Entradas etiquetadas como ‘Mendel’

La enfermedad de la orina negra: un enigma genético que resolvió el CSIC

Por Mar Gulis (CSIC)

A comienzos del siglo XX, el médico inglés Archibald Garrod se interesó por el extraño trastorno que sufrían algunos de sus pacientes, cuya orina se teñía de color oscuro al entrar en contacto con el aire. La alcaptonuria, nombre con el que se lo conocía, era considerada entonces una curiosidad sin mayor trascendencia clínica, pero con el tiempo se hizo patente que las personas afectadas padecían síntomas mucho más graves: a partir de los 20 años, la mayoría comenzaban sufrir dolor de articulaciones, una molestia que solía ir en aumento hasta acabar convirtiéndose en una artrosis incapacitante.

El estudio de estos síntomas llevó a Garrod a aventurar dos audaces hipótesis para su época. La primera fue que el patrón de herencia de la enfermedad respondía a las leyes que Mendel había formulado en sus experimentos con guisantes, en ese tiempo aún poco conocidas. Y la segunda, que su origen era el mal funcionamiento de una enzima, provocado por un defecto en las instrucciones para producirla; lo que supuso una aproximación muy acertada a la función que realizan los genes en los seres vivos.

Gracias a Garrod, esta enfermedad rara que afecta a una de cada 250.000 personas en el mundo pasó a la historia como la primera patología de origen genético descrita. No obstante, las ideas del médico inglés necesitaron casi un siglo de avances genéticos para ser confirmadas: hubo que esperar a 1996 para que el gen responsable del trastorno fuese identificado por un equipo del CSIC liderado por Santiago Rodríguez de Córdoba y Miguel Ángel Peñalva. Este hito, del que se cumplen ahora 25 años, puso fin al enigma de la alcaptonuria y a una trepidante competición internacional por localizar y describir el gen que la producía.

Miguel Ángel Peñalva en su laboratorio del Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC) mientras observa una placa del hongo ‘Aspergillus nidulans’ con el gen de la alcaptonuria. / Mónica Fontenla y Erica Delgado (CSIC).

El descubrimiento de los errores congénitos

La historia de este hallazgo comienza en el Hospital de St. Bartholomew en Londres. Allí Garrod no tardó en darse cuenta de que la enfermedad que padecían sus pacientes era congénita, ya que todos habían teñido los pañales de negro desde el nacimiento, mucho antes de que el resto de síntomas comenzaran a aparecer.

El médico inglés observó además que la alcaptonuria solía darse en descendientes de matrimonios entre primos, lo que reforzaba la idea de que tuviera un origen hereditario, y que era relativamente frecuente incluso cuando ambos progenitores estaban sanos. Con ayuda de su amigo William Bateson, advirtió que este tipo de herencia se ajustaba a la de un carácter recesivo mendeliano: es decir, que para que la enfermedad se expresara en un individuo, era necesario que heredara dicho carácter tanto del padre como de la madre. En caso de heredar un carácter ‘normal’ y otro mutado, una persona no sufría la enfermedad, pero sí era portadora y podía transmitirla a su descendencia. Era la primera vez que las leyes de Mendel, por aquel entonces prácticamente desconocido en el mundo angloparlante, se utilizaban para explicar una patología humana.

Esquema de la herencia de un caracter recesivo en el caso de que ambos progenitores sean portadores no afectados.

Sin embargo, la aportación más importante de Garrod fue formular una idea bastante cercana a lo que hoy entendemos por gen. Lo hizo razonando a partir de sus conocimientos de química. Garrod se había dado cuenta de que el motivo por el que la orina se tornaba oscura era el ácido homogenístico, una sustancia que podía ser producto del metabolismo humano. Esto le llevó a pensar que las personas con alcaptonuria no lograban descomponerlo porque, a diferencia de lo que ocurre con las sanas, el catalizador que debía hacerlo no funcionaba correctamente. En el cuerpo humano lo único que podía actuar como un catalizador era una enzima. Y, si una enzima funcionaba mal como consecuencia de la herencia, esto significaba que lo que nos transmiten nuestros antepasados son instrucciones específicas para fabricar esta y el resto de sustancias químicas de nuestro organismo. De manera intuitiva pero acertada, Garrod se había aproximado mucho a la definición de gen que usamos en la actualidad: una unidad de información que codifica una proteína (la mayoría de las enzimas son proteínas).

En la actualidad, hay listados más de 4.000 genes cuyas mutaciones producen enfermedades o “errores congénitos del metabolismo”, la expresión que Garrod utilizó para referirse a la alcaptonuria y también al albinismo y la cistinuria. Esto da una idea del impacto médico y social de sus trabajos, que sin embargo pasaron desapercibidos durante varias décadas.

Un siglo de avances

No fue hasta 1956, casi 20 años después de su fallecimiento, cuando se descubrió la enzima que funciona incorrectamente en la alcaptonuria: la enzima HGO, cuya función es realizar uno de los pasos necesarios para la degradación de dos aminoácidos –la fenilalanina y la tirosina– que obtenemos de los alimentos que contienen proteínas. Cuando esta enzima está ausente, se acumulan en la sangre compuestos que se van depositando en los cartílagos, lo que provoca una degeneración progresiva de las articulaciones.

La identificación del gen responsable de la alcaptonuria tuvo que esperar aún más. A mediados de los 60 ya se conocía la estructura del ADN y a inicios de los 80 comenzaron a secuenciarse los primeros genes. Aun así, la primera secuencia del genoma humano solo pudo completarse en el año 2000. Hasta ese momento las técnicas para identificar los genes de nuestra especie fueron bastante más rudimentarias y costosas que en la actualidad. Esto explica que los primeros esfuerzos en este ámbito se centraron en patologías más graves y frecuentes que la alcaptonuria.

Archibald Garrod.

El hongo que abrió la puerta del descubrimiento

La historia que se había iniciado en Londres a comienzos de siglo iba a cerrarse en Madrid y en Sevilla más de noventa años después. Por aquel entonces, dos investigadores del CSIC, Miguel Ángel Peñalva y José Manuel Fernández Cañón, trabajaban en su laboratorio del Centro de Investigaciones Biológicas (CIB-CSIC) con el moho Aspergillus nidulans. Su objetivo distaba mucho de descubrir el origen de la alcaptonuria: buscaban un nuevo modo de producir penicilina que generase menos residuos contaminantes. Sin embargo, pronto descubrieron que la ruta de descomposición de la fenilalanina era muy similar en el hongo y en el hígado humano, por lo que se les ocurrió la idea de tratar de identificar genes humanos que interviniesen en este proceso comparándolos con los del hongo.

El primer gen fúngico que lograron caracterizar fue el de una enzima cuyo déficit causa tirosinemia de tipo 1 en el organismo humano, una enfermedad que sufren una de cada 100.000 personas y afecta gravemente al hígado. Llegaron tarde: el gen humano de esta enfermedad había sido caracterizado años antes; pero esto les sirvió para compararlo con el del hongo y constatar su parecido.

El siguiente paso consistió en mutar el gen que suponían que producía la enzima HGO en el hongo. El resultado fue, de nuevo, alentador: los hongos con la mutación acumulaban el pigmento característico de la alcaptonuria, igual que los pacientes humanos y los ratones de laboratorio. A continuación, caracterizaron el gen del hongo, al que denominaron AKU, y tomándolo como referencia empezaron a buscar el gen humano en bases de datos públicas. Con los fragmentos de ARN mensajero del gen que encontraron, publicaron sus primeros resultados.

Muestra del hongo ‘Aspergillus nidulans’ con el gen de la alcaptonuria. / Mónica Fontenla y Erica Delgado (CSIC).

El primer gen humano completamente secuenciado en España

Comenzó entonces una carrera con otros laboratorios del mundo por ser los primeros en caracterizar el gen AKU humano. En ella jugaron un papel decisivo Santiago Rodríguez de Córdoba y Begoña Granadino, también del CIB-CSIC, quienes reconstruyeron el ARN mensajero completo y, a partir de él, consiguieron reconstruir el gen humano. El gen, que se convirtió en el primer gen humano completamente secuenciado en España, estaba formado por 54.000 pares de bases; un número mayor que las aproximadamente 30.000 que contiene todo el genoma del coronavirus SARS-CoV-2.

El avance era importante, pero todavía había que probar la relación del gen con la alcaptonuria. Para ello, el equipo logró demostrar que el gen estaba situado en la misma región del cromosoma tres en la que la causa de la enfermedad había sido cartografiada meses antes. Poco después, con la ayuda de Magdalena Ugarte, directora del Centro de Diagnóstico de Enfermedades Moleculares de la UAM, localizaron en Sevilla a tres hermanos que sufrían la enfermedad y compararon su gen AKU con el de sus familiares sanos. En efecto, los enfermos tenían en ambos cromosomas una mutación del gen que prácticamente anulaba la actividad de la enzima HGO. El resto de integrantes de la familia tenían dos versiones ‘normales’ del gen o bien una versión mutada y otra sana.

Miguel Ángel Peñalva sostiene el número de ‘Nature Genetics’ en el que se publicó el hallazgo. / Mónica Fontenla y Erica Delgado (CSIC).

El CSIC había ganado la carrera. Los resultados se publicaron en la portada de la prestigiosa revista Nature Genetics, que trató el hallazgo como un verdadero acontecimiento. Poco después, el divulgador británico Matt Ridley afirmaría que la historia del hallazgo del gen de la alcaptonuria encerraba “la historia de la genética del siglo XX en miniatura”.

Por desgracia, todavía no existe una cura para esta enfermedad. El tratamiento consiste en controlar sus síntomas por medio de una dieta baja en proteínas y de la terapia física, destinada a fortalecer la musculatura y la flexibilidad. Cuando el dolor articular es muy severo, es necesario recurrir a la cirugía. La buena noticia es que, a principios de este año, la Agencia Europea del Medicamento ha aprobado un fármaco, denominado Orfadin, que mejora notablemente la sintomatología y alivia el progreso de la enfermedad. Garrod y sus pacientes estarían contentos.

Si quieres saber más sobre este hallazgo del CSIC, puedes ver la conferencia virtual ‘Alcaptonuria: 25 años de la clonación molecular del gen responsable de la enfermedad que dio origen a la genética humana’, que Santiago Rodríguez de Córdoba y Miguel Ángel Peñalva ofrecerán el jueves 23 de septiembre, a las 18:30, desde la Librería Científica del CSIC.

Referencias científicas:

Fernández-Cañón, J.M., Granadino, B., De Bernabé, D., Renedo, M., Fernández-Ruiz, E., Peñalva, M.A. & Rodríguez de Córdoba, S. The molecular basis of alkaptonuria. Nat Genet 14, 19–24 (1996). https://doi.org/10.1038/ng0996-19

Fernández-Cañón, J.M. & Peñalva, M.A. Molecular characterization of a gene encoding a homogentisate dioxygenase from Aspergillus nidulans an identification of its human and plants homologues. J. Biol. Chem 270. 21199-21205 (1995).

Fernández-Cañón JM & Peñalva MA (1995) Fungal metabolic model for human type I hereditary tyrosinaemia. Proceedings of the National Academy of Sciences USA 92: 9132-9136 (1995)

Granadino B, Beltrán-Valero de Bernabé D, Fernández-Cañón JM, Peñalva MA, Rodríguez de Córdoba S (1997) The human homogentisate 1,2-dioxygenase (HGO) gene. Genomics 43: 115-122

Barbara McClintock, la descubridora de los genes saltarines

Por Sònia Garcia (CSIC)*

A principios del siglo XX, antes del descubrimiento de la estructura del ADN, los genes no eran mucho más que entidades abstractas para la mayoría de la comunidad científica. En la Universidad de Cornell (Nueva York), una joven Barbara McClintock (1902-1992) empezaba a estudiar los genes del maíz. Aunque en aquella época aún no se permitía a las mujeres la especialización en Genética, McClintock, que se doctoró en Botánica en 1927, se convirtió en un miembro fundamental del grupo de trabajo en citogenética del maíz. La investigadora quería resolver lo que para ella era un misterio: el porqué de la diversidad de colores que se pueden encontrar en una sola mazorca de maíz, incluso dentro del mismo grano. ¿Cómo podía ser que, desarrollándose únicamente a partir del tejido de la planta maternal y por lo tanto compartiendo el mismo material genético, existiera tal variedad cromática en una mazorca?

Barbara McClintock en su laboratorio en 1947. / Smithsonian Institution Archives.

A través de la observación de los cromosomas de esta especie en el microscopio (para lo que ideó nuevos métodos de tinción), Barbara se dio cuenta de que determinados fragmentos de ADN poseían la habilidad de ‘saltar’ de un cromosoma a otro. Con este movimiento, denominado transposición, los genes responsables del color de los granos se activaban o desactivaban de una célula a otra. Estos procesos de transposición de los genes, que se dan al azar –es decir, afectando a unas semillas sí, a otras no y a otras parcialmente–, son los responsables del patrón multicolor de las mazorcas de algunas variedades de maíz.

Precursora de la revolución molecular

Con la investigación de McClintock, el mecanismo de transposición y los fundamentos de la regulación de la expresión génica se habían puesto sobre la mesa. Pero sus nuevas hipótesis chocaban con la concepción estática que se tenía de los genes en aquella época. La idea dominante era que estos se ubicaban en los cromosomas como si fueran las perlas de un collar, cada uno con una posición determinada e inalterable.

Granos de maíz de diferentes colores

Mazorcas de maíz en las que se observa el patrón de color ocasionado por los genes saltarines.

A pesar de la importancia de su descubrimiento, este fue acogido con escepticismo entre la comunidad científica, quizás porque su trabajo era conceptualmente complejo y demasiado rompedor. Ella misma interpretó hostilidad y perplejidad en las reacciones de sus colegas, pero siguió fiel a su línea de investigación. A finales de los años 70 y principios de los 80, la ‘revolución molecular’ reivindicaría las ideas de McClintock sobre los genes saltarines, denominados también transposones o elementos transponibles. Además, con posterioridad al planteamiento de su hipótesis sobre la transposición, otros investigadores demostraron su existencia en la mosca del vinagre (Drosophila melanogaster), en bacterias, levaduras o virus.

Incluso varios años después, en la década de los 90, se demostró que el carácter rugoso de los famosos guisantes de Mendel, con los que este sentó las bases de la genética, era causado por la inserción permanente de un transposón en el gen que codifica la enzima de ramificación del almidón, inactivándolo. Si esta enzima no está presente, los guisantes aumentan su contenido en azúcar. Esto promueve la acumulación de agua y su hinchamiento en una etapa temprana de su desarrollo, lo que, con la posterior deshidratación, acaba dándoles un aspecto rugoso. Al secuenciar este gen en las semillas rugosas se vio que era algo más largo que el de las semillas lisas. El fragmento adicional tenía una estructura similar a los elementos detectados en el maíz.

Guisantes

Guisantes verdes o amarillos, lisos o rugosos, como los que utilizó Mendel en sus experimentos. / Rafael Navajas.

Los elementos transponibles, claves para la evolución

Los elementos transponibles constituyen el componente más abundante de la mayoría de los genomas eucariotas. En el caso del maíz llegan al 80% y en el ser humano se estima que hasta un 45% estaría formado por este tipo de elementos. En muchas ocasiones estos genes saltarines están en realidad ya fijados en el genoma y han perdido la capacidad de moverse. Actualmente se conoce una enorme diversidad de elementos transponibles, y cada vez se comprenden mejor sus efectos.

Aunque normalmente las mutaciones aleatorias que inducen son inocuas, en algunos casos pueden generar beneficios para el organismo, mientras que en otros pueden ser perjudiciales. Existe el fenómeno de la ‘domesticación’ de elementos transponibles, en el que el genoma huésped aprovecha ciertas inserciones en su favor: por ejemplo, la presencia del transposón Alu en el gen de la enzima convertidora de la angiotensina (ECA) tiene un rol preventivo del infarto de miocardio al inactivar esta enzima, que aumentaría la presión arterial y estimularía la aparición de trombos plaquetarios. No obstante, los elementos transponibles también pueden alterar negativamente la expresión de ciertos genes y dar lugar a enfermedades como leucemias, esclerosis múltiple, lupus, psoriasis, esquizofrenia o autismo, entre otras. Se considera que más de 50 enfermedades genéticas estarían relacionadas con este tipo de secuencias, y probablemente este número irá en aumento conforme avance la investigación. Por otro lado, y aunque algunas de  las mutaciones al azar provocadas por los elementos transponibles puedan ser letales o deletéreas, han contribuido indudablemente a la evolución de las especies a lo largo de millones de años y son probablemente uno de sus principales motores.

Los trabajos de Barbara McClintock con el maíz, hace ya más de 60 años, han permitido comprender las bases de muchas enfermedades, lo que puede redundar en posibles tratamientos. Este es un excelente ejemplo de la necesidad de proteger la ciencia básica. Igual que la investigación en virus de pangolines o murciélagos, que hasta hace poco tiempo podía considerarse irrelevante para la sociedad, puede desembocar en un tratamiento efectivo de la COVID19.

Premio Nobel

Barbara McClintock, en la ceremonia de entrega de su Premio Nobel (1983). / Cold Spring Harbor Laboratory.

McClintock fue una investigadora prolífica e incansable y, aunque inicialmente sus ideas fueron cuestionadas, tuvo numerosos reconocimientos durante su trayectoria. Fue la primera mujer en convertirse en presidenta de la Sociedad de Genética de America (1944), obtuvo cuantiosas becas de la National Science Foundation y de la Rockefeller Foundation (1957), recibió la National Science Medal, entregada por el presidente de los EEUU (1971), y la MacArthur Foundation Grant, una prestigiosa y vitalicia beca de investigación. En 1983 logró el Premio Nobel en Fisiología y Medicina por su trabajo sobre los elementos transponibles, lo que la convirtió en la primera persona en obtener el galardón en solitario en esta categoría. Trabajó en su laboratorio de Cold Spring Harbor (Nueva York) hasta poco antes de morir, el 2 de septiembre de 1992, a los 90 años.

* Sònia Garcia es investigadora del Institut Botànic de Barcelona (CSIC, Ajuntament de Barcelona).