Entradas etiquetadas como ‘Juan Ángel Vaquerizo’

El origen del fervor por los marcianos: los canales de Marte

Por Juan Ángel Vaquerizo (CSIC-INTA)*

Durante la primera mitad del siglo XX, el género de la ciencia ficción tuvo como principal fuente de inspiración la fiebre por los marcianos. Numerosas obras, como la archiconocida novela The War of the Worlds (La guerra de los mundos, 1898) de H. George Wells, contaban historias de invasiones extraterrestres, civilizaciones marcianas, viajes y colonizaciones espaciales… Incluso los relatos llegaron a traspasar la ficción y medios de comunicación publicaron noticias en las que se hablaba de la existencia de una civilización inteligente en el planeta vecino. Pero, ¿cómo se creó este imaginario colectivo?

Ilustraciones de Frank R. Paul y Henrique Alvin Corrêa.

Para conocer el origen, debemos remontarnos a la Roma de 1863, donde se produjo un descubrimiento que convirtió a Marte en el centro de atención del mundo científico y no tan científico. El precursor, sin pretenderlo, fue Prieto A. Secchi, que observó mucho mejor Marte que los astrónomos que le precedieron y distinguió por primera vez unas líneas oscuras que surcaban la superficie del planeta rojo. Él interpretó esas líneas como accidentes naturales del terreno y las denominó ‘canali’.

El también astrónomo italiano Giovanni V. Schiaparelli recogió el testigo de los ‘canali’ y tras sus observaciones entre 1877 y 1878, obtuvo los detalles más precisos de la superficie de Marte hasta esa fecha. Cuando habló por primera vez de esas estructuras no pensó que podrían ser obra de seres inteligentes y fue muy cauteloso al afirmar que seguramente se trataba de formaciones de origen natural. De hecho, la nomenclatura que utilizó para nombrarlas hacía referencia a ríos famosos, bíblicos (Gehon, Hiddekel y Phison, del Jardín del Edén), mitológicos (Styx, del reino de Hades) y reales (Ganges, Euphrates y Nilus).

Mapa de Marte realizado por Schiaparelli en 1888.

Sin embargo, el artículo científico en que publicó el descubrimiento, titulado Osservazioni astronomiche e fisiche sull’asse di rotazione e sulla topografía del pianeta Marte (Observaciones astronómicas y físicas sobre el eje de rotación y la topografía del planeta Marte), tuvo repercusión mundial, fuera incluso de los círculos científicos, y se podría decir que todo se le fue de las manos. Cuando el artículo fue publicado en inglés, el término italiano ‘canali’, en lugar de ser traducido por channels, palabra que se refiere a una estructura de origen natural, fue traducido por canals, que en inglés hace alusión a una estructura artificial construida por el ser humano. Los canales de Marte pronto se hicieron famosos y crearon una nueva visión de Marte que cambió para siempre la imagen del planeta rojo, originando una gran controversia acerca de la posibilidad de que pudiera albergar vida inteligente.

El más convencido y convincente de todos los defensores a ultranza de los canales fue el estadounidense Percival Lowell, que puede ser considerado el verdadero artífice de la fiebre marciana. Se dedicó en exclusiva a la observación de Marte, con el objetivo de demostrar que los canales de Schiaparelli eran realmente canales artificiales hechos por una civilización marciana. Tras sus observaciones de 1905, 1907 y 1909, Lowell publicó dos libros sobre sus teorías acerca de Marte que tuvieron un gran éxito editorial. En el primero de ellos, Mars and its Canals (Marte y sus canales), planteó la hipótesis de un planeta con vegetación en el que una civilización inteligente avanzada había construido una complejísima red de canales que permitía transportar agua desde los casquetes polares, cuando se fundían en verano, hacia las áridas tierras del ecuador. Y en esta misma línea publicó Mars As the Abode of Life (Marte como cuna de la vida).

La visión de Lowell de un planeta habitado fue muy discutida desde el principio por la comunidad científica, pero tuvo una enorme repercusión en la opinión pública, acaparando titulares impactantes e inundando los medios de comunicación con noticias sobre una avanzada civilización marciana. Lowell alimentó la idea de la existencia de seres extraterrestres y originó la fiebre por los marcianos que dio lugar a tantas obras de ciencia ficción.

Lowell en The New York Times Sunday Magazine del 27 de agosto de 1911.

El fin de la discusión sobre la existencia de vida extraterrestre evolucionada en Marte vino de la mano del astrónomo greco-francés Eugène Michel Antoniadi. En 1909, con un mayor telescopio, consiguió ver una imagen nítida de la superficie marciana, cubierta de detalles, pero no había canales a la vista. Realizó los mapas más detallados de Marte hasta entonces, que incluso se utilizaron como referencia para las misiones robóticas que, décadas después, fueron enviadas a Marte. La controversia sobre los canales fue cerrada “oficialmente” en 1965, cuando la sonda espacial robótica norteamericana Mainer 4 sobrevoló con éxito Marte y envió las primeras imágenes de la superficie del planeta. Y no, no había canales.

 

*Juan Ángel Vaquerizo es autor del libro Marte y el enigma de la vida (CSIC-Catarata) de la colección ¿Qué sabemos de? y colaborador del departamento de Astrofísica y Ciencias del Espacio ISDEFE en el Centro de Astrobiología (CSIC-INTA).

La dicotomía marciana. ¿Por qué Marte tiene dos hemisferios radicalmente distintos?

Por Juan Ángel Vaquerizo (CSIC-INTA)*

Marte tiene dos caras: el hemisferio norte está hundido, es una zona deprimida y muy lisa que presenta pocos impactos de meteoritos, mientras que el hemisferio sur está sobreelevado respecto al norte y está plagado de cráteres. Esta diferencia es lo que se conoce como dicotomía marciana. La disparidad entre hemisferios es una de las singularidades de nuestro vecino que ha despertado más curiosidad y, por ende, ha sido motivo de estudio desde su descubrimiento. Y aún sigue siéndolo, porque no existe consenso sobre el origen de esta característica fundamental del planeta, que refleja la historia geológica del mismo y también la posible presencia de agua en el pasado.

Mapa topográfico de Marte. / NASA/JPL

Mapa topográfico de Marte. / NASA/JPL

Desde los años sesenta del siglo XX, la exploración planetaria ha permitido aumentar el conocimiento sobre la geología y geografía marcianas –la geografía de Marte se conoce con el nombre de areografía, término proveniente de Ares (equivalente griego al dios romano Marte), y consiste en la caracterización y cartografiado de las regiones de Marte-. Gracias a las naves espaciales que han sobrevolado u orbitado el planeta, tenemos en la actualidad un gran conocimiento sobre sus accidentes geográficos y sus características superficiales: volcanes, cañones, antiguos lechos de río, canales de descarga y vastas regiones salpicadas de cráteres. Todos estos elementos permiten establecer los diferentes procesos geológicos que han tenido lugar a lo largo del tiempo, modelando el planeta rojo a escala global: vulcanismo, actividad tectónica, acción del agua líquida y del hielo y, claro está, impactos de meteoritos.

Para poder cartografiar la superficie de Marte, y en consecuencia las elevaciones del planeta, se definió un nivel de elevación cero o datum. Con el agua en mente, el datum marciano se define como la elevación en la que se alcanzan los valores de presión y temperatura del punto triple del agua, es decir, aquellos para los que el agua puede estar simultáneamente en los tres estados: sólido, líquido y gaseoso. Estos valores son una presión atmosférica de 610,5 Pa (6,1173 mb) y una temperatura de 273,16 K (0,01 oC). Para hacerse una idea, la cuenca más profunda de Marte y una de las mayores del Sistema Solar, Hellas Planitia, está muy por debajo del datum marciano y se encuentra a más de 7 kilómetros de profundidad.

Cráteres en Hellas Planitia. / ESA/DLR/FU Berlín

Cráteres en Hellas Planitia. / ESA/DLR/FU Berlín

Pero el descubrimiento de la dicotomía marciana llega con los primeros mapas completos del planeta. Entre 1998 y 1999 el instrumento Mars Orbiter Laser Altimeter (MOLA), un altímetro láser a bordo de la nave Mars Global Surveyor de la NASA, generó el mapa topográfico más preciso jamás realizado. MOLA recolectaba al día en torno a 900.000 medidas de elevación con una sensibilidad tan alta que el rango de error en elevación, de media, era de tan solo 13 metros. Con toda esta información -en total se utilizaron 27 millones de medidas de elevación recopiladas por el instrumento para conformar el mapa global-, se observó que la dicotomía de Marte tiene tres expresiones físicas globales:

Topografía de Marte

La parte norte del planeta es una inmensa depresión respecto a la parte sur. La dicotomía distingue entre las denominadas tierras altas (uplands) del sur y las tierras bajas (lowlands) del norte. Los datos altimétricos muestran que las tierras bajas son entre 3 y 6 km más bajas que las tierras altas del sur. Esta característica del relieve marciano recuerda la diferencia de elevación entre los continentes y los fondos oceánicos de la Tierra.

Densidad de cráteres de impacto

También existe una acusada diferencia en la densidad de cráteres de impacto, mucho menos numerosos en las tierras bajas del norte. En el hemisferio sur aparecen regiones plagadas de grandes cráteres y caracterizadas por superficies abruptas. En contraste, las lowlands situadas al norte presentan pocos cráteres grandes, su suelo es muy llano y muestran otros tipos de elementos que indican que han ocurrido extensos procesos de renovación de su superficie, como coladas de lava y grandes inundaciones.

Grosor de la corteza

Existe además una gran diferencia en el grosor de la corteza entre los dos hemisferios, mayor en las tierras altas del sur que en las tierras bajas del norte. Las uplands del sur tienen un grosor máximo aproximado de 58 km, mientras que las lowlands del norte apenas alcanzan los 32 km de grosor.

Estas tres manifestaciones físicas de la dicotomía no coinciden exactamente, de modo que no es posible trazar una frontera exacta de separación ni asegurar que todas ellas se deban a una misma causa. No obstante, se considera que el origen de la dicotomía es único y que produjo como resultado los tres aspectos observados. Asimismo, hay bastante acuerdo en que la dicotomía de Marte parece ser extremadamente antigua, que se originó en una etapa muy temprana del planeta, al comienzo de la evolución geológica de Marte, cuando la corteza estaba recién formada o terminando de formarse.

Mapas topográficos de relieve sombreado de muy alta resolución producidos por el equipo científico de MOLA. / NASA/MOLA

Mapas topográficos de relieve sombreado de muy alta resolución producidos por el equipo científico de MOLA. / NASA/MOLA

En la actualidad hay dos posibles hipótesis sobre el origen de la dicotomía: una endógena y otra exógena. La endógena establece que la dicotomía es el resultado de procesos convectivos asimétricos en el manto de Marte que produjeron el adelgazamiento de la corteza en la parte norte del planeta y un engrosamiento en el sur. La otra explicación, la exógena, parece contar con un mayor consenso y establece que la dicotomía es el resultado de un impacto gigantesco. Un impacto en Marte de un objeto de entre 1.600 y 2.700 km de tamaño -como los que existían en el Sistema Solar en la época estimada- habría sido capaz de crear una cuenca de impacto tan grande como Vastitas Borealis, nombre con el que se conoce a la inmensa llanura del hemisferio norte. El tamaño de esta zona, de 10.600 km de longitud y 8.500 km de anchura (Asia, Europa y Australia juntas), y su forma elíptica hacen plausible que sea el resultado de un gran impacto. Pero, por ahora, ese gran impacto es solo una hipótesis.

 

 

* Juan Ángel Vaquerizo es el responsable de la Unidad de Cultura Científica del Centro de Astrobiología (CSIC-INTA) y autor del libro Marte y el enigma de la vida (CSIC-Catarata) de la colección ¿Qué sabemos de?

¿Cómo se mide el tiempo en Marte?

Por Juan Ángel Vaquerizo (CSIC-INTA)*

La respuesta, a priori, es sencilla: en Marte, el tiempo se mide utilizando el Sol. El segundo planeta más pequeño del Sistema Solar y cuarto en cercanía al Sol gira en torno a su eje con un periodo de 24,6 horas, lo que supone que el día solar marciano es aproximadamente un 3% más largo que el día solar terrestre. En concreto, un día en Marte tiene una duración de 24 horas, 39 minutos y 32,55 segundos, lo que se denomina sol.

Amanecer en Marte. / NASA/JPL-Caltech/Doug Ellison/PIA 14293

Amanecer en Marte. / NASA/JPL-Caltech/Doug Ellison/PIA 14293

En la superficie de Marte se utiliza la hora solar local para la medida del tiempo de las misiones que han aterrizado allí. Cada misión tiene su propio tiempo solar local, que estará determinado por su ubicación en el planeta. A pesar de que Marte dispone de un meridiano cero para referir las longitudes geográficas, no tiene zonas horarias definidas a partir de ese meridiano como ocurre en la Tierra. Por tanto, la separación en longitud geográfica de las misiones entre sí determinará la diferencia horaria entre las mismas.

Para determinar el calendario marciano hubo más controversia. Sin embargo, para el día a día de las misiones que han aterrizado en Marte, se ha optado por un criterio más simple: contar los días (soles) en Marte a partir del momento del aterrizaje, que pasa a denominarse sol 0. Por ejemplo, la misión InSight de la NASA (que, por cierto, contiene un instrumento español desarrollado en el Centro de Astrobiología (CSIC-INTA): los sensores mediambientales TWINS) ha sido la última en aterrizar sobre la superficie marciana. Lo hizo el 26 de noviembre de 2018, lo que supone que la nave pasa en Marte hoy su sol 784.

InSight en la superficie marciana. / NASA/JPL-Caltech

InSight en la superficie marciana. / NASA/JPL-Caltech

Las estaciones en el planeta rojo

Del mismo modo que un sol en Marte dura más que un día en la Tierra, la duración del año marciano es también mayor que el terrestre, pues al estar más alejado, describe su órbita alrededor del Sol más lentamente que la Tierra. Un año marciano tiene 668,6 soles, lo que equivale a 687 días terrestres. Esta mayor duración del año hace que las estaciones en Marte sean más largas que las terrestres.

Entonces, ¿hay también estaciones en Marte? Pues sí, en Marte se producen estaciones a lo largo del año debido a que el eje de rotación de Marte también está inclinado respecto al plano de la eclíptica (el plano imaginario en el que los planetas del Sistema Solar giran alrededor del Sol). Esta inclinación del eje, conocida como oblicuidad, es de 25,2° en Marte, un poco mayor que los 23,4393° de la Tierra. Además, la órbita de Marte es más excéntrica que la terrestre.

La órbita más elíptica de Marte provoca que sus estaciones tengan duraciones muy diferentes entre sí, de manera que las primaveras marcianas en el hemisferio norte y los otoños en el hemisferio sur duran 194 soles, siendo así las estaciones más largas. Las estaciones más cortas en Marte son los otoños en el hemisferio norte y las primaveras en el sur, con una duración de solo 142 soles. Los inviernos en el hemisferio norte y los veranos en el sur duran 154 soles; y, finalmente, los veranos en el hemisferio norte y los inviernos en el sur duran 178 soles.

A vueltas con el calendario marciano

Pero, ¿qué ocurre con el calendario marciano? En la Tierra los meses vienen determinados por el ciclo lunar, pero Marte tiene dos lunas, los dos satélites naturales llamados Fobos y Deimos. Como curiosidad, las lunas del planeta vecino reciben sus nombres de la mitología griega: Fobos significa ‘miedo’ y Deimos ‘terror’, y son los nombres de los caballos que tiraban del carro de Ares, el dios griego de la guerra, equivalente al dios romano Marte.

Captura de parte de la órbita que realiza Fobos alrededor de Marte. / NASA, ESA y Z. Levay (STScl)

Captura de parte de la órbita que realiza Fobos alrededor de Marte. / NASA, ESA y Z. Levay (STScl)

Los periodos de Fobos y Deimos son muy cortos, por lo que utilizar el mismo sistema que en la Tierra resulta inútil. Por ello, se eligió dividir el año en segmentos más o menos similares, más largos que nuestros meses, que cubrieran todo el periodo orbital. Los astrónomos Percival Lowell, Andrew E. Douglass y William H. Pickering, Robert G. Aitken y sir Patrick Moore diseñaron calendarios marcianos con mayor o menor suerte, pero no fue hasta 1986 cuando el ingeniero norteamericano Thomas Gangale publicó el calendario dariano, llamado así en honor a su hijo Darius.

En el calendario dariano, el año marciano se divide en 24 meses para acomodarlo manteniendo la noción de un “mes” razonablemente similar a la duración de un mes de la Tierra. El año cero del calendario se situó inicialmente en 1975, año del primer aterrizaje con éxito en la superficie de Marte de una nave estadounidense, con las misiones Viking. Más tarde, se definió como nuevo año cero para el calendario el año 1609, como doble homenaje a la publicación de las leyes de Kepler y la primera observación con un telescopio realizada por Galileo.

MY (martian year) y Ls (longitud planetocéntrica)

La Planetary Society decidió finalmente no emplear un calendario como tal, sino utilizar la longitud planetocéntrica del Sol, conocida como Ls (ángulo que indica la posición de Marte en su órbita alrededor del Sol), para medir la época del año en Marte y que funcionaría a modo de fecha marciana. Así, el valor Ls = 0° corresponde al paso de Marte por el punto vernal, es decir, el equinoccio de primavera en el hemisferio norte marciano; el valor 90° corresponde al solsticio de verano boreal; 180° al equinoccio de otoño boreal y 270° al solsticio de invierno boreal.

En este calendario, el año marciano 1 o MY1 (por sus siglas en inglés) comenzó oficialmente el día 11 de abril de 1955 a las 00:00 h UTC y terminó el 26 de febrero de 1957 a las 00:00 h UTC. El motivo de elegir esta fecha fue hacer coincidir el comienzo del calendario con la tormenta global de polvo que se observó en Marte en 1956. El comienzo de la estación de tormentas de polvo en Marte se produce justo después del paso por el perihelio, el punto de la órbita más cercana al Sol y donde más rápido se desplaza, sobre Ls = 260°.

Posteriormente, el calendario se extendió y se determinó el año marciano 0, MY0, que comenzó el día 24 de mayo de 1953 a las 00:00 h UTC. Cualquier año anterior llevaría delante el signo menos. Por tanto, MY-1 comenzó el 7 de julio de 1951, el MY-2 el 19 de agosto de 1949, y así sucesivamente. Como curiosidad, la primera observación conocida de Marte con un telescopio, realizada por Galileo a finales del año 1610, correspondería al MY-183.

El róver Curiosity en Marte. / NASA/JPL-Caltech/MSSS

El róver Curiosity en Marte. / NASA/JPL-Caltech/MSSS

Así pues, con este criterio de designación de fechas, el róver Curiosity (que lleva a bordo el otro instrumento español en Marte: REMS, la estación medioambiental también del Centro de Astrobiología) aterrizó en Marte el MY31 Ls150, es decir, el 6 de agosto de 2012. Y por su parte, InSight el MY35 Ls112.

Sea cual fuere el modo de medir el tiempo en Marte, dado que la idea de enviar seres humanos a explorar Marte es ya un proyecto consolidado, no estaría de más ir buscando un criterio unificado. No vaya a ser que el primer ser humano que ponga el pie en Marte no sepa cómo poner su reloj en hora.

 

* Juan Ángel Vaquerizo es el responsable de la Unidad de Cultura Científica del Centro de Astrobiología (CSIC-INTA) y autor del libro ‘Marte y el enigma de la vida’ (CSIC-Catarata) de la colección ¿Qué sabemos de?

Lecturas científicas para días de manta y sofá

Por Mar Gulis (CSIC)

Estas navidades van a ser diferentes. Quizá no podamos hacer todos los planes que nos gustaría, pero a cambio tendremos más tiempo para estar en casa y dedicarnos, por ejemplo, a leer. Desde Ciencia para llevar te proponemos algunos de los últimos títulos de la colección de divulgación ‘¿Qué sabemos de?’ (CSIC-Catarata) para estos días de manta y sofá. Los efectos del ejercicio físico en nuestro cerebro, los últimos avances de la exploración marciana o qué debemos hacer para protegernos de las ciberestafas son algunos de los temas de los que tratan. ¿Te animas a descubrirlos?

¿Cómo se pesa un átomo?

Nuestra primera propuesta te ofrece un viaje al nanomundo sin salir de casa. Pesar objetos diminutos como una bacteria, un virus o incluso un átomo, medir la presión sanguínea en el interior de las venas o posicionar aviones y satélites no sería posible sin las aplicaciones derivadas de la nanomecánica. Daniel Ramos Vega, investigador del CSIC, presenta los métodos con los que podemos visualizar e intervenir sobre la materia en la escala de los nanómetros, es decir, la milmillonésima parte de un metro (0,000000001 m) en el libro Nanomecánica.

En esta escala, las propiedades físicas y químicas de los objetos cambian y estos se comportan de un modo diferente a como lo hacen en el mundo macroscópico. Esto se aprovecha para desarrollar un sinfín de nuevos dispositivos descritos en el texto, como balanzas atómicas, narices electrónicas que dotan de olfato a los robots, sensores para sistemas de posicionamiento, acelerómetros que hacen saltar el airbag de los coches en caso de accidente o giroscopios instalados en teléfonos móviles y mandos de consolas.

Los efectos del ejercicio físico en nuestro cerebro

Todos sabemos que la actividad física resulta beneficiosa para nuestro organismo, incluido el cerebro. Ahora bien, ¿todo tipo de ejercicio genera efectos saludables?, ¿es cierto que el deporte ayuda a retrasar el envejecimiento?, ¿qué cambios se producen en nuestras neuronas cuando lo practicamos? Estas y otras cuestiones tienen respuesta en Cerebro y ejercicio. Los investigadores del CSIC Coral Sanfeliu y José Luis Trejo presentan las evidencias científicas de cómo la actividad física y deportiva moldea el cerebro humano y explican los efectos del ejercicio sobre la cognición, el estado de ánimo y la salud cerebral a todas las edades.

A lo largo del texto los investigadores se adentran en los mecanismos genéticos, moleculares y celulares que sustentan los innumerables beneficios del ejercicio. “Entre otros efectos positivos, produce un incremento de la capacidad cognitiva y de la formación de neuronas nuevas (potencia la capacidad de análisis matemático y la habilidad lingüística); hace crecer el flujo sanguíneo en el cerebro; incrementa la funcionalidad y disponibilidad de neurotransmisores clave e induce neuroprotección en todas las áreas cerebrales analizadas hasta la fecha”, afirman Sanfeliu y Trejo. Aparte de las consecuencias directas, el deporte produce también efectos indirectos, como ocurre con los individuos que se benefician del ejercicio físico que realizaron sus progenitores. Además, el ejercicio físico puede constituir una vía para hacer frente al envejecimiento y contribuye al bienestar psicológico. Después de leer este libro, seguro que te dan ganas de calzarte las zapatillas y ponerte en movimiento.

Enfermedades raras, patologías desconocidas con gran impacto económico y social

Son trastornos o condiciones muy diversos e infrecuentes, en su mayoría tienen origen genético y suelen aparecer en la infancia, por lo que se padecen durante casi toda la vida. Las enfermedades raras, englobadas bajo este término hace tan solo cuatro décadas, solo afectan a menos de 5 individuos por 10.000 habitantes, pero constituyen un problema de salud global. El investigador Francesc Palau hace divulgación sobre el origen, diagnóstico, tratamiento, atención sanitaria e investigación de estas patologías que, en términos globales, tienen incidencia sobre 26 millones de personas en Europa.

El libro Enfermedades raras presenta una realidad muy poco conocida por la ciudadanía. “El contraste entre los bajos datos epidemiológicos de la población afectada y su elevada diversidad y heterogeneidad, nos pone ante la paradoja de la rareza: las enfermedades son raras, pero los pacientes con enfermedades raras son muchos”. La distrofia muscular de Duchenne, la fibrosis quística o la esclerodermia son solo tres de las 6.172 enfermedades raras descritas hasta la fecha. Debido a su cronicidad, complejidad y la necesidad de una mayor atención sanitaria, los recursos que consumen son muy elevados.

La investigación biomédica es el camino para cambiar el futuro de las personas afectadas por una de estas patologías, pero también para esclarecer el complejo modo de enfermar del ser humano. “Actuaciones sobre las enfermedades raras son también acciones que nos ayudan a conocer y enfocar mejor las enfermedades comunes”, apunta Palau.

Del tupperware al teletrabajo: ¿cómo se hace la innovación?

La siguiente propuesta está protagonizada por un término usado hasta la saciedad. No hay ningún ámbito en el que la palabra innovación no aparezca como el talismán que soluciona todos los problemas. Pero, ¿qué se entiende en la actualidad por innovación?, ¿qué hacen Spotify, Zara o Amazon para triunfar innovando? o ¿cuáles son las cualidades de una persona innovadora? Los investigadores Elena Castro e Ignacio Fernández han escrito La innovación y sus protagonistas con la intención de explicar el alcance y dimensiones de este fenómeno y su evolución. “En este mundo globalizado, la supervivencia de las empresas y muchas actividades sociales pasan por la capacidad para desarrollar productos y procesos nuevos o mejorados, pero tratando de que tales innovaciones contribuyan a los objetivos sociales que van a permitir un futuro más sostenible y equitativo y que contribuya al bienestar de las personas”, apuntan los investigadores del CSIC.

La innovación es mucho más que nuevos productos o servicios, ya que también se puede innovar en los procesos de fabricación o en el desarrollo de políticas sociales, por ejemplo. Por otro lado, no solo hace falta una buena idea: “para que las invenciones sean consideradas innovaciones tienen que ser aplicadas en un proceso productivo, o su resultado ha de llegar al mercado o a la sociedad”, señalan Castro y Fernández. El texto ofrece otros muchos ejemplos de innovación, y da pistas de los atributos que han de tener las personas innovadoras. Además, los autores hacen hincapié en que no solo innovan las empresas, sino también otras organizaciones sociales. Una lectura imprescindible si quieres saber el verdadero alcance de la innovación y usar este término con propiedad.

Marte y el enigma de la vida

Lo han llamado dios de la guerra, Horus en el horizonte y estrella de fuego. Marte, ese punto rojo en el firmamento, siempre ha estado ahí, ante nuestros ojos, desafiando nuestra curiosidad. Desde la Antigüedad, el ser humano no ha cesado de observarlo y, lejos de agotar las preguntas, el más habitable de los planetas a nuestro alcance sigue ofreciéndonos un relato apasionante. Juan Ángel Vaquerizo, astrofísico y divulgador del CSIC ha escrito Marte y el enigma de la vida. El número 117 de la colección condensa el conocimiento que tenemos hasta el momento del planeta, explica sus peculiaridades y semejanzas con la Tierra, la historia de su exploración y los retos que se abren ante las nuevas misiones lanzadas hacia territorio marciano.

Marte

“Marte es especial porque ha provocado un profundo impacto en la cultura y ha impulsado de modo decisivo el avance de la ciencia en los últimos siglos. A día de hoy, es el primer objetivo astrobiológico, ya que es el mejor escenario para demostrar la existencia de vida fuera de la Tierra”, señala Vaquerizo. “Estamos viviendo momentos cruciales en la exploración marciana. Tanto es así que el primer ser humano que pise Marte ya ha nacido, y todo apunta a que algunos de los grandes enigmas que aún esconde el planeta rojo podrían ser resueltos durante las próximas décadas”, añade el autor. Si quieres saber más sobre estos enigmas y sus posibles respuestas, no te pierdas esta lectura marciana.

Matemáticas para la pandemia

Desde el inicio de la pandemia ocasionada por el virus SARS-CoV-2 contamos y medimos sin descanso. Cada día recibimos cantidades ingentes de información en forma de gráficos, tablas e infografías, y hemos incorporado a nuestro vocabulario expresiones como ‘ritmo de contagio’, ‘aplanar la curva’ o ‘crecimiento exponencial’. Los investigadores Manuel de León y Antonio Gómez Corral nos ayudan a entender estos términos en el libro Las matemáticas de la pandemia.

El texto recoge las herramientas que se utilizan para comprender el proceso de transmisión de enfermedades como la viruela, la malaria o la COVID-19 y expone cómo esta disciplina ayuda a diseñar medidas para combatirlas. En sus páginas se explica, entre otros, el modelo SIR. Formulado hace casi un siglo, su nombre alude a los tres grupos en los que se clasifican individuos de una población según su estado ante una enfermedad: susceptible (S), infectado (I) y resistente o recuperado (R).

Sobre las lecciones aprendidas durante la pandemia actual, los autores ponen el foco en la rapidez de acceso a los datos y en su calidad para hacer posible un análisis adecuado. “Sean cuales sean las características y peculiaridades que se incorporen al modelo matemático que describa la propagación del SARS-CoV-2, sus virtudes y limitaciones estarán siempre marcadas por los datos que lo soporten, es decir, que permitan su construcción y validación”, explican.

Las amenazas del ciberespacio

¿Qué tiene que ver una web que instala cookies de rastreo sin consentimiento con un programa informático malicioso capaz de sabotear una central nuclear? ¿Y con un correo fraudulento en el que nuestro supuesto jefe nos ordena hacer una transferencia urgente? Todas estas acciones, estén o no vinculadas, suponen una amenaza para la ciberseguridad, una disciplina de reciente cuño a la que está dedicado el último libro de la colección. Escrito por los investigadores del CSIC David Arroyo, Víctor Gayoso y Luis Hernández, el texto aborda un problema, el de la seguridad de la información almacenada o transmitida en el ciberespacio, que no ha dejado de crecer en los últimos años. Un ejemplo de ello es que en 2019 los ciberdelitos aumentaron en España un 35% con respecto al año anterior.

Estas prácticas afectan a particulares, empresas y estados, que sufren sus consecuencias más allá del mundo virtual. “El ciberespacio no es un mero anexo del mundo real, sino uno de los elementos que actualmente lo configuran, por lo que se puede constituir en causa y efecto en el mundo físico”, precisan los autores. En la detallada descripción de amenazas que recoge el libro Ciberseguridad, dos de las que reciben mayor atención son el phishing (homófono inglés de fishing: ‘pesca’), uno de los ataques más extendidos en la actualidad, y las herramientas de teletrabajo, que desde marzo de 2020 han experimentado un crecimiento estimado del 84% y que a juicio de los autores se han adoptado de modo improvisado.

Ciberseguridad

Además de exponer un amplio catálogo de ciberriesgos, los investigadores ofrecen consejos y dan pautas para protegernos de los peligros del ciberespacio.

Todos los libros de la colección ‘¿Qué sabemos de?’ están escritos por el personal investigador del CSIC. Además de los que te hemos contado, la serie te ofrece otros cien títulos para saciar tu curiosidad científica. Si eres ese tipo de personas que disfrutan con el olor y el tacto del papel, los tienes en formato bolsillo, y, si prefieres la pantalla, también los puedes conseguir en formato electrónico. ¡Que la ciencia te acompañe!