple es en los microorganismos. De hecho, la rapidez evolutiva de los virus y las bacterias puede ser observada en el día a día. La contrariedad de que podamos coger la gripe más de una vez, las resistencias de las bacterias a los antibióticos y de los virus a los antivirales, la aparición de nuevas cepas de virus… Todo eso no es más que el resultado de la gran capacidad evolutiva de los microorganismos, que les permite adaptarse en un tiempo récord a casi cualquier circunstancia que pueda limitar su crecimiento.

Pero, ¿por qué los microorganismos evolucionan tan rápido? La respuesta está en la gran velocidad a la que se reproducen y en que durante la copia de su material genético se producen muchas más mutaciones que en otros tipos de organismos más complejos. La consecuencia es que tanto los virus como las bacterias son capaces de generar en poco tiempo poblaciones de gran tamaño y con una elevada diversidad, en las cuales pueden existir mutantes que son beneficiosos en determinadas condiciones ambientales, las mismas bajo las cuales se verán favorecidos por la selección natural.

Entender la evolución para entender el origen de la vida

Los experimentos que realizamos en el laboratorio de Evolución Molecular del Centro de Astrobiología (CSIC-INTA) consisten en propagar poblaciones virales en ciertas condiciones que imponemos y controlamos. Con el paso del tiempo, los procesos de mutación y selección permiten que se genere una población evolucionada, que se podrá analizar y comparar con la ancestral. De este modo, podremos no solo encontrar la respuesta adaptativa frente a una condición ambiental concreta, sino también extraer conclusiones generales sobre el proceso evolutivo.

Las preguntas a las que intentamos dar respuesta son del tipo: ¿cómo pueden responder los virus al aumento de la temperatura ambiental? ¿Existe un límite en la producción de mutaciones que sea incompatible con la supervivencia? ¿Qué relaciones hay entre el tamaño poblacional y la adaptación? ¿Cómo interaccionan las mutaciones? Buscamos entender la evolución de la vida actual, pero también aproximarnos a cómo pudo ser la evolución de las moléculas de replicadores primitivos que precedieron a la vida celular, algo para lo que las poblaciones virales también constituyen un modelo excelente. Pero eso ya es otra historia que nos lleva hacia el pasado de la vida, en lugar de hacia su futuro… Algo fascinante que trataremos en otra entrega de este blog.

* Ester Lázaro es investigadora en el Centro de Astrobiología (CSIC-INTA), donde dirige el grupo de evolución experimental con virus y microorgamismos.